三维PIV系统中匹配技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流场信息的测量是流体研究中的一项重要内容。相对于传统接触式单点测量方式,粒子测速技术可以非接触地获得瞬间、全场的流动信息。该技术对于流动结构研究极为有益,现已成为现代流场测试技术之一并且得到了广泛的应用。
     根据空间粒子图像的特点,本文基于双目视觉原理对粒子图像测速仪(ParticleImaRe Velocimetry,PIV)的匹配技术进行了研究。
     在对每个相机的粒子图像二维匹配技术研究的过程中,着重根据研究对象——流体以及置入观测场中的示踪粒子的特点,对粒子运动图像以及相机像平面上粒子数据的匹配结构进行了研究,其中包括:
     (1)根据粒子分布不均匀且分布结构较复杂以及不同空间、时间的复杂流场会出现不同区域特征的特点,对原PIV技术中的定窗分析技术进行改进,提出了一种改进的处理方法:包括利用加权平均的方法对后续图像的预测处理,以及根据窗口内数据的相关程度与粒子分布浓度来对分析窗进行迭代选择。
     (2)流体具有连续性,散布在流场中较密集的粒子群中邻近粒子的运动具有很强的相关性。根据这种相关性,提出了基于自组织映射(Self-organized Mapping,SOM)神经网络的粒子图像测速算法。经SOM网络改进的测速算法首先利用相关后的结果进行网络构建,然后使用逐次相关的方法对候选匹配点进行筛选。该算法不仅消除了粒子密度与灰度分布的敏感性,而且也降低了相关时对分析窗口尺寸的敏感。
     (3)根据粒子图像中粒子聚团分布的特点,针对粒子追踪技术中的粒子误对应问题与粒子相关法对粒子区域平均化处理所带来的误差问题,制定了用于粒子图像测速的细胞分裂准则,并提出了基于细胞分裂的粒子追踪匹配算法模型:将兴趣区域作为细胞体,并以细胞体内单点匹配相关程度与粒子的近邻程度作为判断准则对分析窗口内的点进行分裂;分裂形成的子团之间进行竞争,并将优胜团代表本分析区域参与其他区域优胜团的竞争;根据优胜团先后位置变化得到矢量位移场。
     在对粒子图像三维匹配技术分析的过程中,着重根据机器视觉测量原理对两个相机的空间匹配方法以及像平面上有效数据的提取方法进行了研究,其中包括:
     (1)针对运动粒子在具有一定体积的流场中透视成像后易出现的运动重叠问题,研究了PIV技术中近邻粒子的弱刚性运动,并在PIV技术中近邻性假设的基础上,推导出用于粒子筛选的空间粒子运动测量约束条件以及实际中便于应用的三点式结构约束条件。该约束条件基于PIV的近邻性准则并以邻近的粒子团作为匹配对象,利用视平面内相同运动的特征直线具有公共点的性质对前后两帧图像中的粒子进行运动检测。
     (2)针对粒子测速系统中空间点立体匹配难、空间信息难以表示的问题,构建了基于双目视觉的三维粒子测速一般模型。模型中提出并采用了分层提取的逐层相关法,即先对三维空间进行二维切分,然后结合PIV技术与粒子追踪测速(Particle TrackingVelocimetry,PTV)技术对不同帧的二维粒子层面进行相关处理并求出粒子运动矢量。
     (3)提出了基于遗传算法的三维粒子图像匹配方法及实际中的优化设计。该方法以视差为编码,结合SSD(Sum of Square Difference)与SAD(Sum of Absolute Difference)法对结果进行评估,并通过单点、多点的双交叉、变异与序列的混沌化处理达到对分析空间的搜索;最后,局部处理结合全局唯一性迭代检测进一步增加了匹配结果的可信度。
     (4)提出了可适用于体积光照明的双目PIV系统三种匹配结构并对其进行分析,同时根据匹配结构的特点提出了双相机像面上数据的匹配融合方法。
     此外,基于上述匹配方法,构建了体视双目PIV系统,同时对原二维PIV系统中伪矢量的后处理方法进行改进,使之可以适用于体视PIV匹配结构。
     本文在研究这些匹配技术的同时做了大量的实验,实验结果表明所提匹配算法切实可行具有较强的适用性。与此同时,使用本文所构建的体视双目PIV系统进行了实际流场分析,实验表明该PIV系统可对流场进行较好的观测。
Measurement of fluid information is very important in researches of fluid characters.In contrast with the touching single point measurement methods,techniques of particle image velocimetry(PIV) can be used to obtain instantaneous information over the entire field of view,while leaving the fluid flow undisturbed.It has thus gained a reputation as one of the most promising measurement techniques,and has been used in a wide range of research.
     According to the characters of particle images,matching methods of PIV systems have been studied based on binocular vision theory.
     When investigating the matching methods in image plane,according to the characters of fluid and tracing particles,the particle images and the matching structures of particles in the CCD(Charge Coupled Device) camera plane have been analyzed.
     Firstly,distributions of tracing particles are not well-proportioned in the fluid field and the complex fluid field may have different region features.In order to improve the analysis capabilities,the fixed interrogation window technique of PIV is modified.The current results are averaged as estimations of next process.The size of the interrogation window is selected iteratively according to the correlation degree and the distributions of particles.
     Secondly,fluid is continuous and there exists high correlation among adjacent particles. A modified PIV method based on Kohonen self-organized mapping(SOM) neural network is presented.First,the results of cross-correlation are used to build networks.Second,tracking method is used to select matching points.The new PIV algorithm based on SOM network can reduce the dependence on particle density,intensity distribution and interrogation window size.
     Thirdly,false matching in particle tracking velocimetry(PTV) and low-pass feature of PIV will increase processing errors.To overcome the two problems,cell segmentation theory (CST) is presented in this paper according to the clustering characters of particle images. Furthermore,the processing model based on CST is described as:First,the interrogation fields are divided into different local spaces named as cells,and these cells continue to segment into sub-cells according to the correlation degree and neighbor degree.Second,these sub-cells compete against each other and the final victorious one attends competition in other fields.Third,the velocity vector field is gotten according to the position alteration of the victorious cell.
     While studying 3D matching methods in space,according to vision theory,the extracting methods of valid data in images and the matching methods have been analyzed.
     Firstly,the rigid motion hypothesis in PIV is studied because of the overlap problem of perspective particle images.The movable particle measurement constraints(MPMC) and the structure constraint based on three points are presented.MPMC is based on the nearest assumption and the adjacent particles with certain numbers are regarded as objects to match. The motion feature points and the motion feature lines are defined in MPMC.The motion feature lines with the same movement have the same feature point,which can be used to detect particle movements.
     Secondly,a new 3D measurement method based on binocular vision is proposed.Using the proposed method,problems of spatial stereo matching and information representation can be solved.A 3D space is first segmented and aligned to many 2D planes.And then 2D-PIV and PTV technologies are applied to different image frames which include the information of vision disparity.
     Thirdly,the 3D particle image matching method and optimal design are proposed based on genetic algorithm(GA).Disparity is aligned to 1-D data array and encoded.And then the sum of square difference(SSD) method or the sum of absolute difference(SAD) method is applied to evaluate the results.A modified genetic algorithm is employed to stereo matching. First,the crossover and mutation methods are modified;second,the sequences are made chaotic;third,the uniqueness is detected based on iterative algorithm.
     Fourthly,three matching structures,which are suitable for binocular PIV system with volume light,are presented and analyzed.Meanwhile,according to the characteristics of matching structures,a new matching method of data in two CCD images is proposed.
     Furthermore,based on the aforementioned matching techniques,the binocular PIV system is constructed.The post-processing method for 2D-PIV is modified in order to fit for the proposed 3D-PIV matching structure.
     In this paper,lots of particle images are tested and the errors are analyzed.These experiments demonstrate the effectiveness and practicability of the proposed methods and 3D-PIV system.
引文
[1]李润培,谢永和,舒志.深海平台技术的研究现状与发展趋势.中国海洋建筑物,2003,18(3):1-5.
    [2]Fujiwara A,Tokuhiro A,Hishida K.Application of PIV/LIF and Shadow-lmage to a bubble rising in a linear shear flow field.Proc.10th Int.Symp.Appl.Laser Tech.to Fluid Mech.,Lisbon,Portugal,2000:1-10.
    [3]Richard H,Becker W,Loose S et al.Application of particle image velocimetry under cryogenic conditions.Proc.20th Int.Con.on Instrumentation in Aerospace Simulation Facilities,Grttingen,Germany,2003:393-398.
    [4]HanffE S.PIV application in advanced low Reynolds number facility.IEEE Trans.Aeros.& Elec.Sys.,2004,40(1):310-319.
    [5]高殿荣,王益群,申功炘.DPIV技术及其在流场测量中的应用.液压气动与密封.2001.21(5):30-33.
    [6]高潮,曹英,郭永彩.PIV血流场显示测速技术.光电工程,2004,31(8):37-40.
    [7]Adiran R J.Particle imaging techniques for experimental fluid mechanics.Annual Review of Fluid Mechanics,1991,23:261-304.
    [8]Pereira F,St(?)er H,Graft E C et al.Two-frame 3D particle tracking.Meas.Sci.Technol.,2006,17(7):1680-1692.
    [9]Kawahashi M,Yamamoto K.Speckle method using beam scanning techniques.Proc.of the Int.Workshop on PIV,Fukui,Japan,1995:155-158.
    [10]Marzouk Y M,Hart D P.Asymmetric autocorrelation function to resolve directional ambiguity,in PIV images.Experiments in Fluid,1998,25(5-6):401-408.
    [11]洪方文,赵峰,张军等.二维PIV测速方向二义性的数值解决方法.船舶力学,2002,6(5):19-24.
    [12]Huang H.An extension of digital PIV-processing to double-exposed images.Experiments in Fluid,1998,24(4):364-372.
    [13]Gui L,Merzkirch W.Phase-separation of PIV measurement in two-phase flow by applying a digital mask technique.ERCOFTAC Bull,1996,30:45-48.
    [14]阮晓东,宋向群,山本富士夫.基于BICC算法的PIV技术.实验力学,1998,13(4):514-519.
    [15]Sugii Y,Nishio S,Okuno T et al.A highly accurate iterative PIV technique using a gradient method.Meas.Sci.Technol.,2000,11(12):1666-1673.
    [16]田晓东,李玉梁,陈嘉范等.一种新改进的DPIV方法.水科学进展,2000,11(1):59-63.
    [17]Hart D P.PIV error correction.Experiments in Fluids,2000,29(1):13-22.
    [18]Stitou A,Riethmuller M L.Extension of PIV to super resolution using PTV.Meas.Sci.Technol..2001,12(9):1398-1403.
    [19]孙鹤泉,沈永明,王永学等.Hartley变换在互相关分析中应用研究.大连理工大学学报,2004.44(2):284-287.
    [20]Gramt I,Pan X.The use of neural techniques in PIV and PTV.Meas.Sci.Technol,1997,8(12):1399-1405.
    [21]Chen P H,Yen J Y,Chen J L.An artificial neural network for double exposure PIV image analysis.Experiments in Fluids,1998,24(5-6):373-374.
    [22]双凯,董守平.粒子成像测速图像的模糊聚类识别.石油大学学报(自然科学版),2000,24(6):66-71.
    [23]马广云,申功炘.PIV测速技术实验参数分析.空气动力学报,1995,13(3):274-282.
    [24]禹明忠,王兴奎,庞东明等.PIV流场量测中图像变形的修正.泥沙研究,2001,46(5):59-62.
    [25]Gui L,Merzkirch W.Generating arbitrarily sized interrogation window for correlation based analysis of particle image velocimetry recordings.Experiments in Fluids,1998,24(1):66-69.
    [26]Gui L,Wereley S T.A correlation-based continuous window shift technique to reduce the peak-locking effect in digital PIV image evaluation.Experiments in Fluids,2002,32(4):506-517.
    [27]Nogueira J,Lecuona A,Rodriguez P.Data validation,false vectors correction and derived magnitudes calculation on PIV data.Meas.Sci.Technol.,1997,8(12):1493-1501.
    [28]陈德新,任岩.流动图像错误速度矢量的识别与评价.华北水利水电学院学报,2005,26(1):45-47.
    [29]靳斌,何振江,杨冠玲等.一种单相机流场速度场三维测量方法.光学技术,2000,26(5):445-450.
    [30]Arroyot M P,Greated C A.Stereoscopic particle image velocimetry.Meas.Sci.Technol,1991,2(12):1181-1168.
    [31]Br(?)eker C.3D searming PIV applied to an air flow in a motored engine using digital high-speed video.Meas.Sci.Technol.,1997,8(12):1480-1492.
    [32]Fouras A,Soria J.Accuracy of out-of-plane vonicity measurements derived from in-plane velocity field data.Experiments in Fluids,1998,25(5-6):409-430.
    [33]Lang N,Limberg W.Construction of three-dimensional flow structure out of two-dimensional steady flow field velocity measurements.Experiments in Fluids,1999,27(4):351-358.
    [34]张军,徐洁,赵峰等.3D-PIV技术数值模拟研究.船舶力学,2000,4(4):6-14.
    [35]Hori T,Sakakibara J.High-speed scanning stereoscopic PIV for 3D vonicity measurement in liquids.Meas.Sci.Teehnol,2004,15(6):1067-1078.
    [36]Watanabe S,Kato H,Kwak D et al.Stereoscopic PIV measurements of leading edge separation vortices on a cranked arrow wing.Meas.Sei.Technoi,2004,15(6):1079-1089.
    [37]罗鹏,陈富新,倪洪启.三维粒子图像测速(3D-PIV)实验装置的研制.实验技术与管理,2005,22(1):54-58
    [38]Li F C,Kawaguchi Y,Segawa T,et al.Stereoscopic particle image velocimetry investigation of three dimensional characteristics of vortex structure in a turbulent channel flow.Chin.Phys.Lett.,2005,22(3):624-627.
    [39]Coudert S J M,Sehon J P.Back-projection algorithm with misalignment corrections for 2D3C stereoscopic PIV.Meas.Sei.Technol.,2001,12(9):1371-1381.
    [40]Prasad A K.Stereoseopic particle image veiocimetry.Experiments in Fluids.2000,29(2):103-116.
    [41]罗罡,杨冠玲.采用自定位原理的三维流场速度测量.仪器仪表学报,2000,21(2):200-203.
    [42]董守平.粒子像斑三维定位的透视成像原理和方法.流体力学实验与测量,2000,14(2):102-106.
    [43]Liberzon A,Gurka R,Hetsroni G.XPIV-Multi-plane stereoscopic particle image velocimetry.Experiments in Fluids,2004,36(2):355-362.
    [44]Fabry E P.3D holographic PIV with a forward scattering laser sheet and stereoscopic analysis.Experiments in Fluids,1998,24(1):39-46.
    [45]Sheng J,Meng H.A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry.Experiments in Fluids,1998,25(5-6):461-473.
    [46]Krepki R,Pu Y,Meng Het al.A new algorithm for the interrogation of 3D holographic PTV data based on deterministic annealing and expectation minimiaztion optimization.Experiments in Fluids,2000.29(7):99-107.
    [47]段俐,康琦,丁汉泉等.HPIV及其初步应用研究.北京航空航天大学学报,2000.26(1):83-86.
    [48]Pan G,Meng H.Digital in-line holographic PIV for 3D particulate flow diagnostics.4th Int.Symp.on PIV,G(?)ttingen,Germany,2001:1008-1015.
    [49]魏润杰,申功忻,丁汉泉.数字全息粒子图像测速技术研究.北京航空航天大学学报.2004,30(15):456-460.
    [50]唐立模,禹明忠,刘春晶等.三维粒子示踪测速技术的开发及初步应用.水利学报,2006,37(11):1378-1383.
    [51]董守平.三维PIV透视成像粒子定位的可确定性.流体力学实验与测量,2000,14(2):108-114.
    [52]Virant M,Dracos T.3D PTV and its application on Lagrangian motion.Meas.Sci.Technol.,1997,8(12):1539-1552.
    [53]王灿星,林建忠,山本富士夫.一种基于互相关的三维PIV图像处理方法.水动力学研究与进展.2002,17(2):162-173.
    [54]Kawasue K,Ishimatsu T.3-D measurement of moving particles by circular image shifting.IEEE Trans.Industrial Elec.,1997,44(5):703-706.
    [55]张敏弟,舒玮.偏置圆速粒子图像测速法原理研究.天津大学学报,2000,33(6):752-756.
    [56]Parry J P,Shephard J D,Jones J D C et al.Speckle contrast reduction from a large core fibre delivering Q-switched pulses.Conf.Lasers & Electro-Optics,Baltimore,2005:516-516.
    [57]孙鹤泉,康海贵.DPIV流场测试技术中的数据处理.大连理工大学学报,2000,40(3):364-367.
    [58]张祖勋,张剑清.数字摄影测量学.武汉:武汉测绘科技大学出版社,1996.
    [59]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量.北京:科学出版社,2002.
    [60]段俐,康琦,申功忻.PIV技术的粒子图像处理方法.北京航空航天大学学报,2000,26(1):79-82.
    [61]许联峰.水气两相流动的数字图像测量方法及应用研究:(博士学位论文).西安:西安理工大学,2004.
    [62]严大椿.实验流体力学.北京:高等教育出版社,1992.
    [63]Mudde R F,Lee D J,Reese J et al.Role of coherent structure on Reynolds stresses in a 2D bubble column.Partiele Technology and Fluidization.AICHE Journal,1997,43(4):913-926.
    [64]Koutsiaris A G,Mathioulakis D S,Tsangaris S.Microscope PIV for velocity field measurement of particle suspensions flowing inside glass capillaries.Meas.Sci.Technol,1999,10(11):1037-1046.
    [65]Adrian R J.Twenty years of particle image veloeimetry.Experiments in Fluids.2005,39(2):159-169.
    [66]Weng W,Liao G,Fan W.An improved cross-correlation method for(digital) particle image velocimetry.Acta Mechanica Sinica,2001,17(4):332-339.
    [67]MeKenna S P,MeGillis W R.Performance of digital image velocimetry processing techniques.Experiments in Fluids,2002,32(1):106-115.
    [68]Delnoij E,Westerweel J,Deen N G et al.Ensemble correlation PIV applied to bubble plumes rising in a bubble column.Chemical Engineering Science,1999,54(21):5159-5171.
    [69]Scarano F,Riethmuller M L.Advances in iterative multigrid PIV image processing.Experiments in Fluids,2000,29(7):51-60.
    [70]Scarano F,Riethmuller M L.lterative multigrid approach in PIV image processing with discrete window offset.Experiments in Fluids.1999,26(6):513-523.
    [71]Wereley S T,Gui L.A correlation-based central difference image correction(CDIC) method and application in a four-roll mill flow PIV measurement.Experiments in Fluids,2003,34(1):42-51.
    [72]Florio D D,Felice F D,Romano G P.Windowing,re-shaping and re-orientation interrogation windows in particle image velocimetry for the investigation of shear flows.Meas.Sci.Technol.,2002,13(7):953-962.
    [73]Scarano F.Iterative image deformation methods in PIV.Meas.Sci.Technol.,2002,13(1):R1-R19.
    [74]Searano F.A super-resolution particle image velocimetry interrogation approach by means of velocity second derivatives correlation.Meas.Sci.Technol.,2004,15(2):475-486.
    [75]Gui L,Seiner J M.An improvement in the nine-point central difference image correction method for digital particle image velocimetry recording evaluation.Meas.Sci.Technol.,2004,15(10):1958-1964.
    [76]Gui L,Wereley S T,Kim Y H.Advances and applications of the digital mask technique in particle image veloeimetry experiments.Meas.Sci.Technol.,2003,14(10):1820-1828.
    [77]罗惕乾.流体力学.北京:机械工业出版社,1999.
    [78]Adrian R J.Dynamic ranges of velocity and spatial resolution of particle image velocimetry,Meas.Sci.Technol.,1997,8(12):1393-1398.
    [79]Hohreiter V,Wereley S T,Olsen M G et al.Cross-correlation analysis for temperature measurement.Meas.Sci.Technol.,2002,13(7):1072-1078.
    [80]Guerrero J A,Santoyo F M,Moreno D.Particle positioning from CCD images:experiments and comparison with the generalized Lorenz-Mie theory.Meas.Sci.Technol.,2000,11(5):568-575.
    [81]童秉纲,张炳暄,崔尔杰.非定常流与涡运动.北京:国防工业出版社,1993.
    [82]Merzkirch W.Flow visualization.New York:Academic Press,1974.
    [83]唐洪武.复杂水流模拟问题及图像测速研究:(博士学位论文).南京:河海大学,1996.
    [84]龙世渚,黄载禄,曹汉房.一种立体视觉图像的特征选择与匹配方法.华中理工大学学报,1994,22(11):28-31.
    [85]马颂德,张正友.计算机视觉——计算理论与算法基础.北京:科学出版社,2003.
    [86]吴龙华,严忠民,唐洪武.DPIV相关分析中相关窗口大小的确定.水科学进展,2002,13(5):594-598.
    [87]Willen C E,Gharib M.Digital particle image veiocimetry.Experiments in Fluids,1991,10(4):181-193.
    [88]王灿星,林建忠,山本富士夫.二维PIV图像处理算法.水动力学研究与进展,2001,16(4):399-404.
    [89]Laborite G.On a neural network that performs an enhanced nearest-neighbour matching.Patt.Aria.&Appl.,2000,3(3):267-278.
    [90]Costa J A F,de Andrade Netto M L.A new tree-structured self-organizing map for data analysis.Proe.Int.Joint Conf.Neural Networks,Washington,2001:1931-1936.
    [91]Kohonen T.The self-organizing map.Proc.of the IEEE,1990,78(9):1464-1450.
    [92]孔超,李占才,王沁等.一种基于FPGA的SOM神经网络算法的并行实现.计算机工程,2007,33(19):236-240.
    [93]摆晔,李志勇,蒋慕蓉.基于自组织特征映射网络SOM的图像分割方法.云南大学学报(自然科学版),2007,29(S2):275-278.
    [94]Guo D,Ming X.Color clustering and learning for image segmentation based on neural networks.IEEE Trans.Neural Networks,2005,16(4):925-936.
    [95]Yi Y C,Kuu Y Y.Applying SOM as a Search Mechanism for Dynamic System.Proc.the 44th IEEE Conf.on Decision & Control,Seville,Spain,2005:4111-4116.
    [96]Okamoto K,Nishio S,Saga T et al.Standard images for particle-image velocimetry.Meas.Sci.Technol.,2000,11(6):685-691.
    [97]朱永松,国澄明.基于相关系数的相关跟踪算法研究.中国图象图形学报,2004,9(8):963-967.
    [98]Hu H,Saga T,Kobayashi T et al.Improve the spatial resolution of PIV results by using hierarchical recursive operation.Proc.of 9th Int.Symp.on Flow Visualizaiton.Edinburgh,Scotland,UK,2000:1-12.
    [99]杨敏.网络摄像头的标定.电子工程师,2005,31(12):33-35.
    [100]刘佳音,王忠立,贾云得.一种双目立体视觉系统的误差分析方法.光学技术,2003,29(3):354-360
    [101]Zhang Z Y.On the epipolar geometry between two images with lens distortion.Proc.of the 13th Int.Conf.on Pattern Recognition,Vienna,Austria,1996:407-411.
    [102]Tsai R.A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses.IEEE Journal of Robotics and Automation,1987,3(4):323-344.
    [103]Uchida N,Shibahara T,Aoki T et al.3D face recognition using passive stereo vision.IEEE Int.Conf.on Image Proc.,Singapore,2005:950-953.
    [104]Zhang Z S,He B X,Dai Met al.A high-precision vision measurement method based on dimension characteristics of sequential partial images.14th Int.Conf.on Mech.& Machine Vision in Practice,Xiamen,2007:158-164.
    [105]Davison A J.Active search for real-time vision.Tenth IEEE Int.Conf.on Comp.Vision,Beijing.2005:66-73.
    [106]Rovid A,Hashimoto T.Improved Vision Based 3D Shape Measurement Method.IEEE Int.Conf.on Comp.Cybernetics,Garnmarth,Tunisia,2007:245-250.
    [107]Malki S,Deepak G,Mohanna V et al.Velocity Measurement by a Vision Sensor.Proc.IEEE Int.Conf.on Comp.Intell.for Meas.Sys.& Appl.,La Coru(?)a,Spain,2006:135-140.
    [108]Forsyth D A,Ponce J.Computer Vision-a modern approach.北京:清华大学出版社,2004.
    [109]沈洪宇,柴毅.计算机视觉中双目视觉综述.科技资讯,2007,5(34):150-151.
    [110]朱效明,高稚允.双CCD立体视觉系统的理论研究.光学技术.2003,29(3):298-300.
    [111]K(?)hler C J,Kompenhans J.Fundamentals of multiple plane stereo particle image velocimetry.Experiments in Fluids,2000,29(7):70-77.
    [112]Zhang Z R,Hugo R J.Stereo particle image velocimetry applied to a vortex pipe flow.Experiments in Fluids,2006,40(3):333-346.
    [113]Ortiz-Viilafuerte J,Schmidl W D,Hassan Y A.Three-dimensional PTV study of the surrounding flow and wake of a bubble rising in a stagnant liquid.Experiments in Fluids,2000,29(7):202-210.
    [114]Inasawa A,Lundell F,Matsubara M,et al.Velocity statistics and flow structures observed in bypass transition using stereo PTV.Experiments in Fluids,2003,34(2):242-252.
    [115]Malta H,Heyden A.Extensions of plane-based calibration to the case of translational motion in a robot vision setting.IEEE Trans.Robotics,2006,22(2):322-333.
    [116]Cao X,Foroosh H.Camera calibration using symmetric objects.IEEE Trans.Image Proc.,2006,15(11):3614-3619.
    [117]Fusiello A,Trucco E,Verri A.A compact algorithm for rectification of stereo pairs.Machine Vision and Applications,2000,12(1):16-22.
    [118]陈君,戚飞虎.一种新的基于特征点的立体匹配算法.中国图象图形学报,2005,10(11):1411-1414.
    [119]Tang B,Ait-Boudaoud D,Matuszewski B J et al.An efficient feature based matching algorithm for stereo images.Proc.Geometric Modeling and Imaging-New Trends,London,2006:195-202.
    [120]Wei W,Ngan K N.Disparity estimation with edge-based matching and interpolation.Pro.Int.Sym.lntell.Sig.Proc.& Comm.Sys.,Hong Kong,2005:153-156.
    [121]Kudo T,Shirai K,Ikehara M.Hierarchical stereo matching via color segmentation.12th Digi.Sig.Proc.Workshop & 4th Sig.Proc.Edu.Workshop,Wyoming,USA,2006:522-525.
    [122]Miled W,Pesquet J C.Disparity map estimation using a total variation bound.3rd Cana.Conf.Com.& Robot Vision,Quebec,Canada,2006:48-55.
    [123]Ruiehek Y,Issa H.Towards real-time obstacle detection using a hierarchical decomposition methodology for stereo matching with a genetic algorithm.16th IEEE Int.Con.Tools with Artificial Intell.,Boca Raton.Fl,USA,2004:138-147.
    [124]王彪,王金岩,何亦征等.一种立体匹配的新算法.计算机工程,2005,31(10):153-155.
    [125]杨延西,刘丁,辛菁.模糊遗传图像相关匹配算法.仪器仪表学报,2005,26(11):1166-1169.
    [126]韩逢庆,李红梅,张建勋等.基于遗传算法的轮廓模糊匹配问题研究.系统仿真学报,2004,16(4):772-774.
    [127]何大阔,王福利,毛志忠.遗传算法在离散变量优化问题中的应用研究.系统仿真学报,2006,18(5):1154-1156.
    [128]何仁芳,王乘,杨文兵.基于混沌遗传算法的图像匹配.红外与激光工程,2003,32(1):13-16.
    [129]Hartley R I.Estimation of relative camera positions for uncalibrated cameras.Proc.the 2nd Euro.Conf.Com.Vision,Santa Margherita Ligure,ltaly,1992:579-587.
    [130]Faugeras O D.What can be seen in three dimensions with an uncalibrated stereo rig.Proc.the 2nd Euro.Conf.Com.Vision,Santa Margherita Ligure,Italy,1992:563-578.
    [131]Tsai R Y.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lens.IEEE J.Robo.Auto.,1987,3(4):323-344.
    [132]Lenz R K,Tsai R Y.Techniques for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology.IEEE Trans.Part.Anal.& Mach.Intell.,1998,10(5):713-720.
    [133]徐春晖,徐向东.前馈型神经网络新学习算法的研究.清华大学学报(自然科学版),1999,39(3):1-4.
    [134]高文,陈熙霖.计算机视觉——算法与系统原理.北京:清华大学出版社,1999.
    [135]Beardsley P A,Zisserman A,Murray D W.Sequential updating of projective and affine structure from motion.Int.J.Com.Vision,1997,23(3):235-259.
    [136]孟晓桥,胡占义.摄像机自标定方法的研究与进展.自动化学报,2003,29(1):110-124.
    [137]Pollefeys M,van Gool L.Stratified self-calibration with the modulus constraint.IEEE Trans.Patt.Ana.& Math.Intell.,1999,21(8):707-724.
    [138]Gunji T,Kim S,Kojima M et al.PHoM-a polyhedral homotopy continuation method for polynomial systems.Computing,2004,73(1):55-77.
    [139]Zhang Z Y.Flexible camera calibration by viewing a plane from unknown orientations.Proc.the 7th IEEE Int.Conf.Com.Vision,Corfu,Greece,1999:666-673.
    [140]Hu M X,Zou G H,Yuan B Z.A 3-D reconstruction method based on epipolar geometry.Proc.5th Int.Conf.Sig.Proc.,Beijing,2000:1277-1280.
    [141]曾吉勇,苏显渝.一种无相机标定的立体图像对校正新方法.光学学报,2004,24(5):628-632.
    [142]Nobach H,Damaschke N,Tropea C.High-precision sub-pixel interpolation in PIV/PTV image processing.Experiments in Fluids,2005,39(2):299-304.
    [143]孙鹤泉.基于图像分析的非接触测量方法在水工模型实验中的应用研究:(博士学位论文).大连:大连理工大学,2004.
    [144]Shinneeb A M,Bugg J D,Balachandar R.Variable threshold outlier identification in PIV data.Meas.Sci.Technol.,2004,15(9):1722-1732.
    [145]Liang D,Jiang C,Li Y.Cellular neural network to detect spurious vectors in PIV data.Experiments in Fluids,2003,34(1):52-62.
    [146]Foucaut J M,Carlier J,Stanislas M.Post-processing of PIV records to allow derivative computation.Proc.10th Int.Symp.Appl.Laser Tech.to Fluid Mech.,Lisbon,Portugal,2000:1-10.
    [147]Hartmann J,K(?)hler J,Stolz W et al.Evaluation of unsteady flow fields using cross-correlation in image sequences.Experiments in Fluids,1996,20(3):210-217.
    [148]Astola J,Haavisto P,Neuvo Y.Vector median filters.Proc.of the IEEE,1990,78(4):678-689.
    [149]Westerweel J.Efficient detection of spurious vectors in particle image veiocimetry data.Experiments in Fluids,1994,16(3-4):236-247.
    [150]Nogueira L,Lecuona A,Rodriguez P A.Data validation,false vectors correction and derived magnitudes calculation on PIV data.Meas.Sci.Technol.,1997,8(12):1493-1501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700