薄膜涂层内部受集中力的基本解及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代材料制备技术的迅速发展和工程实际应用的需要,作为多种学科交叉而发展起来的薄膜涂层材料愈来愈受到人们的重视。通常薄膜涂层材料的破坏形式为涂层的剥落,能否正确评价涂层与基体材料的界面结合强度,是保证该类材料安全性、可靠性的关键。对薄膜涂层材料界面的力学行为的评价,首先要能精确地分析结合材料界面上的应力分布和应变分布。由于涂层往往极薄,这不是一个容易的问题。近几十年来诸多研究者从不同途径如理论分析、数值计算、实验测试等入手开展了很多研究。理论分析的结果,一方面不仅可以为数值计算等提供一个比较检验的依据,也可以作为格林函数,去进一步求解较为复杂的问题,另一方面可以作为数值计算方法如边界元法的基本解,改善数值计算的精度和效率。这种理论基本解或基于理论解的半解析解无疑具有重要的意义。
     本论文在针对结合材料问题特别有效的镜像点法基础上作了改进,将其推广应用到研究薄膜涂层材料内部受力的问题,完善了薄膜涂层结构材料受集中力作用下的基本理论解体系,并讨论了理论解在解决实际问题时的一些拓展应用。具体研究内容和创新性工作总结如下:
     首先针对薄膜涂层材料应用的日益广泛性,对其研究概况进行了总结回顾,介绍了目前常用的一些研究途径如理论研究、数值分析和实验测试等,第二章中系统回顾了在理论研究涂层材料非常有效的镜像点法原理及其优势特点。
     研究了薄膜涂层材料结构形式中薄膜涂层材料内部受集中力作用的平面和空间问题。不同于以往的镜像点法,本文通过将集中力作用点关于界面和表面进行映射,引入两个系列的镜像点,求解了薄膜涂层结合材料内部受力的问题。设定各材料的分析函数为固定于力作用点和各镜像点的局部坐标系下的形式。在严格满足界面连续性条件、自由边界条件的基础上,利用Dirichlet单值性原理求解微分方程。对应于高阶镜像点的分析函数通过递推的方法从对应于低阶镜像点的分析函数求得。在无限体内受集中力作用的基本解基础上,求得了问题完备的显式理论解,以分析函数的无穷级数形式表示。由于不同的推导过程,本文分别分析了集中力作用的平面问题、集中力垂直界面作用的轴对称问题以及集中力平行界面作用的空间问题,完善了薄膜涂层材料问题的基本解体系。在求解集中力作用于界面上的问题时,首次求得了两个半无限体结合界面上受集中力作用的基本解。
     对理论解进行了深入的讨论,首先通过数值算例对理论解的验证,证明了理论解的正确性,并且从推导过程易知理论解可以退化到一些特殊情况下的经典基本解。为了方便理论解的实际应用,归纳出理论解的规律,给出了多项式形式的递推公式。从多项式形式和数值算例验证中可以发现理论解虽以无穷级数形式给出,但具有非常快速的收敛性,针对一些常用结合材料往往只需要考虑前面几阶的镜像点就可以达到足够的精确度。借助于理论解易于编程求解的特性,讨论了不同材料组合形式对理论解结果收敛性的影响,发现随着结合材料力学属性之间差异的增大,达到要求精度所需考虑的镜像点数目也会相应增加。
     在求得的理论解基础上研究了一些更接近实际的问题,如圆周载荷作用情况下材料内的应力场和位移场,以及结合压痕实验分析了Hertz压力分布下的薄膜涂层强度评价问题,显示出理论解除了本身的独立应用外,也可以作为一种格林函数或基本解用于分析更复杂的问题,为目前处于薄膜涂层研究工作中处于相对弱势的理论分析作出了一定的贡献。最后对未来一些关于薄膜涂层材料比较重要的研究方向进行了展望。
With the wide application of surface-treated material in many industries, the problems of coating materials have become unavoidable and therefore drawn considerable attentions. Effective analysis of stress or strain for such a thin-layer structure is very important. Many efforts have been made on obtaining the stress and displacement field quantitatively by different approaches such as theoretical analysis, numerical analysis, and experimental research etc. The theoretical solutions of some typical cases are very meaningful and expected since they can be used not only to solve more sophisticated problems by the Green’s function technology, but also can be used as the fundamental solution to improve the numerical accuracy and efficiency.
     The problems of coating materials with concentrated forces applied in the interior of materials has been analyzed by using the improved image point method. This method has special advantages in dealing with dissimilar material problems. The extensive application of the theoretical solutions are also discussed. With our previous work, the fundamental solution system of thin-filmed materials are completed basically. The detailed research contents and the innotative achievements are summarized as follow.
     In Chap 1 and 2, considering the wide application of coating materials, recent researches on such material structure are reviewed in perspectives of different analysis approaches. Therefore, the image point method which is very effective in dealing with coating materials problems is introduced in detail.
     The planar and spatial problems of concentrated forces applied in the interior of semi-infinite coating materials are discussed. Through the reflections of the loading point about the interface and the free surface, two infinite series of image points are introduced, which is different from the previous application of the image point method. The theoretical solutions are given by the analytical functions defined under the corresponding local coordinates with their origins placed at the loading point and image points. Based on the boundary conditions and the interchange law, the analytical functions corresponding to the mirror point of higher order can be determined from that to the lower order ones by the recurrence relationship. The fundamental solution of a concentrated force loading at the interface of two bonded semi-infinite bodies is also obtained and published firstly.
     The theoretical solutions are discussed. Through the comparisons between the analytical and numerical results, the theoretical solutions are verified. It is found that the theoretical solutions can degrade to some classical fundamental solutions of special problems. For the extensive application of the theoretical solutions, the solutions presented in the polynomial form are deduced and listed in the appendix. From the solution expressions, we can find the convergence of theoretical solution is very rapid, and only the first several image points are sufficient to ensure the accuracy in the most practical cases. The effect of different material properties combinations on the convergence of theoretical solution is also discussed. It is found that the bigger the mismatch between the Young’s modulus is, the more image points are needed to get satisfactory accuracy.
     Based on the previous theoretical solutions, the problems of ring load and Hertz pressure in a coated half-space are studied. The results are discussed in connection with strength evaluation found experimentally.
引文
[1] PalDey S, Deevi S C. Single layer and multilayer wear resistant coatings of (ti,al)n: A review[J]. Materials Science and Engineering A, 2002, 342(1-2): 58-79.
    [2] Subramanian C, Strafford K N. Review of multicomponent and multilayer coatings for tribological applications[J]. Wear, 1993, 165(1): 85-95.
    [3] Donnet C. Recent progress on the tribology of doped diamond-like and carbon alloy coatings: A review [J]. Surface and Coatings Technology, 1998, 100-101(1-3): 180-186.
    [4]丁彰雄.热障涂层的研究动态及应用[J].中国表面工程, 1999, 2: 31-37.
    [5] Musil J. Hard and superhard nanocomposite coatings[J]. Surface and Coatings Technology, 2000, 125(1-3): 322-330.
    [6]欧忠文,徐滨士.纳米材料在表面工程中应用的研究进展[J].中国表面工程, 2000, 13(2): 5-9.
    [7]胡传炘,宋幼慧.涂层技术原理及应用[M].化学工业出版社,北京, 2000.
    [8] Gray J E, Luan B. Protective coatings on magnesium and its alloys - a critical review[J]. Journal of Alloys and Compounds, 2002, 336(1-2): 88-113.
    [9] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284.
    [10]蔡珣,石玉龙,周建.现代薄膜材料与技术[M].华东理工大学出版社,上海, 2007: p 390.
    [11] Standard test method for adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing[M]. Designation: ASTM Standard C1624-05. ASTMInternational, West Conshohocken, PA, 2005.
    [12] Bull S J, Rickerby D S. Advanced surface coatings: A handbook of surface engineering[M]. Chapman and Hall Inc., New York, 1991: p 315.
    [13] Valli J. A review of adhesion test methods for thin hard coatings[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986, 4(6): 3007-3014.
    [14] Rickerby D S. A review of the methods for the measurement of coating-substrate adhesions[J]. Surface and Coatings Technology, 1988, 36: 541-557.
    [15]郑森林,何家文,张平余,张绪寿.涂层基结合强度测定方法研究进展[J].薄膜科学与技术, 1993, 6(2): 85-92.
    [16] Laugier M. The development of the scratch test technique for the determination of the adhesion of coatings[J]. Thin Solid Films, 1981, 76(3): 289-294.
    [17] Baba S, Kikuchi A, Kinbara A. A microtribometer for measurement of friction and adhesion of coatings[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986, 4(6): 3015-3018.
    [18] Steinmann P. Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load[J]. Thin Solid Films, 1987, 154: 333-349.
    [19] Burnett P. The relationship between hardness and scratch adhession[J]. Thin Solid Films, 1987, 154: 403-416.
    [20] Bull S J, Rickerby D S, Matthews A. The use of scratch adhesion testing for the determination of interfacial adhesion: The importance of frictional drag[J]. Surface and Coatings Technology, 1988, 36: 503-517.
    [21] Jindal P C, Quinto D T, Wolfe G J. Adhesion measurements of chemically vapor deposited and physically vapor deposited hard coatings on wc--co substrates[J]. Thin Solid Films, 1987, 154: 361-375.
    [22] Gao H, Chiu C-H, Lee J. Elastic contact versus indentation modeling of multi-layered materials[J]. International Journal of Solids and Structures, 1992, 29(20): 2471-2492.
    [23] Fischer-Cripps A C. A review of analysis methods for sub-micron indentation testing[J]. Vacuum, 2000, 58(4): 569-585.
    [24] Kennedy F E, Ling F F. Elasto-plastic indentation of a layered medium[J]. Journal of Engineering Materials and Technology, 1974, 96: 97-103.
    [25] Tangena A G, Wijnhoven P J M. The correlation between mechanical stresses and wear in a layered system[J]. Wear, 1988, 121: 27-35.
    [26] Komvopoulos K. Elastic-plastic finite element analysis of indented layered media[J]. JOURNAL OF TRIBOLOGY, 1989, 111: 430-439.
    [27] Djabella H. Two-dimensional finite-element analysis of elastic stresses in double-layer systems under combined surface normal and tangential loads[J]. Thin Solid Films, 1993, 226(1): 65-73.
    [28] Djabella H, Arnell R D. Finite element analysis of the contact stresses in elastic coating /substrate under normal and tangential load[J]. Thin Solid Films, 1993, 223(1): 87-97.
    [29] Pethicai J B, Hutchings R, Oliver W C. Hardness measurement at penetration depths as small as 20 nm[J]. Philosophical Magazine A, 1983, 48(4): 593-606.
    [30] Pollock H M, Maugis D, Barquins M. Characterisation of submicrometer surface layers by indentation. In: Microindentation Techniques in Materials Science and Engineering (2nd edn. ed.)[C], ASTM STP 889, American Society for Testing and Materials, Philadelphia, 1986, p. 47-71.
    [31] Shih C W, Yang M, Li J C M. Effect of tip radius on nanoindentation[J]. Journal of Materials Research, 1991, 6(12): 2623-2628.
    [32] Sun Y, Bell T, Zheng S. Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation[J]. Thin Solid Films, 1995, 258(1-2): 198-204.
    [33] Chen X, Vlassak J J. Numerical study on the measurement of thin film mechanical properties by means of nanoindentation[J]. Journal of Materials Research, 2001, 16(10): 2974-2982.
    [34] Marx V, Balke H. A critical investigation of the unloading behavior of sharp indentation[J]. Acta Materialia, 1997, 45(9): 3791-3800.
    [35] Peng W, Bhushan B. A numerical three-dimensional model for the contact of layered elastic/plastic solids with rough surfaces by a variational principle[J]. Journal of Tribology 2001, 123(2): 330-342.
    [36] Tian H, Saka N. Finite element analysis of an elastic--plastic two-layer half-space sliding contact[J]. Wear, 1991, 148(2): 261-285.
    [37] Bucaille J L, Felder E, Hochstetter G. Mechanical analysis of the scratch test on elastic and perfectly plastic materials with the three-dimensional finite element modeling[J]. Wear, 2001, 249(5-6): 422-432.
    [38] Kral E R, Komvopoulos K. Three-dimensional finite element analysis of subsurface stresses and shakedown due to repeated sliding on a layered medium[J]. Journal of Applied Mechanics, 1996, 63(4): 967-973.
    [39] Kral E R, Komvopoulos K. Three-dimensional finite element analysis of surface deformation and stresses in an elastic-plastic layered medium subjected to indentation and sliding contact loading[J]. Journal of Applied Mechanics, 1996, 63(2): 365-375.
    [40] Kral E R, Komvopoulos K. Three-dimensional finite element analysis of subsurface stress and strain fields due to sliding contact on an elastic-plastic layered medium[J]. Journal of Tribology 1997, 119(2): 332-341.
    [41] Bouzakis K D, Efstathiou K, Vidakis N, Kallinkidis D, Angos S, Leyendecker T, Erkens G, Fuss H G, Wenke R. Experimental and fem analysis of the fatigue behaviour of pvd coatings on hss substrate in milling[J]. CIRP Annals - Manufacturing Technology, 1998, 47(1): 69-72.
    [42] Bouzakis K D, Vidakis N, Leyendecker T, Erkens G, Wenke R. Determination of the fatigue properties of multilayer pvd coatings on various substrates, based on the impact test and its fem simulation[J]. Thin Solid Films, 1997, 308-309: 315-322.
    [43] Bouzakis K D, Vidakis N, Leyendecker T, Lemmer O, FUSS H G, ERKENS G. Determination of the fatigue behaviour of thin hard coatings using the impact test and a fem simulation[J]. Surface and coatings technology, 1996, 86-87: 549-556.
    [44]余寿文,徐千军.微力电系统中多层膜的端部应力集中[J].机械强度, 1995, 17(2): 7-13.
    [45]张显程,巩建鸣,涂善东,陈建钧.不同材料涂层/基体界面应力的有限元评价[J].南京工业大学学报, 2002, 24(4): 22-25.
    [46]蔡珣,周平南,杨晓豫.薄膜材料微观力学行为的有限元分析[J].应用力学学报, 1998, 15(2): 62-66.
    [47] Rizzo F J. An integral equation approach to boundary value problems of classical elastostatics[J]. Quarterly of Applied Mathematics, 1967, 25: 83-95.
    [48] Rizzo F J, Shippy D J. An advanced boundary integral equation method for three-dimensional thermoelasticity[J]. International Journal for Numerical Methods in Engineering, 1977, 11: 1753-1768.
    [49] Mukherjee S. Boundary element methods in creep and fracture[M]. Applied Science Publishers, New York, 1982.
    [50] Cruse T A. Boundary element analysis in computational fracture mechanics[M]. The Netherlands, Kluwer Academic Publishers, Dordrecht, 1988.
    [51] Luo J F, Liu Y J, Berger E J. Interfacial stress analysis for multi-coating systems using an advanced boundary element method[J]. Computational Mechanics, 2000, 24: 448-455.
    [52] Luo J F, Liu Y J, Berger E J. Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method [J]. Computational Mechanics, 1998, 22(5): 404-412.
    [53] Chen X L, Liu Y J. Thermal stress analysis of multi-layer thin films and coatings by an advanced boundary element method[J]. Computer Modeling in Engineering and Sciences, 2001, 2: 337-350.
    [54] Mura T. Micromechanics of defects in solids[M]. Martinus Nijhoff Publishers, 1987: p 587.
    [55] Nisitani H. On the study of two-dimensional stress analysis by using digital computer[J]. Journal of Japan Society Mechanical Engineers, 1967, 70: 627-635.
    [56] Thompson W S. Note on the integration of the equations of equilibrium of an elastic solid[J]. Cambridge and Dublin Mathematical Journal, 1848, 1: 97-99.
    [57] Boussinesq J. Applications of potentials for the study of equilibrium and movement of elastic solids[M]. Gauthier-Villars, Paris, 1885.
    [58] Cerruti V. A treatise on the mathematical theory of elasticity[M]. 4th edition ed., Dover Publications, New York, 1882.
    [59] Melan E. Der spannungszustand der durch eine einzelkraft im innern beanspruchten halbscheibe[J]. ZAMM - Journal of Applied Mathematics and Mechanics, 1932, 12: 343-346.
    [60] Mindlin R D. Force at a point in the interior of a semi-infinite solid[J]. Journal of Physics, 1936, 7: 195-202.
    [61] Mindlin R D. Nuclei of strain in the semi-infinite solid[J]. Journal of Applied Physics, 1950, 21(9): 926-930.
    [62] Dean W R, Parsons H W, Sneddon I N. A type of stress distribution on the surface of a semi-infinite elastic solid. In: Mathematical Proceedings of the Cambridge Philosophical Society[C], 1944: Cambridge University Press, p. 5-18.
    [63] Kermanidis T. A numerical solution for axially symmetric elasticity problems[J]. InternationalJournal of Solids and Structures, 1975, 11: 493-500.
    [64] Erguvan M E. A fundamental solution for transversely isotropic and nonhomogeneous media[J]. International Journal of Engineering Science, 1987, 25: 117-122.
    [65] Erguvan M E. An axisymmetric fundamental solution and the reissner-sagoci problem for an internally loaded non-homogeneous transversely isotropic half space.[J]. International Journal of Engineering Science, 1988, 26: 77-84.
    [66] Hasegawa H. Green's functions for axisymmetric problems of dissimilar elastic solids[J]. Journal of Applied Mechanics, 1992, 59(2): 312-320.
    [67] Hasegawa H, Lee V-G, Mura T. The stress fields caused by a circular cylindrical inclusion[J]. Journal of Applied Mechanics, 1992, 59: 107-114.
    [68] Dougall J. An analytical theory of the equilibrium of an isotropic elastic plate[J]. Trans. Roy. Soc. Edinburgh, 1904, 41: 129-228.
    [69] Harding J W, Sneddon I N. The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. In: Mathematical Proceedings of the Cambridge Philosophical Society[C], 1945: Cambridge University Press, p. 16-26.
    [70] Sneddon I N. The elastic stresses produced in a thick plate by the application of pressure to its free surfaces. In: Mathematical Proceedings of the Cambridge Philosophical Society[C], 1946: Cambridge University Press, p. 260-271.
    [71] Muki T. Asymmetric problems of the theory of elasticity for a semi-infinite solid and a thick plate. In: Progressin Solid Mechanics[C], North-Holland, Amsterdam, 1960, p. 399-439.
    [72] Buffer H. Elastisches mehrschichtsystem unter asymmetrischer belastung[J]. ZAMM Applied Mathematics and Mechanics, 1974, 54: 103-118.
    [73] Bufler H. Theory of elasticity of a multilayered medium [J]. Journal of Elasticity, 1971, 1(2): 125-143.
    [74] Benitez F G, Rosakis A J. Three-dimensional elastostatics of a layer and a layered medium[J]. Journal of Elasticity, 1987, 18: 3-50.
    [75] Tarn J Q, Wang Y M. A fundamental solution for a transversely isotropic elastic space[J]. Journal of the Chinese Institute of Engineers, 1987, 10(1): 13-21.
    [76] Lu C C. Study on the fundamental solutions of poroelasticity and consolidation analysis[D]. Taiwan: National University of Cheng Kung, 1991.
    [77] Ding H J, Liang J, Chen B. The united point force solution for both isotropic and transversely isotropic media[J]. Communications in Numerical Methods in Engineering, 1997, 13(2): 95-102.
    [78]丁皓江.横观各向同性弹性力学[M].浙江大学出版社,杭州, 1997: p 240.
    [79] Michell J H. The stress in an aeolotropic elastic solid with an infinite plane boundary[J]. Proceedings of the London Mathematical Society, 1900, 32: 247-258.
    [80] Shield R T, Green A E. Notes on problems in hexagonal aeolotropic materials[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1951, 47(2): 401-409.
    [81] Gazetas G. Stresses and displacements in cross-anisotropic soils[J]. Journal of the Geotechnical Engineering Division, 1982, 108(4): 532-553.
    [82] Misra B, Sen B R. Stresses and displacements in granular materials due to surface load[J]. International Journal of Engineering Science, 1975, 13: 743-761.
    [83] Chowdhury K L. On the axisymmetric mindlin's problem for a semi-space of granular material[J]. Acta Mechanica, 1987, 66: 145-159.
    [84] Fabrikant V I, Hanson M. Applications of potential theory in mechanics: A selection of new results[J]. Journal of Applied Mechanics, 1993, 60(3): 789-789.
    [85] Hou P F, Zhou X H, He Y J. Green's functions for a semi-infinite transversely isotropic piezothermoelastic material[J]. Smart materials and structures, 2007, 16(5): 1915-1923.
    [86] Rongved L. Force interior to one of two joined semi-infinite solids. In: 2nd Midwestern Conference on Solid Mechanics[C], 1955, p. 1-13.
    [87] Dundurs J, Hetenyi M. Transmission of force between two semi-infinite solids[J]. ASME, Journal of Applied Mechanics, 1965, 32: 671-674.
    [88] Bogy D B. Edge bonded dissimilar orthogonal elastic wedges under normal and shear loadings[J]. Journal of Applied Mechanics, 1968, 35: 146-154.
    [89] Burmister D M. The general theory of stresses and displacements in layered soil systems. Ii[J]. Journal of Applied Physics, 1945, 16(3): 126-127.
    [90] Burmister D M. The general theory of stresses and displacements in layered soil systems. Iii[J]. Journal of Applied Physics, 1945, 16(5): 296-302.
    [91] Burmister D M. The general theory of stresses and displacements in layered systems. I[J]. Journal of Applied Physics, 1945, 16(2): 89-94.
    [92] Fares N, Li V C. General image method in a plane-layered elastostatic medium[J]. Journal of Applied Mechanics, 1988, 55: 781-785.
    [93] Yu H Y, Sanday S C. Elastic fields in joined half-spaces due to nuclei of strain. In: Proceedings of The Royal Society of London[C], 1991, p. 503-519.
    [94] Walpole L J. An elastic singularity in joined half-spaces[J]. International Journal of Engineering Science, 1996, 34(6): 629-638.
    [95] Barnett D M, Lothe J. Line force loadings on anisotropic half-spaces and wedges[J]. Physica Norvegica, 1975, 8: 13-22.
    [96] Walker K P. Fourier integral representation of the green's function for an anisotropic elastic half-space. In: Proceedings of the Royal Society of London[C], 1993, p. 367-389.
    [97] Ting T C T. Anisotropic elasticity[M]. Oxford University Press, 1996.
    [98] Pan E, Yuan F G. Three-dimensional green's functions in anisotropic bimaterials[J]. International Journal of Solids and Structures, 2000, 37: 5329-5351.
    [99] Williams M L. The stress around a fault or crack in dissimilar media[J]. Bulletin of the Seismological Society of America, 1959, 49: 199-208.
    [100] Bogy D B. On the plane elastotatic problem of a loaded crack terminating at a material interface[J]. Journal of Applied Mechanics, 1971, 38: 911-918.
    [101] Cook T S, Erdogan F. Stresses in bonded materials with a crack perpendicular to the interface[J]. International Journal of Engineering Science, 1972, 10: 677-697.
    [102] Delale F, Erdogan F. Bonded orthotropic strips with cracks[J]. International Journal of Fracture,1979, 15: 343-364.
    [103] Chen D H, Karada K. Stress singularities for crack normal to and terminating at biomaterial interface of anisotropic half-planes[J]. Japan Society of Mechanical Engineers, 1997, 63: 102-109.
    [104] Bogy D B. Two edge bonded elastic wedges of different materials and wedge angles under surface tractions[J]. Journal of Applied Mechanics, 1971, 38: 377-386.
    [105] Kobo S, Ohji K. Geometrical conditions of no free-edge stress singularities in edge-bonded elastic dissimilar wedges[J]. Transactions of the Japan Society of Mechanical Engineers, 1991, 57: 632-636.
    [106]许金泉,金烈候,丁皓江.双材料界面端附近的应力奇异场[J].上海力学, 1996, 17: 104-110.
    [107] Erdogan F, Ozbek T. Stresses in fiber-reinforced composites with imperfect bonding[J]. ASME, Journal of Applied Mechanics, 1969, 36: 865-869.
    [108] Ozbek T, Erdogan F. Some elasticity problems in fiber-reinforced composites with imperfect bonds[J]. International Journal of Engineering Science, 1969, 7: 931-946.
    [109] Agarwal V K. Axisymmetric solution of the end-problem for a semi-infinite elastic circular cylinder and its application to joined dissimilar cylinders under uniform tension[J]. International Journal of Engineering Science, 1978, 16: 985-998.
    [110] Agarwal V K. Axisymmetric solution for a semi-infinite elastic circular cylinder of one material indenting an elastic half-space of another material[J]. international Journal of Engineering Science, 1980, 18: 631-639.
    [111] Somaratna N, Ting T C T. Three-dimensional stess singularities in anisotropic materials and composites[J]. International Journal of Engineering Science, 1986, 24: 1115-1134.
    [112] Tsuji T, Shibuya T, Koizumi T. Axially-loaded stepped cylindrical rod[J]. Transactions of the Japan Society of Mechanical Engineers, 1985, A51: 638-647.
    [113] Bahar L Y. A state space approach to elasticity[J]. Journal of the Franklin Institute, 1975, 299(1): 33-41.
    [114] Rao N S V K, Das Y C. A mixed method in elasticity[J]. ASME Journal of Applied Mechanics, 1977, 44: 51-56.
    [115] Chen W T. Computation of stresses and displacements in a layered elastic medium[J]. International Journal of Engineering Science, 1971, 9: 775-800.
    [116] Bahar L Y. Transfer matrix approach to layered systems[J]. Journal of the Engineering Mechanics Division, 1972, 98: 1159-1172.
    [117] Seale S H, Kausel E. Point loads in cross-anisotropic layered halfspaces[J]. Journal of Engineering Mechanics, 1989, 115(3): 509-542.
    [118] Small J C, Booker J R. Finite layer analysis of layered elastic materials using a flexibility approach. Part 2 - circular and rectangular loadings[J]. International Journal for Numerical Methods in Engineering, 2005, 23: 959-978.
    [119] Maxwell J C. A treatise on electricity and magnetism[M]. Oxford University Press, London, 1892: p 662.
    [120] Rogers W E. Introduction to electric fields: A vector analysis approach[M]. McGraw-Hill, 1954: p 333.
    [121] Lindell I V. Methods for electromagnetic field analysis[M]. 1992: p 290.
    [122]毕德显.电磁场理论[M].电子工业出版社,北京, 1985.
    [123] Dundurs J, Hetenyi M. The elastic plane with a circular insert, loaded by a radial force[J]. Journal of Applied Mechanics, 1961, 28: 103-111.
    [124] Hetenyi M, Dundurs J. The elastic plane with a circular insert, loaded by a tangentially directed force[J]. Journal of Applied Mechanics, 1962, 29: 362-368.
    [125] Aderogba K. An image treatment of elastostatic transmission from an interface layer[J]. Journal of the Mechanics and Physics of Solids, 2003, 51: 267-279.
    [126] Schwarzer N. Arbitrary load distribution on a layered half space[J]. Journal of Tribology, 2000, 122: 672-681.
    [127] Ting T C T. Image singularities of green's functions for anisotropic elastic half-spaces and bimaterials[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1992, 45: 119-139.
    [128] Wu M S, Huang H, Feng R. Closed-form solutions for interfacial edge dislocations in anisotropic bicrystals by the image method[J]. Mechanics of Materials, 2003, 35(9): 913-930.
    [1] Maxwell J C. A treatise on electricity and magnetism[M]. Oxford University Press, London, 1892: p 662.
    [2]毕德显.电磁场理论[M].电子工业出版社,北京, 1985.
    [3] Mindlin R D. Force at a point in the interior of a semi-infinite solid[J]. Journal of Physics, 1936, 7: 195-202.
    [4] Dean W R, Parsons H W, Sneddon I N. A type of stress distribution on the surface of a semi-infinite elastic solid. In: Mathematical Proceedings of the Cambridge Philosophical Society[C], 1944: Cambridge University Press, p. 5-18.
    [5] Rongved L. Force interior to one of two joined semi-infinite solids. In: 2nd Midwestern Conference on Solid Mechanics[C], 1955, p. 1-13.
    [6]许金泉.界面力学[M].科学出版社,北京, 2006: p 281.
    [7]谢贻权,林钟祥,丁皓江.弹性力学[M].浙江大学出版社, 1988.
    [8] Thompson W S. Note on the integration of the equations of equilibrium of an elastic solid[J]. Cambridge and Dublin Mathematical Journal, 1848, 1: 97-99.
    [9] Xu J Q, Mutoh Y. A normal force on the free surface of a coated material[J]. Journal of Elasticity, 2003, 73: 147-164.
    [10] Xu J Q, Mutoh Y. Analytical solution for interface stresses due to concentrated surface force[J]. International Journal of Mechanical Sciences, 2003, 45: 1877-1892.
    [11] Xu J Q, Mutoh Y, Fu L D. Theoretical solution for concentrated force on the free surface of a coating material. 1st report. On the two dimensional solutions[J]. Transactions of the Japan Society of Mechanical Engineers A, 2002, 68: 1259-1265.
    [12] Xu J Q, Mutoh Y, Fu L D. Theoretical solution for concentrated force on the free surface of a coating material. 2nd report. Three dimensional solution for a normal force[J]. Transactions of the Japan Society of Mechanical Engineers A, 2002, 68: 1266-1272.
    [13] Xu J Q, Mutoh Y, Fu L D. Theoretical solution for concentrated force on the free surface of a coating material. 3rd report: Three dimensional solution for a tangential force[J]. Transactions of the Japan Society of Mechanical Engineers A, 2002, 68: 1650-1657.
    [14]李华波,许金泉,杨震.等厚双层涂层材料受法向集中力作用的三维理论解[J].上海交通大学学报, 2005, 39(5): 795-800.
    [15]李华波,许金泉,杨震.等厚双层涂层材料受切向集中力作用的三维理论解[J].工程力学, 2006, 23(4): 45-51.
    [16]杨震,李华波,许金泉.等厚双层涂层材料受集中力作用的平面问题理论解[J].力学季刊, 2004, 25(4): 457-462.
    [17]许金泉,陈永清,杨震.板材自由表面受法向集中力时的理论解[J].固体力学学报, 2004, 25(4): 394-398.
    [18]杨震.层合板受集中力作用的界面应力理论解[D].上海:上海交通大学, 2005.
    [1] Djabella H, Arnell R D. Finite element comparative study of elastic stresses in single, double layer and multilayered coated systems[J]. Thin solid films, 1993, 235: 156-162.
    [2] Gao H J, Chiu C H, Lee J. Elastic contact versus indentation modeling of multi-layered materials[J]. International Journal of Solids and Structures, 1992, 29(20): 2471-2492.
    [3] Gupta P K, Walowit J A, Finkin E F. Contact stresses between an elastic cylinder and a layered elastic solid[J]. Trans. ASME Journal of Lubrication Technology, 1973, 94: 250-257.
    [4] Kouitat-Njiwa R, Stebut J V. Boundary element numerical analysis of elastic indentation of a sphere into a bi-layer material[J]. International Journal of Mechanical Sciences, 2003, 45: 317-324.
    [5] Man K W. Contact mechanics using boundary elements[M]. Computational Mechanics Publications, Southamton UK, 1994.
    [6] Shih C W, Yang M, Li J C M. Effect of tip radius on nanoindentation[J]. Journal of Materials Research, 1991, 6(12): 2623-2628.
    [7] Thompson W S. Note on the integration of the equations of equilibrium of an elastic solid[J]. Cambridge and Dublin Mathematical Journal, 1848, 1: 97-99.
    [8] Rongved L. Force interior to one of two joined semi-infinite solids. In: 2nd Midwestern Conference on Solid Mechanics[C], 1955, p. 1-13.
    [9] Selvadurai A P S. Betti's reciprocal relationships for the displacements of an elastic infinite space bounded internally by a rigid inclusion[J]. Mechanics Based Design of Structures and Machines, 1981, 9(2): 199-210.
    [10] Selvadurai A P S. Analytical methods for embedded flat anchor problems in geomechanics. In: Proceedings of the 8th International Conference of the International Association of Computer Methods and Advances in Geomechanics[C], Morgantown, 1994: WV, p. 305-321.
    [11] Selvadurai A P S. An application of betti's reciprocal theorem for the analysis of an inclusion problem[J]. Engineering Analysis with Boundary Elements, 2000, 24(10): 759-765.
    [12] Eskandari-Ghadi M, Pak R Y S, Ardeshir-Behrestaghi A. Elastostatic green's functions for an arbitrary internal load in a transversely isotropic bi-material full-space[J]. International Journal of Engineering Science, 2009, 47(4): 631-641.
    [13] Timoshinko S P, Goodier J N. Theory of elasticity[M]. McGraw Hill Inc., 1987.
    [14] Martin E, Peters P W M, Leguillon D, Quenisset J M. Conditions for matrix crack deflection at an interface in ceramic matrix composites[J]. Materials Science and Engineering A, 1998, 250(2): 291-302.
    [1] Gao H J, Chiu C H, Lee J. Elastic contact versus indentation modeling of multi-layered materials[J]. International Journal of Solids and Structures, 1992, 29(20): 2471-2492.
    [2] Jardret V, Zahouani H, Loubet J L, Mathia T G. Understanding and quantification of elastic and plastic deformation during a scratch test[J]. Wear, 1998, 218(1): 8-14.
    [3] Schwarzer N, Chudoba T, Billep D, Richter F. Investigation of coating substrate compounds using inclined spherical indentation[J]. Surface and Coatings Technology, 1999, 116-119: 244-252.
    [4] Timoshinko S P, Goodier J N. Theory of elasticity[M]. McGraw Hill Inc., 1987.
    [5] Noda N-A, Kouyama T, Kinoshita Y. Stress intensity factors of an inclined elliptical crack near a bimaterial interface[J]. Engineering Fracture Mechanics, 2006, 73: 1292-1320.
    [6] Rongved L. Force interior to one of two joined semi-infinite solids. In: 2nd Midwestern Conference on Solid Mechanics[C], 1955, p. 1-13.
    [1] Cerruti V. A treatise on the mathematical theory of elasticity[M]. 4th edition ed., Dover Publications, New York, 1882.
    [2] Boussinesq J. Applications of potentials for the study of equilibrium and movement of elastic solids[M]. Gauthier-Villars, Paris, 1885.
    [3] Chou T W, Hirth J P. Stress distribution in a bimaterial plate under uniform external loadings[J]. Journal of Composite Materials, 1970, 4: 102-112.
    [4] Xu J Q, Mutoh Y. A normal force on the free surface of a coated material[J]. Journal of Elasticity, 2003, 73: 147-164.
    [5] Timoshinko S P, Goodier J N. Theory of elasticity[M]. McGraw Hill Inc., 1987.
    [1] Johnson K L. Contact mechanics[M]. Cambridge University Press, Cambridge, U. K., 1985.
    [2] Mura T. Micromechanics of defects in solids[M]. Martinus Nijhoff, The Netherlands, 1982.
    [3] Hasegawa H, Lee V-G, Mura T. The stress fields caused by a circular cylindrical inclusion[J]. Journal of Applied Mechanics, 1992, 59(2S): 107-114.
    [4] Hasegawa H, Lee V-G, Mura T. Hollow circular cylindrical inclusion at the surface of a half-space[J]. Journal of Applied Mechanics, 1993, 60(1): 33-40.
    [5] Xu J Q, Mutoh Y. A normal force on the free surface of a coated material[J]. Journal of Elasticity, 2003, 73: 147-164.
    [6] Hanson M T, Wang Y. Concentrated ring loadings in a full space or half space : Solutions for transverse isotropy and isotropy[J]. International journal of solids and structures, 1997, 34: 1379-1418.
    [7] Xu J Q, Mutoh Y, Fu L D. Theoretical solution for concentrated force on the free surface of a coating material. 3rd report: Three dimensional solution for a tangential force[J]. Transactions of the Japan Society of Mechanical Engineers A, 2002, 68: 1650-1657.
    [8] Hertz H. Miscellaneous papers[M]. Macmillan, London, 1896: p 146.
    [9] Schwarzer N, Chudoba T, Billep D, Richter F. Investigation of coating substrate compounds using inclined spherical indentation[J]. Surface and Coatings Technology, 1999, 116-119: 244-252.
    [10]张镇宇.涂层材料的界面破坏准则[D].上海:上海交通大学, 2006.
    [11] Miyashita Y, Sasaki Y, Kuroishi T, Watanabe T, Xu J Q, Mutoh Y, Yasuoka M. An evaluation of the adhesive strength of the interface between a coating and substrate[J]. JSME International Journal Series A, 2003, 46(3): 335-340.
    [12] Mutoh Y, Xu J Q, Miyashita Y, Kuroishi T, Sasaki Y. On evaluation of adhesive strength in scratch test of coating materials[J]. Transactions of the Japan Society of Mechanical Engineers. A, 2002, 68: 909-915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700