视觉功能修复中的图像和信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉是人类获取外界信息最主要的方式,视觉功能异常对患者的生活质量有很大影响。针对这些异常的视觉功能修复既是提高人们生活水平的重大需求,也面临很多重大的困难和挑战。
     在各类视觉功能异常中,失明是程度最严重的一类,而色觉异常则是影响范围很大的一类。这两类视觉功能异常的修复方法都处于探索阶段,有很多需要解决的问题。
     本文对这两类视觉功能异常的修复方案中的图像和信号处理方法进行了研究,主要包括以下方面:
     (1)针对已有的二色觉者颜色感知模拟方法计算复杂度高的问题,提出了一种基于矩阵变换的二色觉者颜色感知模拟方法,比传统方法更加快速简单,有利于大量图像的处理。针对已有方法在模拟异常三色觉者感知方面的空白,提出了一种基于加权平均的异常三色觉者颜色感知模拟方法,可以模拟不同类别和程度的异常三色觉者的颜色感知。
     (2)在对色觉异常的辅助矫正方法的研究中,提出了一种利用人工神经网络训练来重建异常视锥细胞信号的方法,从理论上说明了利用异常视锥细胞传递的信号可以重建出正常视锥细胞应有的信号。针对已有的基于颜色变换的色觉异常矫正方法颜色利用率低、自适应性不好的问题,提出了一种自组织颜色变换方法,自适应地将图像中的颜色变换成为二色觉者能够获取更多信息的颜色,显著增强二色觉者对颜色的分辨能力。
     (3)研究了盲人视觉修复工程中对图像边缘检测的需求。针对已有方法在噪声环境下检测性能明显下降的不足,提出了颜色分布相似性和方向一致性这两类用于彩色图像边缘检测的新特征,并提出了多特征融合的彩色图像边缘检测方法,具有较好的抗噪性。在分析特征时,针对传统直方图相似性度量在直方图发生偏移的情况下准确性不高的问题,提出了一种基于平均窗口平移的直方图相似性度量,在图像受光照、噪声等因素影响而发生直方图偏移的情况下仍能正确度量直方图的相似性。
     (4)研究了盲人视觉修复工程中对图像中目标轮廓分离的需求。提出了一种基于特征聚类的轮廓提取和分离方法,分别采用K-均值聚类和自组织映射的方法对边缘进行聚类,自动实现轮廓的提取、不同轮廓之间的分离以及轮廓与背景边缘之间的分离。在此基础上,提出一种自组织特征映射模型,来模拟视觉系统对彩色场景进行初步处理的机制,模型能够同步完成前景与背景分割、边缘检测、目标轮廓提取以及不同类别物体的分离等功能,为进一步研究视觉系统的信号处理机制提供了参考。
     (5)为了寻找视觉修复工程中合适的神经刺激方式,对视觉信息的神经编码方式进行了研究。提出了一种基于同步振荡的轮廓提取和分离模型,通过神经振荡的同步和异步来区分不同物体的轮廓,不仅有助于对视觉系统中信息编码方式的研究,也为基于视神经刺激的盲人视觉修复项目中刺激方式的选择提供了参考。
     本文提出的各类方法以视觉系统的特性和处理机制为依据,既具有较好的通用性,适合图像处理的各种应用,也具有一定的针对性,密切结合了视觉功能修复方案的需求,有望为针对失明和色觉异常的视觉功能修复提供帮助,从而为患者带来新的希望。
Vision is the most important way for human beings to obtain the information ofthe world.Vision abnormality affects the quality of life of sufferers.Therehabilitation of vision is the requirement of improving their living standard.However,it faces many difficulties and challenges.
     Blindness is the most severe kind of vision abnormality,while color visiondeficiency is another kind of vision abnormality that has a wide influence range.Therehabilitation schemes for these two kinds of vision abnormality are still in theexploratory stage,and hence have many problems to be solved.
     This dissertation focuses on image and signal processing methods in visionrehabilitation schemes for color vision deficiency and blindness.Studies have beencarried out in following aspects.
     (1) To simulate the color perception of dichromats and avoid the highcomputation cost of conventional methods,a new simulation method is proposedbased on the matrix transformation.The method is easier and quicker than existingmethods and thereby fits for the processing of large amount of images.To make upthe absence of perception simulation for anomalous trichromats,a weighted averagemethod is proposed to simulate the color perception of anomalous trichromats withdifferent types and severities.
     (2) During the investigation of color vision rectification,an artificial neuralnetwork model is proposed to rebuild response signals of abnormal cones by training,which indicates that normal cone response signals can be rebuilt from abnormal coneresponse signals.To solve the problems of low color utilization rate and adaptabilityin previous color transformation methods for color vision rectification,aself-organizing color transformation method is proposed.The method adaptivelychanges colors of a scene into discernable ones for dichromats,so as to enhance theircolor discrimination.
     (3) Studies for the edge detection have been made according to the requirementof vision rehabilitation project for the blind.To alleviate the performancedegradation of the edge detection under noisy environments,two new features,named as color distribution similarity and orientation consistency respectively,areexploited in the edge detection.Accordingly,a feature fusion method is proposed for the edge detection of color images.The method has a better performance thanconventional ones under noisy environments.
     When calculating features,general histogram similarity measures havedisadvantages when several kinds of deformation happen to histograms.A novelsimilarity measure is proposed based on the average translation of histogram bins.The measure of average translation of bins outperforms general measures in thecondition of histogram deformation caused by illumination variance or noise of theimage.
     (4) Studies for the contour extraction and separation have been made accordingto the requirement of vision rehabilitation project for the blind.A novel method isproposed to separate individual object contours in an image by clustering edges withdifferent local features.The method adopts the k-means clustering and the SOMrespectively to group edge pixels with similar features,in order to extract contours,separate different object contours,and separate contours from the background.
     Based on this study,a self-organizing feature map model is proposed tosimulate the visual processing mechanism for color scenes.The model cansimultaneously fulfill multiple tasks such as the figure-ground separation,the edgedetection,the contour extraction,and the object separation.It helps for furtherinvestigating the signal processing mechanism of the visual system.
     (5) To find appropriate neural stimulating methods in the vision rehabilitationproject for the blind,the neural encoding mode for the visual information has beeninvestigated.A coherent oscillation model for the contour extraction and separationis proposed.This model can extract and separate contours of different objects bysynchronization and asynchronization of neural oscillation.It helps to promote theinvestigation on the neural encoding mode for the visual information,and alsoprovides suggestions for the selection of neural stimulating methods in the visionrehabilitation project.
     All proposed methods in this dissertation are based on characteristics andmechanisms of vision system.They have both good versatility for different imageprocessing applications and specific advantages for vision rehabilitation schemes.Itis expected to provide help to the vision rehabilitation for color vision deficiency andblindness,and thus bring new hope to sufferers.
引文
[1] Sharpe LT, Gegenfurtner KR. Color vision: from genes to perception.Cambridge London: Cambridge University Press, 1999.
    [2] Gegenfurtner KR, Kiper DC. Color vision. Annual Review of Neuroscience,2003,26:181-206.
    [3] Smith VC, Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 1975, 15(2): 161-171.
    [4] Stockman A, Sharpe LT. The spectral sensitivities of the middle-and-long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Research, 2000, 40(13): 1711-1737.
    [5] Dartnall HJ, Bowmaker JK, Mollon JD. Human visual pigments:microspectrophotometric results from the eyes of seven persons. Proceedings of the Royal Society of London B: Biological Sciences, 1983, 220(1218):115-130.
    [6] Jacobs GH, Neitz J, Krogh K. Electroretinogram flicker photometry and its applications. Journal of the Optical Society of America A, 1996, 13(3):641-648.
    [7] Schnapf JL, Kraft TW, Baylor DA. Spectral sensitivity of human cone photoreceptors. Nature, 1987, 325(6103): 439-441.
    [8] Vienot F, Brettel H, Mollon J. Digital video colourmaps for checking the legibility of displays by dichromats. Color Research and Application, 1999,24(4): 243-252.
    [9] Shen YC, Yuan WH, Hsu WH, Chen YS. Color selection in the consideration of color harmony for interior design. Color Research and Application, 2000,25(1): 20-31.
    [10] Meyer GW, Greenberg DP. Color-defective vision and computer graphics displays. IEEE Computer Graphics and Applications, 1988, 8(5): 28-40.
    [11] Shen YC, Yuan WH, Hsu WH, Chen YS. Color selection in the consideration of color harmony for interior design. Color Research and Application, 2000,25(1): 20-31.
    [12] Ro YM, Yang S. Color adaptation for anomalous trichromats. International Journal of Imaging Systems and Technology, 2004, 14(1): 16-20.
    [13] Huang JB, Tseng YC, Wu SI, Wang SJ. Information preserving color transformation for protanopia and deuteranopia. IEEE Signal Processing Letters, 2007, 14(10): 711-714.
    [14] Nam J, Ro YM, Huh Y, Kim M. Visual content adaptation according to user perception characteristics. IEEE Transactions on Multimedia, 2005, 7(3):435-445.
    [15] Rasche K, Geist R, Westall J. Detail preserving reproduction of color images for monochromats and dichromats. IEEE Computer Graphics and Applications,2005, 25(3): 22-30.
    [16] Rasche K, Geist R, Westall J. Re-coloring images for gamuts of lower dimension. Computer Graphics Forum, 2005, 24(3): 423-432.
    [17] Vienot F, Brettel H, Ott L, M'Barek AB, Mollon JD. What do colour-blind people see? Nature, 1995,376(6536): 127-128.
    [18] Cole BL. Assessment of inherited colour vision defects in clinical practice.Clinical and Experimental Optometry, 2007, 90(3): 157-175.
    [19] Kentridge RW, Heywood CA, Cowey A. Chromatic edges, surfaces and constancies in cerebral achromatopsia. Neuropsychologia, 2004, 42(6):821-830.
    [20] Kovalev VA. Towards image retrieval for eight percent of color-blind men.Proceedings of the 17th International Conference on Pattern Recognition, 2004,943-946.
    [21] Mathger LM, Barbosa A, Miner S, Hanlon RT. Color blindness and contrast perception in cuttlefish (sepia officinalis) determined by a visual sensorimotor assay. Vision Research, 2006, 46(11): 1746-1753.
    [22] Brettel H, Vienot F, Mollon J. Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America A, 1997, 14(10):2647-2655.
    [23] Wachtler T, Dohrmann U, Hertel R. Modeling color percepts of dichromats.Vision Research, 2004,44(24): 2843-2855.
    [24] Capilla P, Diez-Ajenjo MA, Luque MJ, Malo J. Corresponding-pair procedure: a new approach to simulation of dichromatic color perception. Journal of the Optical Society of America A, 2004, 21(2): 176-186.
    [25] Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. The Journal of Physiology, 1968, 196(2): 479-493.
    [26] Brindley GS, Lewin WS. The visual sensations produced by electrical stimulation of the medial occipital cortex. The Journal of Physiology, 1968,194(2): 54-55.
    [27] Rovamo J, Virsu V. An estimation and application of the human cortical magnification factor. Experimental Brain Research, 1979, 37(3): 495-510.
    [28] Brindley GS, Rushton D. Implanted stimulators of the visual cortex as visual prosthetic devices. Transactions: American Academy of Ophthalmology and Otolaryngology, 1974, 78: 741-745.
    [29] Pollen DA. Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behavior and Evolution, 1977, 14(1): 67-86.
    [30] Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O'Rourke DK, Vallabhanath P.Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 1996, 119(2): 507-522.
    [31] Jones KE, Normann RA. An advanced demultiplexing system for physiological stimulation. IEEE Transactions on Biomedical Engineering,1997,44(12): 1210-2120.
    [32] Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vision Research, 1999, 39(15): 2577-2587.
    [33] Dobelle WH, Mladejovsky MG Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. The Journal of Physiology, 1974, 243(2): 553-576.
    [34] Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO Journal, 2000,46(1): 3-9.
    [35] Zrenner E. Will retinal implants restore vision? Science, 2002, 295(5557):1022-1025.
    [36] Zrenner E, Miliczek KD, Gabel VP, Graf HQ Guenther E, Haemmerle H,Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Research, 1997,29(5): 269-280.
    [37] Humayun MS, de Juan Jr E, Weiland JD, Dagnelie G, Katona S, Greenberg R,Suzuki S. Pattern electrical stimulation of the human retina. Vision Research,1999, 39(15): 2569-2576.
    [38] Chow AY, Pardue MT, Chow VY, Peyman GA, Liang C, Perlman JI, Peachey NS. Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2001, 9(1): 86-95.
    [39] Furumiya T, Ng DC, Yasuoka K, Kagawa K, Tokuda T, Nunoshita M, Ohta J.Functional verification of pulse frequency modulation-based image sensor for retinal prosthesis by invitro electrophysiological experiments using frog retina.Biosensors and Bioelectronics, 2006, 21(7): 1059-1068.
    [40] Mazza M, Renaud P, Bertrand DC, Ionescu AM. CMOS pixels for subretinal implantable prothesis. IEEE Sensors Journal, 2005, 5(1): 32-37.
    [41] Gekeler F, Zrenner E. Status of the subretinal implant project-an overview.Ophthalmologe, 2005, 102(10):941.
    [42] Mahadevappa M, Weiland JD, Yanai D, Fine I, Greenberg RJ. Humayun, M.S.Perceptual thresholds and electrode impedance in three retinal prosthesis subjects. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005, 13(2): 201-206.
    [43] Zhou DD, Greenberg RJ. Microsensors and microbiosensors for retinal implants. Frontiers in Bioscience, 2005, 10: 166-179.
    [44] Veraart C, Raftopoulos C, Mortimer JT, Delbekea J, Pinsa D, Michauxa G,Vanlierdea A, Parrinia S, Wanet-Defalque MC. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode.Brain Research, 1998,813(1): 181-186.
    [45] Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J. Pattern recognition with the optic nerve visual prosthesis. Artificial Organs, 2003,27(11): 996-1004.
    [46] 庄松林. 视觉功能修复的基础理论与关键科学问题. 光学与光电技术,2006,4(5): 16-20.
    [47] Chai X, Li L, Wu K, Zhou C, Cao P, Ren Q. C-sight visual prostheses for the blind. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(5),20-28.
    [48] Vischeck. http://www.vischeck.com/.
    [49] Kovalev V, Petrou M. Optimising the choice of colours of an image database for dichromats. Lecture Notes in Computer Science, 2005, 3587: 456-465.
    [50] Jefferson L, Harvey R. Accommodating color blind computer users.Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility, 2006: 40-47.
    [51] Gooch AA, Olsen SC, Tumblin J, Gooch B. Color2gray: salience-preserving color removal. ACM Transactions on Graphics, 2005, 24(3): 634-639.
    [52] Yoder L. Relative absorption model of color vision. Color Research and Application, 2005, 30(4): 252-264.
    [53] Faugeras OD. Three dimensional computer vision: a geometric viewpoint.Cambridge, MA: MIT Press, 1993.
    [54] Faugeras OD. Digital color image processing within the framework of a human visual model. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, 27(4): 380-393.
    [55] Ham FM, Kostanic I. Principles of neurocomputing for science and engineering. New York, NY: McGraw Hill, 2001.
    [56] Kohonen T. Self-organization and associative memory. New York, NY:Springer-Verlag, 1989.
    [57] Kohonen T. Self-organizing maps. Secaucus, NJ: Springer-Verlag, 1997.
    [58] Jin H, Shum WH, Leung KS, Wong ML. Expanding self-organizing map for data visualization and cluster analysis. Information Sciences, 2004, 163(1):157-173.
    [59] Kohonen T, Oja E, Simula O, Visa A, Kangas J. Engineering applications of the self-organizing map. Proceedings of the IEEE, 1996, 84(10): 1358-1384.
    [60] Atsalakis A, Papamarkos N, Andreadis I. On estimation of the number of image principal colors and color reduction through self-organized neural networks. International Journal of Imaging Systems and Technology, 2002,12(3): 117-127.
    [61] Papamarkos N. Color reduction using local features and a Kohonen self-organized feature map neural network. International Journal of Imaging Systems and Technology, 1999, 10(5): 404-409.
    [62] Chang CH, Xu P, Xiao R, Srikanthan T. New adaptive color quantization method based on self-organizing maps. IEEE Transactions on Neural Networks,2005, 16(1): 237-249.
    [63] Morgan MJ, Adam A, Mollon JD. Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proceedings of the Royal Society B: Biological Sciences, 1992, 248(1323): 291-295.
    [64] Martfnez-Verdu F, Perales E, Chorro E, de Fez D, Viqueira V, Gilabert E.Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source. Journal of the Optical Society of America A, 2007,24(6): 1501-1515.
    [65] Pointer MR, Attridge GG. The number of discernible colours. Color Research and Application, 1998, 23(1): 52-54.
    [66] Jacobs GH. The distribution and nature of colour vision among the mammals.Biological Reviews, 1993, 68(3):413-471.
    [67] Lewis A, Zhaopin L. Are cone sensitivities determined by natural color statistics? Journal of Vision, 2006, 6(3): 285-302.
    [68] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
    [69] Plataniotis KN, Venetsanopoulos AN. Color image processing and applications.Berlin: Springer, 2000: 179-207.
    [70] Di Zenzo S. A note on the gradient of a multi-image. Computer Vision,Graphics, and Image Processing, 1986, 33(1): 116-125.
    [71] Scharcanski J, Venetsanopoulos AN. Edge detection of color images using directional operators. IEEE Transactions on Circuits and Systems for Video Technology, 1997, 7(2): 397-401.
    [72] Cheng SC, Wu TL. Subpixel edge detection of color images by principal axis analysis and moment-preserving principle. Pattern Recognition, 2005, 38(4):527-537.
    [73] Trahanias PE, Venetsanopoulos AN. Vector order statistics operators as color edge detectors. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 1996,26(1): 135-143.
    [74] Russo F, Lazzari A. Color edge detection in presence of gaussian noise using nonlinear prefiltering. IEEE Transactions on Instrumentation and Measurement,2005, 54(1): 352-358.
    [75] Martin DR, Fowlkes CC, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(5): 530-549.
    [76] Puzicha J, Rubner Y, Tomasi C, Buhmann J. Empirical evaluation of dissimilarity measures for color and texture. Computer Vision and Image Understanding, 2001, 84(1): 25-43.
    [77] Vasconcelos N. On the efficient evaluation of probabilistic similarity functions for image retrieval. IEEE Transactions on Information Theory, 2004, 50(7): 1482-1496.
    [78] Werman M, Peleg S, Rosenfeld A. A distance metric for multi-dimensional histograms. Computer, Vision, Graphics, and Image Processing, 1985, 32(3):328-336.
    [79] Das M, Riseman EM, Draper BA. FOCUS: searching for multi-colored objects in a diverse image database. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1997: 756-761.
    [80] Stricker M, Orengo M. Similarity of color images. Proceedings of SPIE Conference on Storage and Retrieval for Image and Video Databases Ⅲ, 1995:381-392.
    [81] Rubner Y, Tomasi C, Guibas LJ. The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 2000, 40(2):99-121.
    [82] Ling H, Okada K. An efficient earth mover's distance algorithm for robust histogram comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 840-853.
    [83] Geisler WS, Perry JS, Super BJ, Gallogly DP. Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 2001, 41(6):711-724.
    [84] Blakeslee B, McCourt ME. Similar mechanisms underlie simultaneous brightness contrast and grating induction. Vision Research, 1997, 37(20):2849-2869.
    [85] Hess RF, Dakin SC. Contour integration in the peripheral field. Vision Research, 1999, 39(5): 947-959.
    [86] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models.International Journal of Computer Vision, 1988, 1(4): 321-331.
    [87] Field DJ, Hayes A, Hess RF. Contour integration by the human visual system:evidence for a local association field. Vision Research, 1993, 33(2): 173-193.
    [88] Yen SC, Finkel LH. Extraction of perceptually salient contours by striate cortical networks. Vision Research, 1998, 38(5): 719-741.
    [89] Tversky T, Geisler WS, Perry JS. Contour grouping: closure effects are explained by good continuation and proximity. Vision Research, 2004, 44(24):2769-2777.
    [90] Elder JH, Goldberg RM. Ecological statistics for the Gestalt laws of perceptual organization of contours. Journal of Vision, 2002, 2(4): 324-353.
    [91] Vonikakis V, Gasteratos A, Andreadis I. Enhancement of perceptually salient contours using a parallel artificial cortical network. Biological Cybernetics,2006, 94(3): 192-214.
    [92] Williams LR, Jacobs DW. Stochastic completion fields: a neural model of illusory contour shape and salience. Neural Computation, 1997, 9(4): 837-858.
    [93] Li ZP. A neural model of contour integration in the primary visual cortex.Neural Computation, 1998, 10(4): 903-940.
    [94] Venkatesh YV, Raja SK, Ramya N. Multiple contour extraction from graylevel images using an artificial neural network. IEEE Transactions on Image Processing, 2006, 15(4): 892-899.
    [95] Shah-Hosseini H, Safabakhsh R. A TASOM-based algorithm for active contour modeling. Pattern Recognition Letters, 2003, 24(9): 1361-1373.
    [96] Venkatesh YV, Rishikesh N. Self-organizing neural networks based on spatial isomorphism for active contour modeling. Pattern Recognition, 2000, 33(7):1239-1250.
    [97] Theodoridis S, Koutroumbas K. Pattern recognition. New York: Academic Press, 2003.
    [98] Ball GH, Hall DJ. A clustering technique for summarizing multivariate data.Behavioral Science, 1967, 12(2): 153-155.
    [99] MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematics,Statistics, and Probability, 1967, 1: 281-297.
    [100]Forgy E. Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics, 1965,21(3): 768-780.
    [101] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [102]Ben-Shahar O, Zucker S. Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex. Neural Computation, 2004, 16(3): 445-476.
    [103]Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur M, Thelen E.Artificial intelligence: autonomous mental development by robots and animals.Science, 2001, 291(5504): 599-600.
    [104] Adrian ED. The impulses produced by sensory nerve endings: Part I. The Journal of Physiology, 1926, 61(1): 49-62.
    [105]Hebb DO. The organization of behavior: a neurophysiological theory. New York, NY: Wiley, 1949.
    [106]Barlow HB. Single units and sensation: a neuron doctrine for perceptual psychology. Perception, 1972,1(4): 371-394.
    [107]Abeles M. Local cortical circuits. Berlin: Springer-Verlag, 1982.
    [108] Von der Malsburg C. The correlation theory of brain functioning. Gottingen:Max-Planck-lnstitute for Biophysical Chemistry, 1981.
    [109] Von der Malsburg C, Schneider W. A neural cocktail-party processor.Biological Cybernetics, 1986, 54(1): 29-40.
    [110]Fujii H, Ito H, Aihara K, Ichinose N, Tsukada M. Dynamical cell assembly hypothesis: theoretical possibility of spatio-temporal coding in the cortex.Neural Networks, 1996, 9(8): 1303-1350.
    [111]Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ.Coherent oscillations: a mechanism of feature linking in the visual cortex.Biological Cybernetics, 1988, 60(2): 121-130.
    [112]Gray CM, Konig P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 1989, 338(6213): 334-337.
    [113] Gray CM. Synchronous oscillations in neuronal systems: mechanisms and functions. Journal of Computational Neuroscience, 1994, 1(1): 11-38.
    [114]Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 1995, 18: 555-586.
    [115]Engel AK, Roelfsema PR, Fries P, Brecht M, Singer W. Role of the temporal domain for response selection and perceptual binding. Cerebral Cortex, 1997,7(6): 571-582.
    [116]Eckhom R, Frien A, Bauer R, Woelbern T, Kehr H. High frequency 60-90 Hz oscillations in primary visual cortex of awake monkey. Neuroreport, 1993, 4(3):243-246.
    [117] Engel AK, Konig P, Kreiter AK, Singer W. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 1991,252(5009): 1177-1179.
    [118] Wang DL. The time dimension for scene analysis. IEEE Transactions on Neural Networks, 2005, 16(6): 1401-1425.
    [119] Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 1972, 12(1): 1-24.
    [120]K(?)nig P, Schillen TB. Stimulus-dependent assembly formation of oscillatory responses: I. synchronization. Neural Computation, 1991, 3(2): 155-166.
    [121] Wang DL. Emergent synchrony in locally coupled neural oscillators. IEEE Transactions on Neural Networks, 1995, 6(4): 941-948.
    [122]Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. Bulletin of Mathematical Biology, 1990,52:25-71.
    [123]Mirollo RE, Strogatz SH. Synchronization of pulse coupled biological oscillators. SIAM Journal on Applied Mathematics, 1990, 50(6): 1645-1662.
    [124]Eckhorn R, Reitboeck HJ, Arndt M, Dicke P. Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Computation, 1990, 2(3): 293-307.
    [125]Van der Pol B. On 'relaxation oscillations'. Philosophical Magazine, 1926,2(11): 978-992.
    [126]FitzHugh R. Impulses and physiological states in models of nerve membrane.Biophysical Journal, 1961, 1(6): 445-466.
    [127] Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber.BiophysJ, 1981,35(1): 193-213.
    [128] Wang DL, Terman D. Locally excitatory globally inhibitory oscillator networks. IEEE Transactions on Neural Networks, 1995, 6(1): 283-286.
    [129] Wang DL, Terman D. Image segmentation based on oscillatory correlation.Neural Computation, 1997, 9(4): 805-836.
    [130] Wang DL. Object selection based on oscillatory correlation. Neural Networks,1999, 12(4): 579-592.
    [131] Wang DL. Primitive auditory segregation based on oscillatory correlation.Cognitive Science, 1996,20(3): 409-456.
    [132] Wang DL, Brown GJ. Separation of speech from interfering sounds based on oscillatory correlation. IEEE Transactions on Neural Networks, 1999, 10(3):684-697.
    [133]Cosp J, Madrenas J. Scene segmentation using neuromorphic oscillatory networks. IEEE Transactions on Neural Networks, 2003, 14(5): 1278-1296.
    [134]Freeman WJ. Neurodynamics: an exploration in mesoscopic brain dynamics.London: Springer-Verlag, 2000.
    [135]Rodieck RW, Stone J. Analysis of receptive fields of cat retinal ganglion cells.Journal of Neurophysiology, 1965,28(5): 833-849.
    [136]Blakeslee B, McCourt ME. Similar mechanisms underlie simultaneous brightness contrast and grating induction. Vision Research, 1997, 37(20):2849-2869.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700