赤潮多源监测数据处理与综合预测预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤潮我国沿海最主要的生态灾害之一,随着经济的发展,环境污染日益加剧,赤潮爆发的频率逐年升高,赤潮的发生对沿海的生态环境和水产养殖造成了严重的影响。赤潮灾害的监测和预报作为一个国际性的难题已引起人们的高度关注和重视。为了对赤潮进行研究和预报,许多沿海国家都组建了自己的赤潮监测系统,由于赤潮过程的复杂性,人们目前还没有完全把握赤潮的发生、发展和消亡的相关机理,因此在众多现行的赤潮监测体系中,为了有效的处理大量的赤潮监测数据,机器学习和模糊技术被广泛使用。同时,为了更加全面的监控赤潮过程,多手段、全方位的立体监测系统的开发也势在必行,因而处理多源赤潮监测信息的不确定性并对其进行融合也将是一个难题。
     本文的研究得到国家高技术发展计划(863计划)赤潮重点监控区监控预警系统重大专项课题(2005AA635200)的资助,本文针对该赤潮监控系统获取得大量监测数据,结合机器学习、模糊数学、数据融合方法等理论,对赤潮监测数据的处理与分析方法进行了研究,主要研究内容和创新之处如下:
     首先,介绍了本项研究所依托课题的实施情况与五个监测子系统的实现技术,给出了多源监测数据的获取手段和传输方式。对于数据的预处理主要包括两项工作:一个是综合利用现有的相关标准对浮标传感器进行在线评价,并对符合线性分析标准的监测参数进行不确定度评估;另一个是针对监测数据中出现的缺失数据的情况,提出了一种适用于赤潮监测数据的时间序列的插补方法,取得了比一般插补方法更好的插补效果。
     经过对浮标传感器在线评价,发现一些在线监测参数满足与离线数据的线性回归分析标准,而另一些则不满足。满足标准的主要为温度和盐度数据,能够利用现场校正将其误差控制在允许范围内,因此,温度和盐度参数时间序列中的值可以用精确值表达,对于精确值时间序列,提出一种结合奇异谱分析和RBF神将网络的时间序列多步预测方法,取得了理想的预测效果。对于无法现场标定的参数(主要是叶绿素),需要考虑监测数据的不确定性,本文采用模糊时间序列方法对叶绿素时间序列进行预测。结合现有的二元模糊关系法和二元高阶模糊推理法的特点和优势,提出了一种改进的二元模糊时间序列预测方法,与其他方法相比,能够获得更高的预测精度。
     为了达到对赤潮状况进行快速预警的目的,利用本监测系统中获取的叶绿素多源监测信息,结合数据融合理论,本文尝试性的提出了应用于赤潮快速预警的多源叶绿素监测信息的数据融合模型,介绍了证据理论的主要内容,讨论了利用证据理论进行数据融合数据融和过程中的遇到的主要问题和现有的解决方法,结合赤潮预警的具体需求,提出了实用性的生成BBA和冲突处理的方法,做到了对赤潮发生的实时判断。
     赤潮生物密度与种群分布是赤潮监测中获取的重要数据,利用SOM神经网络对赤潮种群信息进行聚类,并将结果可视化,为专家分析提供了便利,讨论了fuzzy-ARTMAP神经网络算法,并将其与SOM神经网络相结合,利用其对种群变动进行了辅助预测,取得了良好的结果。
     考虑到赤潮专家分布于不同的城市,并且专家意见存在差异性,为了合理的表达和融合多专家意见,本文利用推广模糊数来表示专家的语言信息,给出了多专家意见的信息融合方法。针对现有模糊数相似性测度的缺陷,提出了一种新的专家意见之间的相似性测度的表示方法,并将其应用到多专家意见的信息融合方法中,利用数值算例论述了本方法的可行性。
Red Tide is one of major ecological disasters of china coast. The monitoring and prediction of red tide is an open issue which has attract high attention. The related mechanism of red tide dynamic process is unclear for the complexity of red tide process, so machine learning and fuzzy sets theory is widely used in the current red tide monitoring systems. On other hand, in order to monitor red tide process more comprehensively, multi-method and stereoscopic monitoring system should be constructed, therefore handling and fusion multi-source monitoring information should be considered.
     The research work in this thesis is supported by“863”of high technology research and development program“monitoring and early-warning system for red tide key monitoring sea area”important specific subject. A great deal of data is obtained from the monitoring system, so combined with the theory of machine learning, fuzzy mathematics and data fusion, our research is emphasis on the handling and analysis the monitoring data. The major research work and contribution are as follows:
     First of all, the implementation situation of the subject and its five subsystems on which our research work based is introduced and the means to acquire and transmission of the data are described. The content for preprocessing of data comprise from two parts. In first part the buoy sensors are online accessed in which available related standards are comprehensive utilized, and the uncertainty evaluation is carried out for the monitoring parameters accordance with the linear analysis standard. In second part, in order to impute the missing data in monitoring time series, a new imputation method is proposed that can achieve better imputation result than common method.
     Being accessed to the buoy sensors, it is found that some on-line monitoring parameters accordance with the linear analysis standard, while some ones not. For the first kind, accurate value can be used to represent the data in temperature and salinity time series. A new time series multi-step prediction method combining singular spectrum analysis and radial basis function neural networks is proposed, and an exact result is achieved. For the second kind, considering the uncertainty of the data, fuzzy value can be used to represent the data in chlorophyll time series. Taking advantage of the superiority of two-factor time-variant fuzzy relation method and two-factor high-order fuzzy inference method, a better result is achieved comparing with other method.
     For the purpose of the early-warning of red tide, utilizing the multi-source monitoring chlorophyll information from this monitoring system, combined with the data fusion theory, a data fusion model which applied to the early-warning of red tide is tried. The major content of evidence theory is introduced, and the main problems and the existing solutions met in evidence theory application is discussed. According to the specific requirements, a new practical model for BBA generation and conflicts handling is constructed, which could realize the real-time judgment of red tide occurrence.
     The biological density and species distribution of the red tide are the important data derived from the red tide monitoring process. The SOM neural network is used to cluster the red tide population information and visualize the results which could facilitate the expert to analysis. The structure of fuzzy-ARTMAP neural network is talked about. The hybrid model of the fuzzy-ARTMAP neural network and SOM neural network is applied to aided prediction analysis the algae population fluctuation that have obtained good results.
     For the case that red tide experts are distributed in different cities with deferent opinion, extended fuzzy number is implied to express the linguistic information of experts, and multi-expert information fusion model is given. According to the defects of several existing fuzzy number similarity measurement, a new similarity measurement is put forward which has been applied in the multi-experts information fusion model, a numerical example is used to illustrate the efficiency of the proposed method.
引文
[1] Florentino F. R and Juan M. C CBR based system for forecasting red tides Knowledge Based Systems, 2003, 16, 321–328.
    [2] Evaggelos V. H, etc Monitoring water quality through a telematic sensor network and a fuzzy expert system, Expert Systems, 2007, 24(3),143-161.
    [3] Lek, S., Guegan, J.F., Artificial neural networks as a tool in ecological modeling, an introduction. Ecol. Model. 1999. 120, 65-73.
    [4] Recknagel, F., Ecological Informatics. Scope, Techniques and Applications, 2006, Springer-Verlag, New York.
    [5] French, M., Recknagel, F., Jarrett, G.L.,. Scaling issues in artificial neural network modelling and forecasting of algal bloom dynamics, Proceedings of the International Water Resources Engineering Conference, ASCE, 1998, 1, 891-896.
    [6] J H.W. Lee, Yan H, M Dickman, A.W. Jayawardena., A Neural network modelling of coastal algal blooms Ecological Modelling, 2003, 159, 179-201.
    [7]E. Nagamori, H. Honda, T. Hanai., Prediction of Occurrence of Heterocapsa circularisquama Red Tide by Means of Fuzzy Neural Network, Journal of Chemical Engineering of Japan, 2001, 34 (8), 998-1005.
    [8] Bobbin, J., Recknagel, F.,. Inducing explanatory rules for the prediction of algal blooms by genetic algorithms. Environment International, 2001, 27, 237–242.
    [9] Nitin Muttil and Joseph H.W. Lee Genetic programming for analysis and real-time prediction of coastal algal blooms Ecological Modelling, 2005, 189, 363–376.
    [10]杨建强,高振会,孙培艳自组织神经网络在有害赤潮预测预警中的应用,海洋环境科学, 2003, 22(1), 6-9.
    [11]杨建强,高振会,孙培艳,等.应用遗传神经网络方法分析赤潮监测数据.黄渤海海洋,2002,20(2), 77-82.
    [12] Yang Jianqiang,Gao Zhenhui,Ding Dewen. The application of self-organizing neural network models based on the theory of ART in the area of harmful red tide warning , Second international conference on HAMM, 2001, 108, 12-16.
    [13] L. A. Zadeh.“Fuzzy sets”, Information and Control, 1965, 8, 338- 353.
    [14] J. Laanemets, M. J. Lilover, et al., F. A Fuzzy Logic Model to Describe the Cyanobacteria Nodularia spumigena Blooms in the Gulf of Finland, Baltic Sea. Hydrobiologia , 2006, 554, 31-45.
    [15] S. Marsili-Libelli, Fuzzy prediction of the algal blooms in the Orbetello lagoon, Environmental Modelling & Software, 2004, 19, 799-808.
    [16] Bobbin, J., Recknagel, F. Knowledge discovery for prediction and explanation of blue–green algal dynamics in lakes by evolutionary algorithms. Ecological Modelling, 2001, 146, 253–262
    [17] Maier, H.R., Sayed, T., Lence, B.J, Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models, Ecological Modelling, 2001, 146, 85-96.
    [18] Shen, Q., Chouchoulas, A.,. FuREAP: a fuzzy-rough estimator of algae populations. Artificial Intelligence in Engineering 2001 15, 13-24.
    [19] Friendman, K. S., Pichel, W. G., et al., F. GoMEx - an experimental GIS system for the gulf of Mexico region using SAR and additional satellite and ancillary data, International Geoscience and Remote Sensing Symposium , 2002, 6, 3343-3345
    [20] ISO, 1990. Water quality—calibration and evaluation of analytical methods and estimation of performance characteristics. Part 1: Statistical evaluation of the linear calibration function. ISO 8466-1, Geneva, Switzerland.
    [21] ISO, 2003. Water quality—on-line sensors/analysing equipment for water—specifications and performance tests. ISO 15839, Geneva, Switzerland.
    [22] ISO, 1993. Guide to the expression of uncertainty in measurement, first ed. ISO, Geneva, Switzerland. ISBN 92-67-10188-9.
    [23] Latini G, Passerini G., Handling missing data, 2004, WIT, Southampton, UK.
    [24] Albrecht, G Interpolation and approximation of water quality time series and process identification Anal Bioanal Chem, 2004, 380, 484-492
    [25] Schneider, T., Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate, 2001, 14, 853-871.
    [26] Schafer, J.L., Analysis of incomplete multivariate data. Monographs on Statistics and Applied Probability, 1997, 72, Chapman & Hall, London.
    [27] Hakkinen, E., Design, implementation and evaluation of the neural data analysis environment. 2001, Ph.D. Thesis, University of Jyvaskyla, Finland.
    [28] Gardner, M.W., Dorling, S.R, Neural network modeling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 1999, 33, 709-719.
    [29] Golyandina, N., Nekrutkin, V., Zhigljavsky, A., Analysis of Time Series Structure: SSA and related techniques, 2001, Chapman and Hall/CRC, New York.
    [30] F.J. Alonsoa, J.M. Del Castillo, P. Pintado Application of singular spectrum analysis to the smoothing of raw kinematic signals, Journal of Biomechanics, 2005, 38, 1085-1092
    [31] C. Aldrich , M. Barkhuizen. Process system identification strategies based on the use of singular spectrum analysis, Minerals Engineering, 2003, 16, 815-826
    [32] C.A.F. Marques, etc. singular spectrum analysis and forecasting of hydrological time series, Physics and Chemistry of the Earth, 2006, 31, 1172-1179
    [33]邹景忠,董丽萍,秦保平,渤海湾富营养化和赤潮问题的初步探讨,海洋环境科学, 1983, 2(2):41-51
    [34]王素凤,秦皇岛近海养殖区域夜光藻种群动态与环境温度的关系,中国环境管理干部学院学报, 2003, 13(3):52-54
    [35]梁松,钱宏林,珠江口及其临近海域赤潮的研究,南海资源与环境研究文集,广州:中山大学出版, 1999, 1-7
    [36] Chen S., Billings S.A., & Luo W., Orthogonal least squares methods and their applications to non-linear system identification. International Journal of Control, 1989, 50, 1873-1896.
    [37] Chng E.S., Chen S., Mulgrew B, Gradient radial basis function networks for nonlinear and nonstationary time series prediction. IEEE Transactions on Neural Networks, 1996, 7(1), 190-194.
    [38] Haykin S, Neural networks: a comprehensive foundation. 1999, Prentice-Hall, Englewood Cliffs, New Jersey
    [39] Fi John Chang, Yen Ming Chiang, Li Chiu Chang. Multi-step-ahead neural networks for flood forecasting. Hydrological Sciences, 2007, 52(1),114-130
    [40] Lisi, F., Nicolis, O., & Sandri, M. Combining singular-spectrum analysis and neural networks for time series forecasting. Neural Processing Letters, 1995, 2(4), 6-10.
    [41] Kanjilal, P.P., Palit, Sarbani. Modeling and prediction of time series usingsingular value decomposition and neural networks, Computers and Electrical Engineering, 1995, 21(5), 299-309.
    [42] Gholipour, A., Lucas, C. etc. Solar activity forecast: Spectral analysis and neurofuzzy prediction, Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67 (6), 595-603.
    [43]李冬梅,王正欧,基于RBF网络的混沌时间序列的建模与多步预测,系统工程与电子技术, 2002, 24(6), 81-83
    [44] Maier, H.R., Dandy, G.C., Burch, M.D., Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecological Modelling, 1998, 105, 257-272.
    [45] Lee, J.H.W., Huang, Y., Dickman, M., Jayawardena, A.W. Neural Network Modelling of Coastal Algal Blooms. Ecological Modelling, 2003, 159, 179–201.
    [46] Chen, Q., Mynett, A.E., Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake. Ecological Modelling, 2003, 162, 55-67.
    [47] Scardi, M., Harding, L.W., Developing an empirical model of phytoplankton primary production: a neural network case study. Ecological Modelling, 1999, 120, 213-223.
    [48] Nitin .M, Kwok W .C., Machine-learning paradigms for selecting ecologically significant input variables, Engineering Applications of Artificial Intelligence, 2007, 20, 735-744
    [49] Q. Song, B.S. Chissom, Fuzzy time series and its models, Fuzzy Sets Syst, 1993, 54, 269-277.
    [50] Q. Song, B.S. Chissom, Forecasting enrollments with fuzzy time series, Part I, Fuzzy Sets Syst. 1993, 54, 1-9.
    [51] Q. Song, B.S. Chissom, Forecasting enrollments with fuzzy time series, Part II, Fuzzy Sets Syst, 1994, 64, 1-8.
    [52] S.-M. Chen, J.R. Hwang, Temperature prediction using fuzzy time series, IEEE Trans. System Man.Cybern. Part B, 2000, 30(2), 263-275.
    [53] J. R. Hwang, S. M. Chen, and C. H. Lee, Handling forecasting problems using fuzzy time series, Fuzzy Sets Syst., 1998, 100(2), 217-228.
    [54] A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, 1967, 325-339.
    [55] P. Smets, R. Kennes, The transferable belief model, Artificial Intelligence, 1994, 66, 191-243.
    [56] T. Denoeux, Modeling vague beliefs using fuzzy-valued belief structures, Fuzzy Sets and Systems, 2000, 116 (2), 167-199.
    [57] Ph. Smets, The degree of belief in a fuzzy event, Information Sciences, 1981, 25, 1-19.
    [58] R.R. Yager, Generalized probabilities of fuzzy events from fuzzy belief structures, Information Sciences, 1982, 28, 45-62.
    [59] J. Yen, Generalizing the Dempster– Shafer theory to fuzzy sets, IEEE Transactions on Systems, Man and Cybernetics, 1990, 20 (3), 559-569.
    [60] L.A. Zadeh, Fuzzy sets and information granularity, in: R.K. Ragade, M.M. Gupta, R.R. Yager (Eds.), Advances in Fuzzy Sets Theory and Applications, North-Holland Publishing Co., 1979, 3-18.
    [61] R.R. Yager, On the normalization of fuzzy belief structure, International Journal of Approximate Reasoning, 1996, 14, 127-153.
    [62] T. Denoeux, Nonparametric regression analysis of uncertain and imprecise datausing belief Functions, International Journal of Approximate Reasoning, 2004, 35, 1-28
    [63] Yager R R. On the Dempster-Shafer framework and new combination rules. Information Science, 1989,41(2):93-137
    [64] D.Dubois, H.Prade. Representation and combination of uncertainty with belief functions and possibility measures, Computational Intelligence, 1998(4), 244-264.
    [65] P.Smets. The combination of evidence in the transfer belief model. IEEE Transaction on Pattern and Machine Intelligence. 1990, 5, 447-458
    [66] P.Smets, R.Kennes, The transfer belief model, Artificial Intelligence, 1994, 66, 191-234.
    [67] Lefevre, E.,Colot, O.,Vannoorenberghe,P. Belief function combination and conflict management, Information Fusion, 2002(3), 149-162
    [68]张山鹰,潘泉,张洪才,一种新的证据推理组合规则,控制与决策, 2000, 15, 540-544.
    [69]孙全,叶秀清,顾伟康,一种新的基于证据理论的合成公式,电子学报, 2000, 28(8), 117-119.
    [70]潘泉,张山鹰,程咏梅等,证据理论鲁棒性研究,自动化学报, 2001, 6, 798-805.
    [71] Haenni, Rolf., Are alternatives to Dempster's rule of combination real alternatives?: Comments on“About the belief function combination and the conflict management problem”––Lefevre et al. Information Fusion, 2002(3), 237-239.
    [72] MURPHY.C,K.,‘Combining belief functions when evidence conflicts’, Decision support systems., 2000, 29, pp. 1-9.
    [73] Jeffrey, S.W., G.F. Humphrey, 1975: New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen, 167, 191-194.
    [74] Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland, 1965: Fluorometric determination of chlorophyll. J. du Cons. Intl. Pour l'Expl. de la Mer, 30, 3-15.
    [75] T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(5), 804-813.
    [76] T. Denoeux, L.M. Zouhal, Handling possibilistic labels in pattern classification usingevidential reasoning, Fuzzy Sets and Systems, 2001, 122, 47-62.
    [77] E. Mandler, J. Schurmann, Combining the classification results of independent classifiers based on the dempster–shafer theory of evidence, In E. Gelsema, L. Kanal, Pattern recognition and artificial intelligence, North-Holland, 1988, 381–393.
    [78] P. Valin, F. Rheaume, C. Tremblay, et al., Comparative implementation of two fusion schemes for multiple complementary FLIR imagery classifiers, Information Fusion, 2006, 7(2), 197-206.
    [79] F. Rheaumea, A.-L. Jousselme, D. Greniera, et al., New initial basic probability assignments for multiple classiers, In Proceedings of SPIE on Signal Processing, Sensor Fusion, and Target Recognition XI, 2002, 319-328.
    [80] A.O. Boudraa, A. Bentabet, F. Salzenstein, et al., Dempster-Shafer's Basic Probability Assignment Based on Fuzzy Membership Functions, Electronic Letters on Computer Vision and Image Analysis, 2004, 4(1), 1-9.
    [81] M. Rombaut, Y.M. Zhu, Study of Dempster-Shafer theory for imagesegmentation applications, Image and Vision Computing, 2002, 20(1), 15-23.
    [82] Guo Huawei, Shi Wenkang, Deng Yong. Evaluating sensor reliability in classification problems based on evidence theory. IEEE Transaction on System, Man and Cybernetics, B, 2006, 36(5): 970-981.
    [83]许树柏,层次分析原理,天津,天津大学出版社, 1998.
    [84] A.L. Jousselme, D. Grenier,é. Bossé, A new distance between two bodies of evidence,Information Fusion, 2001, 2, 91-101.
    [85]何兵,郝爱民,赵沁平,一种基于不确定信息的决策方法,计算机学报, 2004, 27(2),281-285.
    [86] D. Malerba, F. Esposito, M. Monopoli, Comparing dissimilarity measures for probabilistic symbolic objects, In Data Mining III, Series Management Information Systems, Southampton, UK, WIT Press, 2002, 31-40.
    [87] A. Ayoun, P. Smets, Data association in multi-target detection using the transferable belief model, International Journal of Intelligent System, 2001, 16, 1167-1182.
    [88] B. Ristic, P. Smets, The TBM global distance measure for the association of uncertain combat ID declarations, Information Fusion, 2006, 1-9.
    [89] L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 1971, 3, 177-200.
    [90] R.R. Yager, On considerations of credibility of evidence, International Journal of Approximate Reasoning, 1992, 7, 45-72.
    [91]黄长江,齐雨藻,杞桑,大鹏湾夜光藻种群的季节变化和特征分布,海洋与湖沼, 1997, 28(3), 245-255
    [92]黄伟建齐雨藻,大鹏湾海水理化因子对夜光藻生长影响的因子分析,海洋通报, 1993, 12(2) , 17-22.
    [93]刘玉,深圳大棚澳海湾浮游藻类生物量及与环境因子研究,海洋环境科学, 1993, 12(3), 45-52.
    [94]王年斌,大连湾丹麦细柱藻赤潮的主成分分析,水产科学, 2004, 23(7), 9-11.
    [95] Park, Y.-S., Chon, T.-S., Kwak, I.-S., et al. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Science of the Total Environment, 2004, 327 (3) :105-122.
    [96] Oh, H.-M., Ahn, C.-Y., Lee, J.-W., et al. Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks. Science of the Total Environment, 2007, 203 (2) :109-118.
    [97] Kohonen T. Self-organizing maps, 3rd ed. Berlin: Springer, 2001.
    [98]安达六郎,赤潮生物と赤潮实态,水产土木, 1973, 9 (1), 31-36。
    [99] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed.,Wiley, New York, 2001.
    [100] S. Grossberg, Adaptive pattern recognition and universal recoding. II. Feedback, expectation, olfaction, and illusions, Biological Cybernetics, 1976, 23, 187- 202.
    [101] G. A. Carpenter and S. Grossberg, ART 2: Stable self-organization of pattern recognition codes for analogue input patterns, Appl. Opt., vol. 26, pp. 4919-4930, 1987.
    [102] G.A.Carpenter, S.Crossberg, J.H.Reynolds, ARTMAP: Supervised real-time learning and classification of nonstationary data by a self- organizing neural network, Neural Networks, 1991, 4, 565-588.
    [103] G.A.Carpenter, S.Crossberg, D.B.Rosen, Fuzzy ART: Fast stable learning andcategorization of analog patterns by an adaptive resonance system. Neural Networks, 1991, 4, 759-771.
    [104] G.A.Carpenter, S.Crossberg, J.H.Reynolds, D.B.Rosen, Fuzzy ARTMAP: a neural networks architecture for incremental supervised learning of analog multidimentional maps, IEEE Transactions on Neural Networks, 1992, 3, 698-713.
    [105] G. A. Carpenter, S. Grossberg, A massively parallel architecture for a self- organizing neural pattern recognition machine, Computer Vision, Graphics, and Image Processing, 1987, 37, 54- 115.
    [106] K. J. Schmucher, Fuzzy sets, Natural Language Computation, and Risk Analysis. Rockville, MD: Computer Science, 1984.
    [107] Chen.S.H., Operation on fuzzy number with function principle, Information Sciences, Volume 108 , 1998, 149-155
    [108] Hsieh.C.H Chen.S.H. A Model and algorithm of fuzzy product positioning, Information sciences, Volume 121 , 1999, 61-82
    [109] Boozbeh K, Leland S. R. Construction risk assessment by linguistics. IEEE Transaction on Engineering Management, 1989, 36(2): 126-131
    [110] W. R. Zhang. Knowledge representation using linguistic fuzzy relations. Ph. D. dissertation, Univ. South Carolina, Columbia, SC, 1986.
    [111] Chen.S.J, Chen.S.M. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE Transaction on Fuzzy Systems. 2003, 11, 45-56
    [112] Nurmi, H., 1981, Approaches to collective decisions making with fuzzy preference relations. Fuzzy Sets and Systems, 6, 249-259.
    [113] Tanino, T., 1984, Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems, 12, 117-131.
    [114] Fedrizzi, M., and Kacprzyk, J., Nonconventional Preference Relations in Decision Making Berlin, Springer, 1988.
    [115] A. Ishikawa, M. Amagasa, T. Shiga, G. Tomizawa, R.Tatsuta and H. Mieno, The max-min Delphi method and fuzzy Delphi method via fuzzy integration, Fuzzy Sets and Systems, 1993, 55, 241-253.
    [116] R.N. Xu and X.Y. Zhai, Extensions of the analytic hierarchy process in fuzzy environment, Fuzzy Sets and Systems, 1992, 52, 251-257.
    [117] Hsu, H. M., and Chen, C. T., 1996, Aggregation of fuzzy opinions under group decision making. Fuzzy Sets and Systems, 79, 279-285.
    [118] A. Kauffman and M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand Reinhold, New York, 1985.
    [119] G. Bortolan and R. Degani, A review of some methods for ranking fuzzy numbers, Fuzzy Sets and Systems, 1985, 15, 1-19.
    [120]. S. J. Chen and C. L. Hwang, Fuzzy Multiple Attribute Decision Making, Springer-Verlag, Berlin, 1992
    [121] E.S.Lee and R.J.Li, Comparision of fuzzy numbers based on the probability measure of fuzzy events, Computer and Methematics with Applications, 1988, 15, 887-896.
    [122] C.H.Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and Systems, 95, 307-317, 1998
    [123] T.C.Chu and C.T.tsaoi, Ranking fuzzy numbers with an area between the centroid point and original point, Computer and Mathematics with Applications, 2002, 43, 111-117
    [124] S. M. Chen, Aggregating fuzzy opinions in the group decision-makingenvironment, Cybernetics and Systems, 1998, 27(4), 449-472.
    [125] Lee.H.S. Optimal consensus of fuzzy opinions under group decision making environment. Fuzzy sets and Systems 2002, 132, 303-315
    [126] Chen.S.J, Chen.S.M. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE Transaction on Fuzzy Systems. 2003, 11, 45-56
    [127] Deng Yong, Shi Wenkang, Du Feng, et al, A new similarity measure of generalized fuzzy numbers and its application to pattern recognition, Pattern Recognition Letters, 2004, 25, 875-883
    [128] Sun Dong, Shi Wenkang, A new similarity measure of generalized fuzzy numbers and its application to data fusion, Dynamics of continuous, discrete & impulsive systems. Series B, Applications & algorithms, 2006, 13, 196-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700