用户名: 密码: 验证码:
异步光分组交换节点的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着因特网的广泛应用和宽带WDM技术的实现,网络的瓶颈正从传输层转移到了网络层,尤其是在线路传输速度超过10Gb/s时,光交换技术被认为是减少网络节点处光/电/光(O/E/O)转换时间的一种非常有效的办法。为了能够完成全光交换,必须从出发点到目的地全部实现在光域的分组传输与交换。
     异步光分组交换网络是以光分组作为最小的交换颗粒,带宽可以按照用户的需求在分组级上灵活地分配,从而可以显著提高带宽的利用率,并且有效支持多粒度的数据业务,是能够满足不同业务需求的新一代全光交换网络。但是在实现方面,还有许多技术难题有待克服,主要包括异步光分组冲突解决方案、光节点的调度策略和算法、光分组头的处理技术和光分组的组装机制。其他关键技术还包括:各类全光逻辑器件实现、光分组路由算法、光分组编码方案、通道保护和恢复机制等。
     基于以上的分析,论文围绕上述异步光网络中的若干关键技术,主要对光分组的业务突发特性、光分组冲突解决方案、光节点的信道调度策略和光分组头的光域提取技术等方面进行了研究,主要研究内容如下:
     1)通过分析IP业务的突发性、自相似及对异步OPS网络业务模型描述和理论分析的影响,论文第二章进而研究了三种典型的分组长度分布特性对异步OPS性能影响,得到边缘节点应进行业务流量整形,使核心节点的分组突发性较小,以获得最佳的分组丢失率(PLR)性能。
     2)分析了常用FDL反馈型缓存解决方案特点,结合异步OPS冲突性较大的特点,研究了FDL缓存虚占用与交换式缓存的概念,并推导了FDL共享反馈缓存配置系统丢包性能近似表达式和波长变换与FDL共享反馈缓存联合配置系统丢包性能近似表达式。并研究了一种以FDL作为主要缓存,电子RAM作为辅助缓存的冲突解决配置方案和光电混合的FF-VF信道调度算法。
     3)由于IP业务网中存在大量对传输时延有严格要求的TCP和UDP数据,分析了基于VOQ型OPS交换节点的性能,研究了到达交换节点输入端口的长包和短包的区分方法和实现流程,设计了短包、长包队列的OPS节点结构,提出了应用于异步OPS节点的一种简单、灵活有效、时间复杂度较低的短包抢先调度PSPF算法。该算法调度器优先调度短包,短包请求调度的优先级最高,即使在长包的传输时间中,短包也能抢占长包的传输时间。
     4)分析了分组在FDL中缓存排序的概念,针对排序型分组可避免输出时不同FDL之间的内部竞争问题,增加延迟时限的到来,分组调度成功的概率较大的特点,研究了三种分组排序方案。ASPF是最短分组优先排序占用延时最短的FDL方案,分析了该方案复杂度较高;WSPF是较短分组优先排序占用延时最短的FDL方案,由于方案仅对一根输入光纤线的W个波长分组进行长度比较,算法复杂度有所减小;第三种方案是PLPF方案,较长的分组优先占用延时最小的FDL,该方案的复杂度也较低。分组的排序缓存使OPS性能提高,但系统的复杂性也增大。研究结果表明10%的排序率和分组100%的排序率获得的PLR性能相当。因此,用少量的短分组优先缓存排序,其它分组按先到先服务方案管理和使用有限数目的FDL缓存时,就能获得较为理想的PLR性能。
     5)分析了半导体放大器和延迟干涉仪特点,研究了基于SOA和改进可微调的D-I干涉仪的全光分组头提取方案,通过合理设置信头比特间隔、净荷比特间隔、SOA载流子恢复时间和信头与净荷的保护时间参数,可以实现在光域对比度达到15dB的光分组头提取方案,并分析和研究了提高信头提取对比度的一组优化参数值。该方案还具有结构简单,可扩展性好和易于集成的特点。
As the widespread use of the Internet and broadband WDM technology realization, the network bottleneck is shifting from transporting layer to switching layer. Especially assuming that transmission line rates will continue to increase beyond 10Gb/s, optical switch techniques are expected to assist in releasing the network from undesirable latencies related to O/E/O conversions at the switching nodes. In order to switch the all-optical packet, transmit packets from source to destination all-optically, it is crucial to transmit and switch the packets in the all-optical domain from source to destination.
     Optical packet is the smallest switching granularity for asynchronous optical packet switching (AOPS) network. AOPS is the new generation of all-optical switching network fulfilling the diverse service application, which bandwidth is assigned agilely according to the user’s actual need with high bandwidth utility and supporting multi-granularities data service. But there have many technical difficult problem needing to solution for realizing the OPS technology, such as optical packet contention resolution, the scheduling strategy and algorithm for the AOPS node, optical header processing, optical packet assembling mechanism, etc. The other key technology for realizing AOPS include the all-optical logical devices realization, optical packet routing algorithm, optical packet coding scheme, optical channel protection and resumption mechanism, etc.
     Based on the above analysis, this dissertation mainly covers the following topics’research: optical packet service bursty features; optical packet contention resolution; optical channel scheduling strategy; optical header extraction in the optical domain.
     1) Considering the IP traffic is bursty and self-similar, we analyzied its performance influence establishing service description model and theoretic analysis mode for asynchronous OPS network. Then, how the three typical optical packets length distribution influence on the OPS performance is studied in the chapter 2 also. The results show that the OPS edge node need to reshape the service flow to make the service with low bursty coefficient entering the OPS core node and to achieve the optimal packet loss ratio (PLR) performance.
     2) The features of conventional FDL feedback buffering resolution are analyzed in the chapter 3. Considering the probability of asynchronous OPS packet conflicting is larger, the concept of FDL buffering virtual occupation and switch buffer are studied. The approximate expressions for OPS PLR performance are derivated under shared feedback FDL buffering configuration and wavelength converter with shared feedback FDL buffering configuration respectively. The contention resolution which FDL is used as primary buffer and electronical RAM is used as supplementary buffer and photoelectric hybrid First-Fit-Void-Filling (FF-VF) channel scheduling algorithm are put forward for the first time in chapeter 3.
     3) There have much TCP and UDP data having the strict transmission delay restriction in the IP service network. The OPS node performance with input queue worked on the virtual output queue is studied in the chapter 4. The realization way and flow of difference long length packet and short length packet is proposed in this chapter. The OPS node structure with long length packet and short length packet queue respectively is designed. A simple, effective, flexible and with low time complexity algorithm, namely preemptive short packet first (PSPF) scheduling is proposed for the OPS node. The algorithm stipulates the short packet have the hightest scheduling priority and the scheduler scheduling the short packet first through fair and foul, even if the long length packets are transmitting, the short length packets can preempt the long packet transmission time.
     4) The concept of packet FDL sorting is researched in the chapter 5. Due to the packet buffer sorting resolving the FDL internal contention and increasing the delay restriction, the probability of packets scheduling success is large. So, three packet buffer sorting schemes are studied. All-sorting shortest packet first (ASPF) scheme let the shortest packet occupy the shortest FDL with higest calculation complexity; Weak-sorted shorter packet first (WSPF) scheme let the shorter packet occupy the shortest FDL with the lesser complexity by only compareing W wavelength channel delay for one input fiber. The third packet buffer sorting scheme is partial-sorted longer packet first (PLPF) which let longer packet occupy first the shortest FDL. The packet buffer sorting imporves the OPS performance at the cost of system calculation complexity. The study result indicates that the performance of 10 percent packets buffer sorting correspond to the performance of 100 percent packets buffer sorting. Therefore, the scheme, which utilizes a small quantitiy of short packet buffer sorting and other packets with first-come-first-serve buffer management using limited number of FDL, can achieve perfect PLR performance.
     5) The feature of SOA and delay interferometer is analzied in the chapter 6. A novel all-optical packet header extraction scheme and structure based on SOA and improved tiny adjustable D-I interferometer is studied. By setting parameter suitably, such as header bit time interval, payload bit time interval, SOA carrier life time, guarantee time between header and payload, the scheme can achieve more than 15dB contrast ratio for the optical packet header extraction when the rates of header and payload are 2.5Gb/s and 40Gb/s respectively. The parameters of improved SOA and delay interferometer are analyzed and studied to optimize the performance of optical packet header extraction with the proposed scheme. In addition, the system structure is simple, highly scalable and photonic integration.
引文
[1] T H Maiman. Stimulated optical radiation in ruby. Nature [J], 1960, 187(4736):493-494.
    [2] C K Kao, and G A Hockham. Dielectric-fiber surface waveguides for optical frequency. Proc. of IEE [C], 1966, 133:1151-1158.
    [3] E Desurvire, I R Simpson, and P C Becker. High-gain, erbium-doped traveling-wave fiber amplifier. Optics Letter [J], 1987, 12(11):888-890.
    [4] S Okamoto, A Watanabe, K I Sato. Optical path cross-connect node architectures for photonic transport network. IEEE J. Lightwave Technol.[J], 1996, 14(6):1410-1422.
    [5] Wen De Zhong, Lacey JPR, Tucker R.S. Multiwavelength cross-connects for optical transport networks. IEEE J. Lightwave Technol. [J], 1996, 14(7):1613-1620.
    [6] C Giles and M Spector. The wavelength add/drop multiplexer for lightwave communication networks. Bell Labs Tech. [J], 1999, 4(1):207-229.
    [7] Fuller M. Next generation SONET/SDH stays the course. Lightwave [J], 2004, 21(12):11-16.
    [8] Kazovsky L. Multichannel coherent optical communications systems. IEEE J. Lightwave Technol. [J], 1987, 5(8):1095-1102.
    [9] Habbab I M I, Cimini L J Jr. Polarization-switching techniques for coherent optical communications. IEEE J. Lightwave Technol. [J], 1988, 6(10):1537-1548.
    [10] G De Marchis, S Betti, F Curti, et al. Phase-noise and polarization state insensitive coherent optical receivers. IEEE GLOBECOM '89 [C], 1989, 1:365-370.
    [11] T Imai, Y Hayashi, N Ohkawa, et al. Field demonstration of 2.5Gbit/s coherent optical transmission through installed submarine fibre cables. IEE Electron. Lett. [J], 1990, 26(17):1407-1409.
    [12] Mukherjee B. WDM optical communication networks: progress and challenges. IEEE Journal on Selected Areas in Communications [J], 2000, 18(10):1810-1824.
    [13]陈如明.未来信息通信网络发展战略思考(三).中国新通信[J], 2006, 19: 5-13.
    [14] ITU-T recommendation series I.121, I.150, I.361, I.362, I.363 [S].
    [15] American National Standard: ANSI T1.646-1995, ANSI T1.630-1999, T1.629-1999, T1.635-1999 [S].
    [16] ATM Forum, ATM user-network interface specification version 3.1 [S], July 21, 1994.
    [17] ATM Forum, B-ISDN intercarrier interface (B-ICI), Version 2.0 Addendum or 2.1 [S], Nov. 1996.
    [18] Nanying Yin, Hluchyj MG. Simple models for statistically multiplexed data traffic in cellrelay networks. Conf. IEEE GLOBECOM '93 [C], 1993, 2:824-829.
    [19] H M Ahmed, Callon Ross, G Malis Andrew, et al. IP switching for scalable IP services. Proceedings of the IEEE [C], 1997, 85(12):1984-1997.
    [20] Wang Sanhai, Su Sen, Yang Fangchun. A study on call model of soft-switch. Proceeding of ICCT’03 International Conference on Communication Technology Proceedings [C], 2003, 2:1566-1569.
    [21] M Tacca., et al., Differentiated reliability in optical networks: theoretical and practical results. Journal of Lightwave Technology [J], 2003, 21(1): 2576-2586.
    [22] R E Wagner, R C Alferness, A M Saleh, et al. MONET: multiwavelength optical networking. Journal of Lightwave Technol. [J], 1996, 14(6):1349-1355.
    [23] Paul Green. Progress in optical networking. IEEE Commun. Magazine [J], 2001, 39(1):54-61.
    [24] A Ganz Chlamtac and G Karmi. Lightpath communications: an approach to high bandwidth optical WAN's. Trans. on Commum. [J], 1992, 40:1171-1182.
    [25] R E Wagner, et al. MONET: multiwavelength optical networking. Journal Lightwave Techn. [J], 1996, 14:1349-1355.
    [26] L Xu, G Rouskas, and H Perros. A survey of optical packet switching and optical burst switching. IEEE Communications [J], 2001, 39(1):136-142.
    [27] Tan, Siok Kheng, et al. Algorithms for burst rescheduling in WDM optical burst switching networks. Computer Networks [J], 2003, 41(1):41-55.
    [28] Liu David Q. Burst scheduling for differentiated services in optical burst switching WDM networks. International Journal of Communication Systems [J], 2004, 17(2):127-140.
    [29] Wang Xi. Priority-based wavelength assignment algorithm for burst switched WDM optical networks. IEICE Transactions on Communications [J], 2003, E86-B(5):1508-1514.
    [30] David K. Hunter and Ivan Andonovic. Approaches to optical internet packet switching. IEEE Commun. Mag. [J], 2000, 9:116-122.
    [31] M J O’Mahony, D Simeonidou and D K Hunter, A Tzanakaki. The application of optical packet switching in future communication networks. IEEE Commun. Magazine [J], 2001, 39(3):128-135.
    [32] Daniel J Blumenthal, et al. Photonic packet switches: architectures and experimental implementations. Proc. of IEEE [C], 1994, 82(11):1650-1667.
    [33] D Chiaroni. Status and Applications of Optical Packet Switching. Proc. ECOC’01 [C], 2001, 5:126-161.
    [34] Tucker R S and Wen Z D. Photonic packet switching: an overview. IEICE Trans. OnCommun. [J], 1999, E82-C(2):254-264.
    [35]徐荣,龚倩. IP over DWDM光互联网技术.光通信技术[J], 2000, 24(4):261-268.
    [36] Amaury Jourdan, Dominique Chiaroni, Emmanuel Dotaro, et al. The perspective of optical packet switching in ip-dominant backbone and metropolitan networks. IEEE Commun. Mag. [J], 2001, 39(3):136-141.
    [37] Chu, P.B, et al. MEMS: the path to large optical crossconnects. IEEE Communications Magazine [J], 2002, 40(3): 80-87.
    [38] Ei-Sayed M., J Jaffe. A view of telecommunications network evolution. IEEE Commun. Mag. [J], 2002, 40(12): 74-81.
    [39] M Olamo. Highly integrated PLC-type optical switches for OADM and OXC systems. Proc. of Optical Fiber Communications Conference [C], 2003, l:169-170.
    [40] A Pattavina.Architectures and performance of optical packet switching nodes for ip networks. Journal of Lightwave Technology [J], 2005, 23(3):1023-1032.
    [41]张民,赵永鹏,张帆,等.光分组网节点结构研究的现状与演化趋势.光通信技术[J], 2003, 27(5):15-19.
    [42] N. Matsuura, K. Yamakoshi, E. Oki, et al. Packet-by-packet wavelength- routing interconnect technique for 5 Tb/s switching system. Electron. Lett. [J], 2002, 38(2): 82-83.
    [43]高志国,陈宏伟,陈明华,谢世钟.一种新型的光分组交换环网体系结构.光电子?激光[J], 2005, 16(10):1206-1210.
    [44] Zhenghao Zhang and Yuangyuang Yang. Optimal scheduling in buffered WDM interconnects with limited range wavelength conversion capability. IEEE Transaction on computers [J], 55(1):71-82.
    [45] K Dimitrios, TP Christina, N Reza, et al. OPSnet design and demonstration of an asynchronous high-speed optical packet switch. Journal of Lightwave Technology [J], 2005, 23(10):2914-2925.
    [46] N Nagatsu. Photonic network design issues and applications to the IP backbone. Journal of Lightwave Technology [J], 2000, 18(12): 2010-2018.
    [47] G Raybon. Optical 3R regeneration in 40 Gbit/s pseudo-linear transmission systems. Proc. of OFC'03 [C], 2003, l: 191-193.
    [48] H X Shi. Performance analysis on semiconductor laser amplifier loop mirrors. Journal of Lightwave Technology [J], 2002, 20(4):682-688.
    [49] D Colle, et al. GMPLS extensions for supporting advanced optical networking technologies. Proceedings of 2003 5th International Conference on Transparent Optical Networks [C], 2003, l:170-173.
    [50] D Chiaroni, et al. Physical and logical validation of network based on all-optical packet switching systems. Journal of Lightwave Technology [J], 1998, 16(12): 2255-2264.
    [51] J M Gabriagues, J B Jacob. OASIS: a high-speed photonic ATM switch-results and perspectives. Proceedings of ISS’95 [C], 1995, 457- 461.
    [52] P Gambini, M Renaud, C Guillemot, et al. Transparent optical packet switching: network architecture and demonstrators in the KEOPS project. IEEE Jouranl Select. Areas Commun. [J], 1998, 16(7):1245-1259.
    [53] C Guillemot, M Henry, F Clerot, et al. KEOPS optical packet switch demonstrator: architecture and testbed performance. Proc. of OFC'2000 [C], 2000, 3:204-206.
    [54] P Gravey, et al. Multiservice Optical Network: Main Concepts and First Achievements of the ROM Program. IEEE J. Lightwave Technol. [J], 2001, 19(l): 23-31.
    [55]杨俊杰,曾庆济,祝叶龙,叶通.光分组交换网中的竞争解决方案.半导体光电[J], 2004, 25(3):209-212, 230.
    [56] X Li, J P Chen, J F Chen, et al. Improvement of optical packet switching performance by employing partially shared buffering with shared wavelength converters. Proc. of SPIE Opt. Switching & Opt. Interconnection [C], 2002, 4582:139-146.
    [57] T Fjelde, et al. Demonstration of 20 Gbit/s all-optical Logic XOR in integrated soa-based interferometric wavelength converter. Electronics Letters [J], 2000, 36(22):1863-1864.
    [58] T Fjelde, D wolfson , A Kloch, et al. 10Gbit/s all-optical OR in monolithically integrated interferometric wavelength converter. Electronics Letters [J], 2000, 36(9): 813-815.
    [59] M C Chia, D K Hunter, I Anconovic. Packet loss and delay performance of feedback and feed-forward arrayed-wageguide gratings-based optical packet switches with WDM inputs-outputs. Journal of Lightwave Technol. [J], 2001, 19:1241-1253.
    [60] LI Lei, ZHANG Ming-de, SUN Xiao-han. Design of buffer structure at core node in optical burst switching. Journal of Optoelectronics·Laser [J], 2006, 17(2):192-196.
    [61] H Harai, N Wada, F Kubota, et al. Contention resolution using multi-stage fiber delay line buffer in a photonic packet switch. Proc. of ICC’02 [C], 2002, 5:2843-2847.
    [62] M G Lee, S Aoki, K Yokouchi. High speed optical switch with prism deflector array. Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS [C], 2002, 2:734-735.
    [63] F Forghierri, A Bononi, P R Prucnal. Analysis and comparision of hot-potato and single buffer deflection routing in very high bit rate optical mesh networks. IEEE Trans. Commun. [J], 1995, 43:88-98.
    [64] I Chlamtac, A Fumagalli. An optical switch architecture for Manhattan networks. IEEEJournal Selected Areas Commun. [J], 1993, 11:550-559.
    [65] Daniel J Blumenthal, et al. Photonic packet and all-optical label switching technologies and techniques. Proc. of OFC’02 [C], 2002, WO3:282-284.
    [66] SJB Yoo, Yash Bansal, Zhong Pan, Jing Cao, et al. Optical-label based packet routing system with contention resolution in wavelength, time, and space domains. Proc. of OFC’02 [C], 2002, WO2:280-282.
    [67] H J Lee, S J B Yoo, V K Tsui, et al. A simple all-optical label detection and swapping technique incorporating a fiber bragg gratting filter. IEEE Photon. Technol. Lett. [J], 2001, 13:635-637.
    [68] E N Lallas, N Skarmoutsos, D Syvridis. An optical FSK-based label coding technique for the realization of the all-optical label swapping. IEEE Photon. Technol. Lett. [J], 2002, 14:1472-1474.
    [69] C W Chow,C S Wong, H K Tsang. All-optical ASK/DPSK label-swapping and buffering using Fabry-Perot laser Diodes. IEEE Journal of selected topics in quantum electronics [J], 2004, 10:363-370.
    [70] Hao Chi, Zeng Q., Zhao H., et al. Switch control strategies for optical burst switch with optical buffers. Proc. of SPIE Optical Engineering [C], 2002, 4907:280-284.
    [71] D K Hunter, W D Cornwell, T H Gilfedder, et al. SLOB: A switch with large optical buffers for packet switching. IEEE J. Lightwave Technol. [J], 1998, 16(10):1725-1736.
    [72] Lu Chung-Li, DJM Sabido IX. P Poggiolini, et al. CORD WDM Optical network subcarrier-based signaling and control scheme. IEEE Photonic Technol. Lett. [J], 1995, 7(5):555-557.
    [73] X H Ma and G S Kuo. Optical switching technology comparison: optical mems vs.other technologies. IEEE Commun. Mag. [J], 2003, 41(11):516-523.
    [74] G L Papadimitriou, C Papazoglou, A S Pomportsis. Optical switching: switch fabrics, techniques and architectures. Journal of Lightwave Technol.[J], 2003, 21(2):384-405.
    [75] T Fjelde, et al. Demonstration of 20 Gbit/s All-optical logic XOR in integrated SOA-based interferometric wavelength converter. Elect. Lett.[J], 2000, 36(22):1863-1864.
    [76] M Zhang, F Zhang, Y P Zhao and P D Ye. Improving the performance of wavelength converter in a NOLM using fiber bragg gratings. Proc. of APOC’01 [C], 2001, 4581:340-347.
    [77] Chung-Li Lu, T K Fong, R T Hofmeister, et al. CORD-A WDM Optical Network: Design and Experiment of Fast Data Synchronization by Pilot-tone Transport. IEEE Photon. Technol. Lett.[J], 1996, 8(B): 1070-1072.
    [78] M H M Nizam, K M Guild, A Tzanakaki, et al. WASPNET a wavelength switched photonic network for telecommunication transport. Proc. of IEE Colloquium on Multiwavelength Opt. Net.[C], 1998, 257:311-316.
    [79] WE Leland, MS Taqqu, W Willinger, et al. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking [J], 1994, 2(1):69-78.
    [80] V Paxson, S Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM Transactions on Networking [J], 1995, 3(3):226-244.
    [81] ME Crovella, A Bestavros. Self-similarity in World Wide Web traffic: evidence and possible causes. IEEE/ACM Transactions on Networking [J], 1997, 5(6):835-846.
    [82] C. Lam, D. Simeonidou. Optical packet switch modelling and its traffic shaping effects. Proc. ECOC’02 [C], 2002, 3: pp.1-2.
    [83] W. Lau. Self-similar traffic generation: the random mid- point displacement algorithm and its properties. Proc of ICC’95 [C], 1995, 466-472.
    [84] MW Garrett, W Willinger. Analysis, modeling and gene- rationof self-similar traffic. Proc of Sigcomm ACM’94 [C], 1994, 269-280.
    [85]刘焕淋,陈前斌,潘英俊.不同长度分组分布下的光分组交换性能研究.光电子.激光[J],2007, 18(3):322-325.
    [86] Huanlin Liu,Qianbin Chen,Yingjun Pan. Difference length scheduling for asynchronous optical packet switching. Proceedings of SPIE - The International Society for Optical Engineering, Optical Transmission, Switching, and Subsystems IV [C], 2006,6353:63532S.
    [87]树涛,叶梧. ATM网络的ABR业务流量控制.华南理工大学学报(自然科学版) [J], 2000, 28(10):37-42.
    [88]徐荣,龚倩.高速宽带光互联网技术[M].北京:人民邮电出版社, 2002.
    [89] Yijun Xiong, Marc Vandenhoute, and Hakki C. Cankaya. Control architecture in optical burst-switched WDM networks. IEEE Journal on Selected Areas in Communications [J], 2000, 18(10):1838-1850.
    [90] V Paxon. Fast Approximation of self-similar network traffic. Lawrence Berkeley Laboratories Technical Report LBL-36750 [M], USA:Berkeley, 1995.
    [91] B Mandelbrot. Leo Szilard and unique decipherability (Corresp.). IEEE Transactions on Information Theory [J], 1965, 11(3): 455-456.
    [92]谢明,叶梧,冯穗力,宋晖.自相似业务流下的排队性能分析.华南理工大学学报(自然科学版) [J], 2006, 34(1):24-28.
    [93] A Erramilli, M Roughan, D Veitch, W Willinger. Self-similar traffic and network dynamics. Proceedings of the IEEE [C], 2002, 90(5):800-819.
    [94] W Willinger, MS Taqqu, R Sherman, DV Wilson. Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on Networking [J], 1997, 5(1):71-86.
    [95] OJ Boxma, JW Cohen. The M/G/1 queue with heavy-tailed service time distribution. IEEE on Selected Areas in Communications [J], 1998, 16(6):749-763.
    [96] N Likhanov, RR Mazumdar, F Theberge. Calculating cell loss probabilities for ON-OFF sources in large unbuffered systems. Proc IEEE ICC’97 [C], 1997, 2:560-564.
    [97] F Callegati, G Corazza, and C Raffaelli, et al. An optical packet switch based on WDM TEChnologies. Lightwave Technology [J], 23(3):994-1014.
    [98] J Cheyns, E Van Breusegem, C Develder, et al. Performance improvement of an Internally blocking optical packet/burst switch. Proceedings of ICC [C], 2003, 15(4):449-453.
    [99] National Laboratory for Applied Network Research (NLANR). SC2004 Realtime Data Collection [Z]. http://pma.nlanr.net/Special/, 2004.
    [100] Harald ?verby. How the packet length distribution influences the packet loss rate in an optical packet switch. Proc of AICT-ICIW’06 [C], 2006, 46-51.
    [101] Donald Gross, Carl M. Harris. Fundamentals of queueing theory [M]. John Wiley & Sons, 1974.
    [102] A Feldmann, W Whitt. Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Journal of Performance Evaluation [J], 1998, 31(3): 245-279.
    [103] Leonard Kleinrock. Queueing Systems [M]. Volume I: Theory, John Wiley & Sons, Inc., New York, 1976.
    [104]陈鑫林.现代通信中的排队论[M].北京:电子工业出版社, 1999.
    [105]邹自立.光交换技术谈.光通信技术[J], 2001, 25(4):246-249.
    [106] Lisong Xu, Harry G, Perros, and George Rouskas. Techniques for optical packet switching and optical burst switching. IEEE commu. Mag. [J], 2001, 39(1):136-142.
    [107] Shun yao, S.J. Ben Yoo. A comparison study between slotted and unslotted all-optical packet-switched network with priority-based routing. Optical Fiber Communication Conference and OFC 2001 [C], 2001, 2:TJK2-1.
    [108] Huanlin Liu,Zhizhong Zhang,Yingjun Pan. Performance of the asynchronous optical packet switch scheduling with hybrid queue buffering. Journal of Optical communication [J], 2006, 27(4):223-227.
    [109] Soeren Lykke Danielsen, Benny Mikkelsen, Carsten Joergensen, Terji Durhuus, and Kristian E.Stubkjaer. WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance. Journal of Lightwave Techn. [J], 1997,15(2):219-227.
    [110] R langenhorst, M Eislet, W Pieper. Fiber loop optical buffer. J. Lightwave Technol.[J], 1996, 14(3):324-335.
    [111] D Careglio, J S Pareta, S Spadaro. Novel contention resolution for Qos support in connection-oriented optical packet switching. Proc. of ICC’2005 [C], 2005, 3:1702-1707.
    [112] David K.Hunter, Meow C.Chia and Ivan Andonovic. Buffering in optical packet switches. Journal of Lightwave Technology [J], 1998, 16(12):2081-209.
    [113] H J Chao, L Wu, Z Zhang, S H Yang, L M Wang, Y Chai, J Y Fan and F S Chao. A photonic front-end processor in a WDM ATM multicast switch. Journal of Lightwave Technology [J], 2000, 18(3):273-285.
    [114] Shun Yao B Mukherjee, S J B Yoo, S Dixit. A Unified study of contention-resolution schemes in optical packet-switched networks. Journal of Lightwave Technology [J], 2003, 21(3):672-683.
    [115] Min Zhang, Xiaolong Yang, Lemin Li. The performance analysis of an efficient contention resolution for optical packet switching. MILCOM 2003 [C], 2003, 1:283-288.
    [116] Juan Diao and Pak L Chu. Analysis of partially shared buffering for WDM optical packet switching. Journal of Lightwave Technology [J], 1999, 17(12):2461-2469.
    [117] Franco Callegati. Optical buffers for variable length packets. IEEE Communications Letters [J], 2000, 4(9):292-294.
    [118] Franco Callegati. On the design of optical buffers for variable length packets traffic. proc. of computer communication and networks, Ninth International Conference [C], 2000, 16-18.
    [119] T Zhang, K Lu, J P Jue. An analytical model for shared fiber-delay line buffers in asynchronous optical packet and burst switches. Proc. ICC [C], 2005, 3:1636-1640.
    [120]白建军,卢泽新.路由器原理与设计[M].北京:人民邮电出版社, 2002.
    [121] Jin-Bong Chang, Chang-Soo Park. Efficient channel-scheduling algorithm in optical burst switching architecture. Proc. of High Performance Switching and Routing[C], 2002,194-198.
    [122] H Chi, Q Zeng, H Zhao, J Luo, and Z Zhang. Scheduling algorithms for OBS switch with shared buffer. IEICE Trans. Commun.[J], 2003, E86-B:137-139.
    [123] L Tancevski, A Ge, G Castanon, and L Tamil. A new scheduling algorithm for asynchronous variable length IP traffic incorporating void filling. Proc. Optical Fiber Communications [C], 1999, 3:180-182.
    [124] Xiaoming Zhu, Joseph M Kahn. Queueing models of optical delay lines in synchronous and asynchronous optical packet-switching networks. Proc. Optcial Engineering [C], 2003, 42(6):1741-1748.
    [125] Y Liu, M T Hill, N Calabretta, et al. All-optical buffering in all-optical packet switched cross connect . IEEE Photonics Technology Letters [J], 2002, 14(6):849-851.
    [126] JIANG Ming-yan, HU Pei-gang, JIN Yao-hui. A improved dynamic routing algorithm based on optical network consisting of partial-shared wavelength converter. Journal of Optoelectronics·Laser [J], 2005, 16(14):1214-1218.
    [127] M R Salvador, M M Uesono, N L S da Fonseca. A local fairness protocol for optical packet-switched wdm ring networks. Proc. of ICC’2005 [C], 2005, 3:1524-1528.
    [128] L Tacevski, S Yegnanarayanan, G Castapon, L Tamil, F Masetti and T McDermott. Optical routing of asynchronous variable length packets. IEEE Selected Areas Communn. [J], 2000, 18(10):2048-2093.
    [129] WANG Jian-xin, Zeng Qing-ji, Xiao Shi-lin,et al. Study on control packet scheduling strategy in optical burst switched networks. Journal of Optoelectronics·Laser [J], 2004, 15(4):449-453.
    [130] S Bjonstad, DR Hjelme, N Stol. An optical packet switch design with shared electronic buffering and low bit rate add/drop inputs. Proc, ICTON’02 [C], 2002, 1:69-72
    [131] MG Hluchyj and MJ Karol. Queueing in high-performance packet switching. IEEE J. Sel. Areas Commun.[J], 1988, 6(9):1587-1597.
    [132] Huhnkuk Lim, Chang-Soo Park. An optical packet switch with hybrid buffer structure for contention resolution of asynchronous variable length packets. Proc. HPSR, 2004, 162-166
    [133] Tomasik J, Kotuliak I, Atmaca T. Markovian performance analysis of a synchronous optical packet switch. Proc MASCOTS’03 [C], 2003, 254 -257.
    [134] MS Taqqu, W Willinger, and R Sherman. Proof of a fundamental result in self-similar traffic. Computer Commun. Rev. [C], 1997, 27(2):5-23.
    [135]刘焕淋,潘英俊,张治中.混合缓存型异步光分组交换的一种改进FF-VF算法.光电子.激光[J], 2006, 17(7):857-861.
    [136] LI Jingcong, LI Zhengbin, WU Deming, XU Anshi. Queuing performance analysis with self-similar network traffic. Acta Scicentiarum Naturalum Universitis Pekinesis [J], 2002, 38(5):719-723.
    [137] Kim S Y, Lee S H, Lee S S, et al. Upgrading WDM networks using ultradense WDM channel groups. IEEE Photonics Technolog Letters [J], 2004, 16(8):1966-1968.
    [138] Rangarajan S, Poulsen H N, Blumenthal D J. All-optical packet compression of variable length packets from 40 to 1500 B using a gated fiber loop. IEEE Photonics Technology Letters [J], 2006, 18(2):322-324.
    [139] Wang R, Pau G, Yamada K, et al. TCP startup Performance in large bandwidth networks [C].IEEE INFOCOM [C], 2004: 796-805.
    [140] Ningning H, Steenkiste P. Improving TCP startup performance using active measurements: algorithm and evaluation. Proceedings of IEEE ICNP [C], 2003, 107-118.
    [141] Avrachenkovt I K, Ayesta U, Brown P, Nyberg E. Differentiation between short and long TCP flows: predictability of the response time. Proc. of INFOCOM [C], 2004, 2:762-773.
    [142] Jingyi H, Chan SH G. TCP and UDP performance for Internet over optical packet-switched networks. Proceedings of IEEE ICC’03 [C], 2003, 2:1350-1354.
    [143] V P Kumar, et al. Beyond best effort: Router architectures for the differentiated services of tomorrow's Internet. IEEE Communication magazine [J], 1998, 36(5):152-164.
    [144] Wenji Li, Bin Liu. SPF: to improve the performance of packet-mode scheduling. Computer communications [J], 2005, 28(11): 1380-1391.
    [145] II G Y, Abdullah M ., Dimyati K. Preemptive hybrid scheduling scheme for optical packet switch with class differentiation. Proceedings of ICACT 2006 [C], 2006, 2:1261-1263.
    [146] MCKeown N, Annantharam V, Walrand J, et al. Achieving 100% throughput in an input-queued switch. IEEE Trans. Commun. [J], 1999, 47(8):1260-1267.
    [147] Huanlin Liu,Yingjun Pan, Zhizhong Zhang. Preemptive short packets priority scheduling for asynchronous optical packet switching. Journal of Optical Communication [J], 2006, 27(4):228-233.
    [148] Shang-Tse Chuang etc. Matching output queueing with a combined input and output queued switch [R]. Technical Report Stanford CSL-TR-98-758, 1998.
    [149] Balaji Prabhakar, Nick McKeown. On the speedup required for combined input and output queued switching [R]. Technical Report CSL-TR-97-738, Stanford University, 1997.
    [150] Karon MJ, Hlunchyj MG, Morgan S, et al. Input versus output queueing on a space-division packet switch. IEEE Transactions on communications [J], 1987, 135(12):1347-1356.
    [151] S Keshav, R Shanna. Issues and trends in muter design. IEEE Communication Magazine [J], 1998, 36(3):144-151.
    [152] Sundar Iyer etc. Analysis of a packet switch with memories running slower than the line-rate. Available at http://tiny tera.stanford.edu/~nickm/papers.html [Z].
    [153] Nick McKeown, Martin Izzard. The tiny tera: a packet switch core. IEEE Micro [J], 1997, 17(l):26-33.
    [154] Nick McKeown, Venkat Anantharam and Jean Walrand. Achieving 100% throughput in an input-queued switch. Proceedings of IEEE Infocom '96, San Francisco [C], 1996, 1:296-302.
    [155] H S Lee et al. ATM switch with distributed queue windowing scheme. Electronics Letters [J], 1999, 35(3):191-192.
    [156] Washburn K and Evans. TCP/IP running a successful network [M]. Addison Wesley Longman Limited, 1996.
    [157] M A Marsan, A Bianco, P Giaccone, E Leonardi, E Neri. Packet mode scheduling in input-queued cell-backed switches. IEEE/ACM Trans. on Networking [J], 2002, 10(5):666-678.
    [158] Nick McKeown. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Transactions On Networking [J], 1999, 7(2):188-201.
    [159] C Fraleigh, S Moon, B Lyles, et al. Packet-level traffic measurements from the spring IP backbone. IEEE Network [J], 2003, 17(6):6-16.
    [160] Wim A Vanderbauwhede, David A Harle. Architecture, design, and modeling of the opsnet asynchronous optical packet switching node. Journal of Lightwave Technology [J], 2005, 23(7):2215-2228.
    [161] Parekh A, Gallager R. A generalized processor sharing approach to flow control―The single node case. ACM/IEEE Trans. on Networking [J], 1993, 1(3):344-357.
    [162] L Zhang. Virtual Clock: A new traffic control algorithm for packet switching networks. ACM/IEEE Trans. on Computer Systems [J], 1991, 9(2):101-124.
    [163] Shreedhar M, Varghese G. Efficient fair queueing using deficit Round-robin. ACM/IEEE Trans. on Networking [J], 1996, 4(3):375-385.
    [164] Do V L, Yun K Y. High performance switching and routing. Proceedings of 2003 Workshop on HPSR [C], 2003, 103-110.
    [165] ZHANG Bi-bo, XU Chang-biao, LONG Ke-ping, et al. Study on grouping and preempting policy of data channel in optical burst switching networks. Journal of Chongqing University of Posts and Telecommunications [J], 2005, 17(5):521-524.
    [166] Qianbin Chen, Junyu Pang, Huanlin Liu. Weighted Scheduling Based on Queue Length and Delay for AOPS. Proceedings of APOC2007 [C], 2007, 6783: 67833O.
    [167]赵东风,郑苏民.查询式门限服务排除系统中信息分组的延迟分析.通信学报[J], 1994, 15(2):18-23.
    [168]刘焕淋,陈前斌,潘英俊.异步光分组交换的缓存排序方案及性能.光电子?激光[J], 2007, 18(10): 1199-1202.
    [169] Blumenthal D J. Optical packet switching. IEEE LEOS [J], 2004, 2:910-912.
    [170] H J S Dorren, M T Hill, Y Liu, et al. Optical packet switching and buffering by using all-optical signal processing methods. Lightwave Technol. [J], 2003, 21(1):2-12.
    [171] N Calabretta, G Contestabile, A D Errico, et al. All-optical label processor/erasure for label swapping of 12.5Gbit/s spectrally separated bit-serial DPSK label and payload. Electron.Lett.[J], 2005, 41(9):541-543.
    [172] J M Martinez, J Herrera, F Ramos, et al. All-optical address recognition scheme for label-swapping networks. IEEE Photonics Technol. Lett. [J], 2006, 18(1):151-153.
    [173] N Calabretta, et al. All-optical header processor for DPSK optical packets. Electron. Lett. [J], 2004, 40(23):1502-1503.
    [174] Ohlen P, Olsson B E, Blumenthal D J. All-optical header erasure and penalty free rewriting in a fibre based high speed wavelength converter. IEEE Photon, Technol. Lett. [J], 2000, 12(6):663-665.
    [175] O boyraz, Y Han, A Nuruzzaman, et al. Time stretch optical header recognition. IEEE LEOS [J], 2003, 2:543-544.
    [176] Y M Lin, W I Way, G K Chang. A novel optical label swapping technique using erasable optical single-sideband subcarrier label. IEEE Photon. Technol. Lett. [J], 2000, 12(8):1088-1090.
    [177] I Chlamtac, A Fumagalli, LG Kazovsky, et al. CORD: Contention resolution by delay lines. IEEE Journal of Selected Areas Commun. [J], 1996, 14:1014-1027.
    [178] J Seoane, E Kehayas, H Avramopoulos, P Jeppesen. 40 Gbit/s NRZ packet-length insensitive header extraction for optical label switching networks. IEEE Lasers & Electro-Optics Society [J], 2006, 10:555-556.
    [179] C Guillemot, M Renaud, P Gambini, et al. Transparent optical packet switching: the European ACTS KEOPS project approach. Journal of Lightwave Technol. [J], 1998, 16:2117-2131.
    [180] A Carena, M D Vaughn, R Gaudino, et al. OPERA: an optical packet experimental routing architecture with label swapping capability. Journal of Lightwave Technol. [J], 1998, 16:2135-2145.
    [181] D K Hunter, M H M. Nizam, M C Chia. WASPNET: A wavelength switched packet network. IEEE Communication Magazine [J], 1999, 37(2):120-128.
    [182] L Dittmann, C Develder, D Chiaroni, et al. The European IST Project DAVID: A viable approach toward optical packet switching. IEEE Jouranl of Selected Areas Commun. [J], 2003, 21:1026-1037.
    [183] Huang Xuetian, Zhnbin Ge, Peida Ye. All-Optical header Extraction with SOA-DI Configuration. Proc. of ICOCN’2004 [C], 2004, 291-294.
    [184] ES Awad, P Cho and J Goldhar. High-speed all-optical and gate using nonlinear transmission of electroabsorption modulator. IEEE Photon. Technol. Lett. [J], 2001, 13(5):472-474.
    [185] H Soto, C A Diaz, J Topomondzo, et al. All-optical AND gate implementation usingcross-polarization modulation in a semiconductor optical amplifier. IEEE Photon. Technol.Lett. [J], 2002, 14(4):498-500.
    [186] Murata K, Otsuji T, Enoki T, et al. Exclusive OR/NOR IC for 40Gbit/s optical transmission systems. IEE Electron. Lett. [J], 1998, 34(8):764-765.
    [187] Sharaiha A, Li HW, Marchese F, et al. All-optical logic NOR gate using a semiconductor laser amplifier. IEE Electron. Lett. [J], 1997, 33(4):323-325.
    [188] Chan LY, Qureshi KK, Wai PKA, et al. All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate. IEEE Photon.Technol. Lett. [J], 2003, 15( 4):593-595.
    [189] Hamie A, Sharaiha A, Guegan M, et al. All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers. IEEE Photon. Technol. Lett. [J], 2002, 14(10):1439-1441.
    [190] Maeda Y. All-optical NAND logic device operating at 1.51-1.55μm in Er-doped aluminosilicate glass. IEE Electron. Lett. [J], 1999, 35(7):582-584.
    [191] An X, Geib KM, Hafich MJ, et al. Integrated optical NAND gate. IEE Electron.Lett. [J], 1992, 28(16):1545-1546.
    [192] H K Jae, M J Young, T B Young. All-Optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photon. Technol. Lett. [J], 2002, 14:1436-1438.
    [193] H Chen, G Zhu, Q Wang, et al. All-optical logic XOR using differential scheme and mach-zehnder interferometer. IEE Electron. Lett. [J], 2002, 38(21):1271-1273.
    [194] Zhong Pan, Haijun Yang, Zuqing Zhu, Jing Cao, et al. Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router. IEEE Photonics Technology Letters [J], 2004, 16(7):1772-1774.
    [195] V Eramo, M Listanti, M Di Donato. Performance evaluation of a bufferless optical packet switch with limited-range wavelength converter. IEEE Photonics Technology Letters [J], 2004, 16(2):644-646.
    [196]刘焕淋,潘英俊.基于SOA和改进的M-Z干涉仪的分组头提取方案.半导体光电[J], 2007, 28(3):395-598 .
    [197] Tang J M, Shore K A. Strong picosecond optical pulses propagation in semiconductor optical amplifiers at transparency. IEEE Quantum Electron. [J], 1998, 34(7):1263-1269.
    [198] Wei J, Min Z, Ye P. All-optical-packet header and payload separation for unslotted optical packet switched networks. Journal of Lightwave Technology [J], 2007, 25(3):707-709.
    [199] S Kumar, D Gurkan, AE Willner. All-optical half adder using a PPLN waveguide and an SOA. Proceeding of OFC'04 [C], 2004, 1:23-27.
    [200] Huanlin Liu, Yingjun Pan, Qianbin Chen. Ultrafast optical header processing with dpsk for asynchronous optical packet switch. Proceeding of SPIE [C], 2006, 6354:635403.
    [201] Kit Chan, Chill-Klt Chan, Lian Kuan Chen, et al. Demonstration of 20-Gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs. IEEE Photonic Technolog. Lett. [J], 2004, 16(3):897-899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700