铬、钼、钨氧化物和含氧酸盐微/纳米材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为材料科学发展的先导,纳米材料的设计合成,是材料得到进一步研究并推广应用的基础。如何探索发展纳米材料设计与合成的新途径、新方法,始终是纳米材料研究领域中的一个重要课题。目前合成纳米材料的方法虽然很多,但获得尺寸可控、粒度均匀的纳米材料仍然存在一定的困难,因此探索一种设计简单、操作方便、成本低、产率高的方法,来实现对纳米材料的尺寸大小、粒径分布以及晶体结构和形貌的控制仍然是化学家和材料学家关心的课题之一。
     本论文以含铬族元素的氧化物、含氧酸盐为研究对象,探索前驱体煅烧法、双表面活性剂微乳/反胶束法、软模板法、微乳液法等方法在制备材料、控制材料的结构、形貌和尺寸方面的作用,期望得到形貌可控、性能优良的微/纳米材料。论文的主要工作总结如下:
     1、采用前躯体煅烧法制备无机纳米材料的合成技术,利用有机碱的缓慢水解,用不同的铬源,在水和乙醇或者其他混合溶剂中进行水热反应,首先制得前躯体Cr(OH)_3,然后通过煅烧得到Cr_2O_3纳米粒子。使用不同的铬源得到的前躯体大部分是球形形貌。改变溶剂成分,对前躯体的形貌没有明显的影响。影响前躯体和最终产物尺寸大小的主要因素是所使用的有机碱(沉淀剂)的种类。
     2、选择性地合成了两种铬酸盐。(a)通过调节双表面活性剂反胶束溶液的pH值,并以水热法辅助制得了Pb_2CrO_5纳米棒。该反胶束溶液由阳离子表面活性剂十六烷基三甲基溴化铵CTAB和阴离子表面活性剂十二烷基磺酸钠SDS组成。发现表面活性剂的种类、混合胶束中阳离子和阴离子表面活性剂的摩尔比、反应时间和温度,在单晶Pb_2CrO_5的形成和生长过程中起到重要作用。这种双表面活性剂形成的反胶束体系可以作为一种很有前途的溶液中合成一维无机纳米结构的介质。(b)尝试了一种便捷有效的新的胶束体系,这种PVP/H_2O/环己醇的新胶束体系在低温下合成正交相的BaCrO_4微纳材料非常实用。与传统的以烷烃作为油相的微乳液相比,这种新的胶束体系表现出一定的特殊性。环己醇形成油相,提供了一种高度均一的环境,得到的产品大小均一,分布均匀,并且不需要极端的温度和压力,不需要其他的特殊仪器设备,易于操作。
     3、通过两种不同的方法合成了BaMoO_4微/纳米材料。(a)通过调节双表面活性剂组成的反胶束的pH值并辅助以水热法制得了具有三维双锥构型的单晶BaMoO_4微晶,该反胶束由阳离子表面活性剂十六烷基三甲基溴化铵CTAB和阴离子表面活性剂十二烷基磺酸钠SDS组成。实验中发现,外部条件,例如两种表面活性剂的摩尔比、反应时间和温度对产物的结晶和形貌演变进程没有什么重要影响。晶体的内部的性质才是决定这种特殊形貌的真正决定因素。双表面活性剂的共存以及定向聚集和奥斯特瓦尔德熟化的协同作用对晶体的形成起着重要的作用。混合的阳离子-阴离子双表面活性剂对溶液中BaMoO_4微晶的生长施加了一种微妙的控制,比在相同条件下单独添加一种表面活性剂表现出强大的优势。这种合成策略为在溶液中制备多级的三维的纳米或微米结构提供了一种新途径。(b)在温和条件下,使用柠檬酸盐作为一种简单添加剂,成功制得了高质量的由纳米颗粒、纳米纤维自组装形成的哑铃状、纺锤状和麦穗状单晶BaMoO_4。随着一些实验参数的调节,产品的形貌发生了一系列的变化。这种合成策略或许能够为在溶液中温和条件下合成多级组装纳米或微米结构提供一种新的途径。此外,BaMoO_4产品的光学性质也通过光致发光波谱进行了表征。这些简便易得的方法可以推广至其他的无机体系。
     4、丰富了添加剂辅助的化学液相合成技术。分别采用柠檬酸钠和十六烷基三甲基溴化铵作为模板,合成了SrWO_4微/纳米材料。(a)当反应体系中加入柠檬酸钠,SrWO_4纳米晶随着反应时间和反应条件的变化,所表现出的一个新奇的从零维微球到一维棒状或者带状,再到零维梭状颗粒的形貌变化。与传统的从零维到一维再到三维的生长过程相比,在这种情况下,零维的微球易得,但是这种形貌与最终的产品形貌不同。详细的实验结果表明,柠檬酸盐的添加和水热反应的条件和反应时间控制着SrWO_4纳米晶的形貌演变过程。(b)我们用十六烷基三甲基溴化铵CTAB作为模板合成了SrWO_4微球,并通过对比实验推测了其生长过程。此外,SrWO_4产品的光学性质也已经通过光致发光光谱进行了表征。上述实验方法可以推广至制备其他的材料,有目的地合成特殊的零维或一维结构。
The synthesis and design for the nanomaterials, as forerunner of the material science, are the base of the application and the future development of nanoscience and nanotechnology. Up to now, it is still important task in the field of materials that how to develop a new method for preparing nanomaterials. Although there are many methods reported for preparing nanomaterials, it is still difficult to obtain materials with controllable morphologies and sizes. Therefore, it is attracting a great deal of attention of the chemists and materials researchers to explore a new method for obtaining low-cost mild reaction.
     In this dissertation, we focused on the synthesis and characterization of micro/nanomaterials of oxide and oxysalt of chromium, molybdenum and tungsten. We used precursor-calcined technique, catanionic reverse micelles method, soft-model technique and microemulsion method to get structure, morphology and size-controlled materials. Main points are summarized as follows:
     1. Precursor-calcined technique was developed to synthesize inorganic nanoscale materials. Organic alkali hydrolyzed slowly in H_2O and C_2H_5OH or the other mixed solvent. We got the precursor Cr(OH)_3 from the reaction of chromium salt and organic alkali in the above system. Then the precursor was calcined in the muffle at 600℃for 3 hours, and the final products Cr_2O_3 was obtained. Using different chromium salt, we got sphere-like precursor. The morphology of the precursor was almost the same in different solvent system. The kinds of organic alkali had the most important influence on the morphology and size of the precursor and product.
     2. We selectively synthesized two kinds of chromate. (a) Single-crystalline Pb_2CrO_5 with nanorod-shape has been synthesized by adjusting the pH value of the catanionic reverse micelles formed by a cationic surfactant CTAB and an anionic surfactant SDS, followed by a hydrothermal process. Discussion and analysis indicate that the kinds of the surfactants, the molar ratio (r) between the mixed cationic and anionic surfactants, reaction time and temperature play important roles in the crystallization and morphologies of Pb_2CrO_5 nanocrystals. Such catanionic reverse micelles systems may present promising media for the solution synthesis of one-dimensional inorganic nanostructures. (b) On the basis of relative references, we tried a facile, effective and new micelle system to synthesize micro/nanomaterials. In the new micelle system of PVP/H_2O/ cyclohexanol, BaCrO_4 micro/nanomaterials were synthesized practically in the low temperature. In comparison with the traditional microemulsion in which alkyl hydrocarbon was the oil phase, the new micelle system exhibited some particularity. Cyclohexanol as the oil phase can afford a stable and homogeneous reaction environments. And we could get products with uniform size and well-proportioned distribution. There was no need of extreme temperature and press in the system, and the equipment was simple and easy-controlled.
     3. We synthesized BaMoO_4 micro/nanomaterials through two kinds of different method, (a) Single-crystalline BaMoO_4 microcrystals with 3D bipyramidal-like architectures were synthesised by adjusting the pH value of the catanionic reverse micelles formed by a cationic surfactant CTAB (hexadecyltrimethylammonium bromide) and an anionic surfactant SDS (sodium dodecyl sulfonate), followed by a hydrothermal process. It was found that the external conditions such as the molar ratio of the two kinds of surfactants, reaction time, and temperature had no crucial influence on the crystallisation and the shape evolution of the products. The internal properties of the crystals were the real reason for the typical morphology. The coexistence of the dual surfactants and the cooperation of oriented attachment and Ostwald ripening played important roles in the formation of the crystals. (b) Large-scale high-quality BaMoO_4 nanocrystals have been synthesized in aqueous solutions under mild conditions with citrate as a simple additive. The crystals have dumbbell-like, spindle-like and wheatear-like morphologies assembled from nanoparticles, nanofibers. The results showed experimental parameters had great influences on the shape evolution of products. The adjustment of these parameters such as room temperature stirring time, reaction temperature and reaction time of hydrothermal reaction, can lead to obvious morphology changes of products, and the growth mechanism has been proposed. In addition, the optical properties of the BaMoO_4 products had been examined by PL spectrum. Furthermore, the feasibility and ease of this synthesis route are worth exploring for other inorganic systems.
     4. An additive-assisted solution-phase approach was developed to prepare SrWO_4 micro/nanomaterials. (a) We report a novel shape evolution of SrWO_4 crystals from 0-D microspheres to 1-D rods or belts and to 0-D shuttle-like particles with prolonged reactiontime and special reaction conditions. In contrast to the traditional crystal growth from 0-D to 1-D to 3-D, in this case, 0-D microparticles were easily obtained within a short reaction time, but it was different with the final products. Detailed experimental results revealed that the addition of the citrate and the hydrothermal reaction conditions and reaction time controlled the shape evolution of the SrWO_4 crystals. (b) We used CTAB as a model to synthesize SrWO_4 microspheres in the solution. In addition, the optical properties of the SrWO_4 products have been examined by PL spectrum. This method can be extended to other materials to purposefully prepare 0-D and 1-D structures.
引文
[1] 张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001.
    [2] 王世敏,许祖勋,傅晶,纳米材料制备技术[M],化学工业出版社,2002
    [3] R.A. Webb, Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings [J], Phys. Rev. Lett., 1985, 54, 2696-2699.
    [4] H.W. Kroto, C60: Buckminsterfullerene [J], Nature, 1985,318, 162-163.
    [5] X. Zhu, R. Birringer, U. Herr, H. Gleiter, X-ray diffraction studies of the structure of nanometer-sized crystalline materials [J], Phys. Rev. B., 1987, 35, 9085-9090.
    [6] G.J. Thomas, R.W. Siegel, J.A. Eastman, Grain boundaries in nanophase microscopy and image simulation [J], Scripta Metall. Et Mater., 1990,24,201-206.
    [7] J.A. Lupo, M.J. Sabochick, Structure and elastic properties of nanophase silicon [J], Nanostructural Materials, 1992, 1,131-136.
    [8] L. Zhang, C. Mou, T. Wang, S. Cai, J. Hu, Structure and bond properties of compacted and heat-treated silicon nitride partides [J], Phys. Stat. Sol. (A), 1993, 136,291-300.
    [9] L. E. Brus, Electronic wave functions in semiconductor clusters: experiment and theory [J], J. Phys. Chem, 1986, 90, 2555-2560.
    [10] P. E. Cavicchi, R. H. Silsbee, Coulomb Suppression of Tunneling Rate from Small Metal Particles [J], Phys. Rev. Let., 1984, 52, 1453-1456.
    [11] Q. Li, G. Zeng, S. Xi, 纳米粒子 [J], Chinese Chemical Bulletin, 1985, 6, 129-134.
    [12] D. L. Feldheim, C. D. Keating, Self-assembly of single electron transistors and related devices [J], Chem. Soc. Rev., 1998, 27, 1-12.
    [13] S. C. Tsang, Y. K. Chen, P. J. Harris, A simple chemical method of opening and filling carbon nanotubes [J], Nature, 1994, 372,159-162.
    [14] A. P. Davis, Nanotechnology: Synthetic molecular motors [J], Nature, 1999, 401, 120-121.
    [15] Y. Kanernitsu, On the origin of visible photoluminescence in nanometer-size Ge crystallites [J], Appl. Phys. Lett., 1992, 18, 2187-2189.
    [16] R.N. Bhargagra, D. Gallagher, X. Hong, A. Nurmikko, Optical properties of manganese-doped nanocrystals of ZnS [J], Phys. Rev. Lett., 1994, 72,416-419.
    [17] M. Anpo, T. Shima, S. Kodama, Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates [J], J. Phys. Chem., 1987,91,4305-4310.
    [18] J.J. Pietron, R.M. Stroud, DR. Rolison, Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures [J], Nano. Lett., 2002, 2, 545-549.
    [19] J.Q. Xiao, J.S. Jiang, C.L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems [J], Phys. Rev. Lett., 1992, 68, 3749-3752.
    [20] C. Macilwain, Nanotech thinks big [J], Nature, 2001, 405, 730-732.
    [21] 洪广言,李红云,热分解法制备稀土氧化物超微粉末[J],无机化学学报,1991,7, 241-244.
    
    [22] C.C. Kock, The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review [J], Nanostructured Mater., 1993, 2, 109-129.
    
    [23] J. Kuyama, H. Inui, S. Imaoka, Effects of Crystallinity of Hole Transport Layers on Organic Electroluminescent Device Performance [J], Jpn. J. Appl. Phys., 1991, 30, L864-L866.
    
    [24] G.T. Fei, L. Liu, X.Z. Ding, Preparation of nanocrystalline intermetallic compounds WSi_2 and MoSi_2 by mechanical alloying [J], J. Alloys and Compounds, 1995, 229, 280-282.
    
    [25] M.S. El-Eskandarany, Morphological and structural evolutions of nonequilibrium titanium-nitride alloy powders produced by reactive ball milling [J], J. Mater. Res., 1992, 7, 888-893.
    
    [26] M.S. El-Eskandarany, K. Aoki, K. Suzuki, Formation of amorphous aluminum tantalum nitride powders by mechanical alloying [J], Appl. Phys. Lett., 1992, 60, 1562-1563.
    
    [27] M.S. El-Eskandarany, K. Sumiyama, K. Aoki, T. Masumoto, K. Suzuki, Mechanism of solid-gas reaction for formation of metastable niobium-nitride alloy powders by reactive ball milling [J], J. Mater. Res., 1994, 9, 2891-2898.
    
    [28] H. Yang, Y.T. Qian, M.W. Zhang, Preparation of nanocrystalline silver powders by -ray radiation combined with hydrothermal treatment [J], J. Mater. Sci. Lett., 1993, 17, 314-318.
    
    [29] MR. De Guire et al., Coprecipitation synthesis of doped lanthanum chromite [J], J. Mater. Res., 1993, 8, 2327-2335.
    
    [30] K.E. Nelson, R.L.Cook, Effect of contamination introduced during wet milling on the electrical properties of barium titanate [J], Am. Ceram. Soc. Bull., 1959, 38, 499-500.
    
    [31] XT. Dong, G.Y. Hong, Synthesis and Properties of Cerium Oxide Nanometer Powers by Pyrolysis [J], J. Mater. Sci. Technol., 1997, 13, 113-116.
    
    [32] G. Pacheco-Malagon, TiO_2-Al_2O_3 Nanoeomposites [J], J. Mater. Res., 1995, 10, 1264-1269.
    [33] X.Z. Ding, Preparation of Nanocrystalline Titania Powders via a Sol-Gel Process [J], J. Mater. Sci. Lett., 1995, 14, 21-22.
    [34] J.Y. Shen, Z.Y. Li, Q.J. Yan, Y. Chen, Reactions of bivalent-metal ions with borohydride in aqueous-solution for the preparation of ultrafine amorphous alloy particles [J], J. Phys. Chem., 1993, 97, 8504-8511.
    [35] M. Fievet, Controlled Nucleation and Growth of Micrometre-size Copper Particles Prepared by the Polyol Process [J], J. Mater. Chem., 1993, 3,627-632.
    [36] N.A. Kotov, I. Dekany, J.H. Fendler, Layer-by-layer of electrolyte-semiconductor nanoparticle composite films [J], J. Phys. Chem., 1995, 99,13065-13609.
    [37] J. Nagy, Multinuclear NMR characterization of microemulsions: preparation of metal boride particles [J], Colloid and Surfaces, 1989,35,201-220.
    [38] K. Osseo-Asare, F. Arriageala, Preparation of SiO_2 nanoparticles in a non-ionic reverse micellar system [J], J. Colloids and Surfaces, 1990, 50, 321-339.
    [39] P. Deshev, Preparation of spinel lithium ferrite by thermal treatment of spray-dried formates [J], Mater. Res. Bull., 1978, 13, 1167-1174.
    [40] J.A. Switzer, M.L. Shane, R. Phillips, Electrodeposited Ceramic Superlattices [J], Science, 1990, 247, 444-446.
    [41] D. Hayers, O.L. Micic, Radiolytic production and properties of ultrasmall cadmium sulfide particles [J], J. Phys. Chem., 1989, 93,4603-4608.
    [42] Y. Zhu, Y. Qian, Preparation of nanocrystalline silver powders by γ-ray radiation combined with hydrothermal treatment [J], Mater. Lett., 1993, 17, 314-318.
    [43] Y. Zhu, Y. Qian, γ-irradiation-hydrothermal synthesis and characterization of nanocrystalline copper powders [J], Mater. Sci. Eng. B, 1994, 23,116-119.
    [44] K.S. Suslick, S.B. Choe, A.A. Cichowals et al., Phys. Today, 1991, 44, 17.
    [45] K.S. Suslick, SB. Choe, A.A. Cichowals, Somochemical synthesis of amorphous iron [J], Nature, 1991, 353,414-420.
    [46] 林金谷,邹炳锁,王月菊,用超声法产生超细非晶态铁微粒[J],科学通报,1995,40,1370-1372.
    [47] Z.L. Cui, L. F. Dong, Z. K. Zhang, Oxidation behavior of nano-Fe prepared by hydrogen ARC plasma method [J], Nanostructured Mater., 1995, 5, 829-833.
    [48]G.P. Vlssokov, Plasmachemi cal technology for high-dispersion products [J], J. Mater. Sci., 1988,23, 2415-2418.
    [49]李春忠,胡黎明,陈敏恒,化学气相淀积技术合成AlN超细粉末[J],硅酸盐学报,1993,21,93-99.
    [50]朱宏杰,化学气相淀积制备Si_3N_4超细粉末[J],无机材料学报,1995,10,43-48.
    [51]梁博,化学气相沉积法制备SiC纳米粉[J],无机材料学报,1996,11,441-447.
    [52]王幼文,热化学气相合成法制备的超细碳化硅粉末的显微结构[J],无机材料学报,1992,7,151-155.
    [53]隋同波,激光法合成SiC超细粉末物理化学过程的研究[J],硅酸盐学报,1993,21,33-37.
    [54]J.S. Haggery, W.R. Cannon, Laser Induced Chemical Process, J.J. Steinfeld Ed., New York, Plenum, 1981.
    [55]蔺恩惠,李新勇,激光气相合成氧化铁超细粉[J],无机材料学报,1996,11,157-161.
    [56]高晓云,陈进,王冕,激光气相合成Fe_xSi_y超微粉[J],无机材料学报,1992,7,429-434.
    [57]C.K. White, Experimental Techniques in Low-temperature Physics, Clarendon Press, Oxford, 1979.
    [58]Y.T. Qian, Q.W. Chen, Z.Y. Chen, Preparation of Ultrafine Powders of TiO, by Hydrothermal H_2O_2. Oxidation starting from Metallic Ti [J], J. Mater. Chem., 1993, 3, 203-205.
    [59]Y.T. Qian, Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite [J], Mater. Res. Bull., 1995, 30, 601-605.
    [60]S.H. Yu, L. Shu, Y.T. Qian, Y. Xie, J. Yang, Hydrothermal Preparation and Characterization of Nanocrystalline Powder of β-Indium Sulfide [J], Mater. Res. Bull., 1998,33,717-721.
    [61]YD. Li, X.F. Duan, Y.T. Qian, Solvothermal Co-reduction Route to the Nanocrystalline Ⅲ-Ⅴ Semiconductor InAs [J], J. Am. Chem. Soc., 1997,119, 7869-7870.
    [62] Y.D. Li, H.W. Liao, Y.T. Qian, A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe [J], Inorg. Chem., 1998, 37, 2844-2845.
    [63] Y.D. Li, H.W. Liao, Y.T. Qian, Nonaqueous Synthesis of CdS Nanorod Semiconductor [J], Chem. Mater., 1998,10,2301-2303.
    [64] T.C. Waddington, Non-Aqueous Solvent Systems, Academic Press, London, 1965.
    [65] DM. Bibby, M.P. Dale, Synthesis of silica-sodalite from non-aqueous system [J], Nature, 1985,317, 157-158.
    [66] M. Inoue, H. Tanino, Y. Kondo, T. Inui, Formation of Microcrystalline a' -Alumina by Glycothermal Treatment of Gibbsite [J], J. Am. Ceram. Soc., 1989, 72, 352-353.
    [67] Q. Huo, R. Xu, Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20 [J], J. Chem. Soc., Chem. Commun., 1992, 875-876.
    [68] Q. Gao, R. Xu et al., J. Chem. Soc., Chem. Commun., 1994,1364.
    [69] D. Thierry, D. Gerard Preparation of Fe_3O_4 fine particles through a solvothermal process [J], Mater. Lett., 1994, 19, 38-47.
    [70] 谢毅,王文中,钱逸泰等,非水体系水热法制备纳米磷化铟 科学通报,1996,41,998-1000.
    [71] Y. Xie, Y.T. Qian, A Benzene-Thermal Synthetic Route to Nanocrystalline GaN [J], Science, 1996, 272, 1926-1927.
    [72] YD. Li, Y.T. Qian , Solvothermal Co-reduction Route to the Nanocrystalline Ⅲ-Ⅴ Semiconductor InAs [J], J. Am. Chem. Soc., 1997,119, 7869-7870.
    [73] YD. Li, Y.T. Qian, A Reduction Pyrolysis-Catalysis Synthesis of Diamond [J], Science, 1998, 281, 246-247.
    [74] 俞书宏,中国科学技术大学博士学位论文,1998.
    [75] J. Li, Z. Chen, R.J. Wang, D.M. Proserpio, Low temperature route towards new materials: solvotbennal synthesis of metal chalcogenides in ethylenediamine [J], Coord. Chem. Rev., 1999,190/192, 707-735.
    [76] E.W. Abel, D.A. Armitag, R.P. Bush, The formation of phosphorus-sulphur compounds from phosphorus halides and alkylthiosilanes and silthianes [J], J. Chem. Soc., 1964, 5584-5587.
    [77] A. Bensalem, D. M. Schleich, Novel low temperature synthesis of titanium sulfide [J], Mat. Res. Bull., 1988, 23, 857-868.
    
    [78] A. Bensalem, D. M. Schleich, Low temperature preparation of amorphous niobium sulfide [J], Mat. Res. Bull., 1990, 25, 349-356.
    
    [79] G. Chatzitheodorou, S. Fiechter, M. Kunst, J. Luck, H. Tributsch, Low temperature chemical preparation of semiconducting transition metal chalcogenide films for energy conversion and storage, lubrication and surface protection [J], Mater. Res. Bull., 1988, 23, 1261-1271.
    
    [80] A. K. Verma, T. B. Rauckfuss, S. R. Wilson, Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur [J], Inorg. Chem., 1995, 34, 3072-3078.
    
    [81] C. E. Johnson, D. C. Harris, C. B. Willingham, Preparation, purification, and densification of zinc sulfide powder from organometallics [J], Chem. Mater., 1990, 2, 141-149.
    
    [82] K. Osaka, T. Yamamoto, Formation of ZnS and CdS by thermolysis of homoleptic thiolato compounds [M(SMe)_2]_n(M = Zn, Cd) [J], J. Chem. Soc. Chem. Commun., 1987, 1117-1118.
    
    [83] J. W. S. Rees, G. Krauter, Preparation and characterization of several group 12 element (Zn,Cd)-bis (thiolate) complexes and evaluation of their potential as precursors for 12-16 semiconducting materials [J], J. Mater. Res., 1996,11(12), 3005-3016.
    
    [84] M. Abboudi, A. Mosset, Synthesis of d Transition Metal Sulfides from Amorphous Dithiooxamide Complexes [J], J. Solid State Chem., 1994, 109, 70-73.
    
    [85] R. D. Pike, K. Dwight, A. Wold, et al. Thin Solid State Films, 1993, 5, 26.
    
    [86] J. D. Passaretti, R. B. Kamer, R. Kershaw, A. Wold, Synthesis of poorly crystallized platinum metal dichalcogenides [J], Inorg. Chem., 1981, 20, 501-503.
    
    [87] J. D. Passaretti, K. Dwight, A. Coold, W. Croft, J. Chiamelli, Preparation and properties of poorly crystallized cobalt disulfide and ruthenium disulfide [J], Inorg. Chem., 1981,20,2631-2634.
    
    [88] 叶向阳,郭奇珍,模板合成新进展[J],化学通报,1996,2,10-15.
    
    [89] N. Herron, Y. Wang, H. Eckert, Synthesis and characterization of surface-capped, size-quantized cadmium sulfide clusters. Chemical control of cluster size [J], J. Am. Chem. Soc., 1990,112(4), 1322-1326.
    
    [90] A. Stein, G.A. Ozin, G.D. Stucky, From the molecule to an expanded I-VII semiconductor quantum superlattice: silver, sodium halo-sodalites [J], J. Am. Chem. Soc, 1990,112,904-905.
    
    [91] N.R.B. Coleman, N.O'Sullivan, K.M. Ryan, T.A. Crowley, MA. Morris, T.R. Spalding, D.C. Steytler, J.D. Holmes, Synthesis and Characterization of Dimensionally Ordered Semiconductor Nanowires within Mesoporous Silica [J], J. Am. Chem. Soc, 2001, 123, 7010-7016.
    
    [92] D. Routkevitch, T. Bigioni, M. Moskovits, Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates [J], J. Phys. Chem., 1996, 100, 14037-14047.
    
    [93] Z. Zhang, D. Gekhtman, M.S. Dresselhaus, J.Y. Ying, Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires [J], Chem. Mater., 1999,11,1659-1665.
    
    [94] A.L. Prieto, M.S. Sander, M.S. Martin-Gonzalez, R. Gronsky, T. Sands, A.M. Stacy, Electrodeposition of Ordered Bi_2Te_3 Nanowire Arrays [J], J. Am. Chem. Soc, 2001, 123, 7160-7161.
    
    [95] D. Xu, D. Chen, Y. Xu, Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates [J], Pure Appl. Chem., 2000, 72, 127-135.
    
    [96] H. Dai, E. W. Wong, Y. Z. Lu, Synthesis and characterization of carbide nanorods [J], Nature, 1995, 375, 769-772.
    
    [97] W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction [J], Science, 1997, 277, 1287-1289.
    
    [98] W. Han, P. Kohler-Redlich, F. Emst, M. Ruhle, Formation of (BN)_xC_y and BN Nanotubes Filled with Boron Carbide Nanowires [J], Chem. Mater., 1999, 11, 3620-3623.
    
    [99] C.N.R. Rao, A. Govindaraj, F.L. Deepak, Surfactantassisted synthesis of semiconductor nanotubes and nanowires [J], Appl. Phys. Lett, 2001, 78 (13), 1853-1855.
    [100] S.H.Yang, S.H. Wang, K.K. Fung, One-dimensional growth of rock-salt PbS nanocrystals mediated by surfactant/polymer templates [J], Pure Appl. Chem., 2000, 72, 119-126.
    
    [101] ME. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, H.U. Nissen, Redox-Active Nanotubes of Vanadium Oxide Angewandte Chemie International Edition [J], Angew. Chem. Int. Ed., 1998, 37, 1263-1265.
    
    [102] F. Krumeich, H.J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper, Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes [J], J. Am. Chem. Soc, 1999, 121, 8324-8331.
    
    [103] W.Z. Wang, Y.J. Zhu, G.H. Wang, One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant [J], Chem. Commun., 2001, 727-728.
    
    [104] W.Z. Wang, G.H. Wang, Y.K. Liu, C.L. Zheng, Y.J. Zhan, Synthesis and characterization of aragonite whiskers by a novel and simple route [J], J. Mater. Chem., 2001,11,1752-1754.
    
    [105] Y. Zhou, S.H. Yu, C.Y. Wang, A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites [J], Adv. Mater, 1999, 11,850-852.
    
    [106] M.S. Gudiksen, J.F. Wang, CM. Lieiber, Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires [J], J. Phys. Chem. B, 2001, 105, 4062-4064.
    
    [107] W.K. Hsu, B.H. Chang, Y.Q. Zhu, W.Q. Han, H. Terrones, M. Terrones, N. Grobert, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, An Alternative Route to Molybdenum Disulfide Nanotubes [J], J. Am. Chem. Soc., 2000, 122, 10155-10158.
    
    [108] A. Rothschild, J. Sloan, R. Tenne, Growth of WS_2 Nanotubes Phases [J], J. Am. Chem. Soc., 2000, 122, 5169-5179.
    
    [109] A. Rothschild, R. Popovitz-Biro, O. Lourie, R. Tenne, Morphology of Multiwall WS_2 Nanotubes [J], J. Phys. Chem. B, 2000, 104, 8976-8981.
    
    [110] T.J. Trentler, KM. Hickman, S.C. Goel, A.M. Viano, PC. Gibbons, WE. Buhro, An Analogy to Vapor-Liquid-Solid Growth [J], Science, 1995,270,1791-1794.
    [111] W. E. Buhro, K. M. Hickman, T. J. Trentler, Turning down the heat on semiconductor growth: solution-chemical syntheses and the solution-liquid-solid mechanism [J], Adv. Mater., 1996, 8,685-688.
    [112] 邓双,李会泉,张懿,纳米Cr_2O_3的制备、表征及催化性能[J],无机化学学报,2003,19,825-830.
    [113] 耿后安,魏锡文,纳米Cr_2O_3的制备及其化学复合镀层光催化性研究[J],腐蚀与防护,2003,24,522-524.
    [114] D.Vollath, D.V. SzabO, J.O.Willis. Magnetic properties of nanocrystalline Cr_2O_3 synthesized microwave plasma [J], Materials Letters, 1996,29,271-279.
    [115] Salah A. Makhlouf. Magnetic properties of Cr_2O_3 Nanoparticles [J], Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1530-1532.
    [116] 邓双,李会泉,张懿.纳米Cr_2O_3系列催化剂上CO_2氧化乙烷脱氢制乙烯反应[J],催化学报,2003,24,744-750.
    [117] J.L. Bobet, S. Desmoulms-Krawrec, E. Grigorova, Addition of nanosized Cr_2O_3 to magnesium for improvement of the hydrogen sorption properties [J], Journal of Alloys and Compounds [J], 2003, 351, 217-221.
    [118] A.K. Panda, B.B. Bhowmik, A.R. Das, Polymorph and phase discrimination of lead chromate pigments by a facile room temperature precipitation reaction [J], langmuir, 2001, 17,1811-1816.
    [119] J.H. liang,Y.D. Li, Synthesis and characterization of lead chromate uniform nanorods [J], J. Cryst. Growth., 2004, 261, 577-580.
    [120] X.L. Hu, Y.J. Zhu, Single-crystalline PbCrO_4 nanowires and their hydrothermal Transformation to Amorphous PbCr_3O_(10) Nanorubes [J], Chem. Lett., 2004, 33, 880-881.
    [121] W.W. Wang, Y.J. Zhu, Synthesis of PbCrO_4 and Pb_2CrO_5 Rods via Microwave Assisted Ionic Liquid Method [J], Cryst. Growth Des., 2005, 5, 505-507.
    [122] D.Chen, K.T. Tang, Z.H. Liang, Fabrication of PbCrO_4 nanostructures: from nanotubes to nanorods [J], Nanotechnology, 2005, 16,2619-2624.
    [123] J.K. Liu, Q.S. Wu, Y.P. Ding, W. Yi, Assembling synthesis of barium chromate nano-superstructures using eggshell membrane as template [J], Bull. Korean. Chem. Soc, 2004,25,1775-1778.
    
    [124] S.W. Liu, J.G. Yu, B. Cheng, Q.J. Zhang, Controlled synthesis of novel flower-shaped BaCrO_4 crystals [J], Chem. Lett., 2005, 34), 564-565.
    
    [125] Y. Yan, Q.S. Wu, L. Li, Y.P. Ding, Simultaneous synthesis of dendritic superstructural and fractal crystals of BaCrO_4 by vegetal Bi-templates [J], Cryst. Growth Des., 2006, 6, 769-773.
    
    [126] J.H. Liang, Q. Peng, YD. Li, Chromate nanorods nanobelts: general synthesis, characterization, and properties [J], Inorg.Chem., 2005,44, 9405-9415.
    
    [127] T. Qi, K. Takagi,J. Fukazawa, Scintillation study of ZnWO_4 single crystals [J], Appl. Phys. Lett. 1980, 36, 278-279.
    
    [128] P. Kozma, R. Bajgar, P. Kozma, Radiation resistivity of large tungstate crystals [J], Radiat. Phys. Chem. 2002, 65, 127-130.
    
    [129] L.G. VanUitert, S. Preziosi, Zinc Tungstates for Microwave Maser Applications [J], J. Appl. Phys. 1962, 33, 2908-2909.
    
    [130] J.G. Rushbrooke, RE. Ansorge, Optical Fibre Readout and Performance of Small Scintillating crystals for a fine-grained gamma detector [J], Nucl. Instrum. Methods Phys. Res. A, 1989, 280, 83-90.
    
    [131] H. Grassmann, H.G. Moser,E. Lorenz, Scintillation Properties of ZnWO_4 [J], J. Lumin., 1985,33,109-113.
    
    [132] K. Tanaka, T. Miyajima, N. Shirai, Q. Zhang, R. Nakata, Laser photochemical ablation of CdWO_4 studied with the time-of-flight mass spectrometric technique [J], J. Appl. Phys., 1995, 77, 6581-6587
    
    [133] W. Qu, W. Wlodarski, J.U. Meyer, Comparative study on micro morphology and humidity sensitive properties of thin-film and thick film humidity sensors based on semiconducting MnWO_4 [J], Sens. Actuators B, 2000, 64, 76-82.
    
    [134] E. Ehrenberg, H. Weitzel, C. Heid, H. Fuess, G. Wltschek, T. Kroener, J. Van Tol, M. Bonnet, Magnetic phase diagrams of MnWO_4 [J], J. Phys.: Condens. Matter, 1997, 9, 3189-3203.
    [135] A.W. Sleight, Accurate cell dimensions for ABO, molybdates and. tungstates [J], Acta Crystallogr. B, 1972, 28, 2899-2902.
    
    [136] S. Driscoll, U.S. Ozkan, Isotopic Labeling Studies on Oxidative Coupling of Methane over Alkali Promoted Molybdate Catalysts [J], Stud. Surf. Sci. Catal., 1994, 82, 367-375.
    
    [137] B.L. Chamberland, J.A. Kafalas, J.B. Goodenough, Characterization of chromium manganese oxide (MnCrO_3) and chromium(III) manganate [J], Inorg. Chem., 1977, 16, 44-46.
    [1] Tsuzuki, Synthsis of Cr_2O_3 Nanoparticals by Mechanochemical Processing [J], Acta mater, 2000, 48, 2795-2801.
    [2] C. Pommier, L. Znaidi. Synthsis of nanometric chromium(Ⅲ) Oxide Powers in Supercritical Alcohol [J], Solid State Inork.Chem.,1998, 35,405-417.
    [3] S.I. Dolgaev, N.A. kirichenko, Deposition of Nanostructured Cr_2O_3 on Amorphous Substatesunder Laser Irradiation of the Solid-Liquid Interface [J], Applied Surface Science., 1999,449-454.
    [4] M. Ocana, Nanosized Cr_2O_3 Hydrate Spherical Partical Particles Prepared by the Urea Method [J], Journal of the European Ceramic Society., 2001, 21, 931-939.
    [5] 滕飞,宁桂玲,魏国,微乳纳米反应器制备单分散性球形纳米氧化铬超细粉的研 究[J],中国粉体技术,2000,6,267-269.
    [6] M. Chaterjee, B. Siladitya, D. Ganguli, Chromia microspheres by the sol-gel technique [J], 1995, 25,261-263.
    [7] A.E. Gash, T.M. Tillotson, J.F. Poco, J.H. Satcher, Jr., L.W. Hrubesh, and R.L. Simpson, New Sol-Gel Synthetic Route to Transition and Main-Group Metal Oxide Aerogels Using Inorganic Salt Precursors [J], J. Non-Cryst. Solids 2001, 285, 22-28.
    [8] 方侃,方佑龄,透明超微粒子氧化铬的制备[J],精细化工,1993,10,32-35.
    [9] Z.Z. Pei, Y. Zhang, A novel method to prepare Cr_2O_3 nanoparticles [J], Mater.Lett., 2008, 62, 504-506.
    [10] Z.Z. Pei, H.B. Xua, Y. Zhang, Preparation of Cr_2O_3 nanoparticles via C_2H_5OH hydrothermal reduction [J], J. Alloys Compd. 2008, doi:10.1016/j.jallcom.2007.12.086.
    [11] H.T. Xu, T.J. Lou, Y.D. Li, Synthesis and characterize of trivalent chromium Cr(OH)_3 and Cr_2O_3 microspheres [J], Inorganic Chemistry Communications, 2004, 7, 666-668.
    [12] D.S. Wang, X. Liang, YD. Li, Preparation of Nearly Monodisperse Nanoscale Inorganic Pigments [J], Chem. Asian. J., 2006, 1-2, 91-94.
    [13] G. Peters, K. Jerg, B. Schramm, Characterization of chromium (Ⅲ) oxide powders prepared by laser-induced pyrolysis of chromyl chloride [J], Materials Chemistry and Physics, 1998, 55,197-201.
    [14] 张西军,袁伟,固相法制备Cr_2O_3微粒子[J],北京化工大学学报,2002,29,71-74.
    [15] 张岩,邹炳锁,李守田,肖良质,鲍新努,史苏华,三氧化铬超微粒的制备与表征[J],高等学校化学学报,1992,13,540-541.
    [16] S. Wang, K. Murata, T. Hayakawa, S. Hamakawa, K. Suzuki, Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts [J], Appl. Catal. A, 2000, 196,1-8.
    [17] S. De Rossi, M.P. Casaletto, G. Ferraris, A. Cimino, G. Minelli, Chromia/ zirconia catalysts with Cr content exceeding the monolayer [J], Appl. Catal. A, 1998, 167, 257-270.
    [18] J.M. Corke, J. Evans, J.M. Rummey, EXAFS studies of pillared clay catalysts [J], Mater. Chem. Phys, 1991,29,201-209.
    [19] A. Manceau, L.J. Charlet, X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface : I. Molecular mechanism of Cr(III) oxidation on Mn oxides [J], Colloid Interf. Sci., 1992,148,425-442.
    
    [20] B. Cho, E. Choi, S. Chung, K. Kim, T. Kang, C. Park, B. Kim, A novel Cr_2O_3 thin film on stainless steel with high sorption resistance [J], Surf. Sci., 1999, 439, L799-L802.
    
    [21] P. Berdahl, Pigments to Reflect the Infrared Radiation From Fire [J], Trans. ASME J. Heat Transf, 1995, 117, 355-358.
    
    [22] R.M. Hornreich, S. Shtrikman, Theory of gyrotropic birefringence [J], Phys. Rev., 1968, 171, 1065-1074.
    
    [23] B.B. Krichvtsov, V. Pavlov, R.V. pisarev, V. Gridnev, Spontaneous non-reciprocal reflection of light from antiferromagnetic Cr_2O_3 [J], J. Phys. Condens. Mat., 1993, 5, 8233-8244.
    
    [24] J.G. Morales, J. garmona, R.R. Clemente, D. Muraviev, Preparation of Chromium Hydroxide Sub-micro- and Nanoparticles by Microwave Dielectric Heating [J], Langmuir, 2003,19,9110-9113.
    
    [25] L. Vayssieres, A. Manthiram, 2-D Mesoparticulate Arrays of (?)-Cr_2O_3 [J], J. Phys. Chem. B, 2003, 107, 2623-2625.
    
    [26] M. Balasubramanian, C.A. Melendres, An X-ray absorption near-edge spectroscopy study of the oxidation state of chromium in electrodeposited oxide films [J], Electrochim. Acta., 1999,44,2941-2945.
    
    [27] P. Hones, F. Levy, NX. Randall, Influence of deposition parameters on mechanical properties of sputter-deposited Cr_2O_3 thin films [J], J. Mater. Res., 1999, 14, 3623-3629.
    
    [28] L. Zhang, M. Khum, U. Diebold, Growth, structure and thermal properties of chromium oxide films on Pt(111) [J], Surf. Sci., 1997,375, 1-12.
    
    [29] S. Chevalier, G. Bonnet, J.P. Largin, Metal-organic chemical vapor deposition of Cr_2O_3 and Nd_2O_3 coatings. Oxide growth kinetics and characterization [J], Appl. Surf. Sci., 2000, 167, 125-133.
    
    [30] S.I. Dolgaev, N.A. Kirichenko, Deposition of nanostructured Cr_2O_3 on amorphous Irradiation of the Solid-Liquid Interface [J], Appl. Surf. Sci., 1999, 138-139,449-454.
    
    [31] S. Ryszard, M. Egon, Electrokinetics of uniform colloidal dispersions of chromium hydroxide [J], Langmuir, 1989, 5, 479-485.
    
    [32] Q. Peng, Y.J. Dong, Y.D. Li, ZnSe semiconductor hollow microspheres [J], Angew. Chem. Int. Ed., 2003,42, 3027-3030.
    
    [33] R. sprycha, J. Jablonski, E. Matijevic, Physicochemical characteristics of monodispersed chromium hydroxide particles [J], Colloids Surf. 1992, 67, 101-107.
    [1] A.K. Panda, B.B. Bhowmik, A.R.Das, Polymorph and phase discrimination of lead chromate pigments by a facile room temperature precipitation reaction [J], Langmuir, 2001, 17,1811-1816.
    [2] J.H. Liang, YD. Li, Synthesis and characterization of lead chromate uniform nanorods [J], J. Cryst. Growth, 2004, 261, 577-580.
    [3] XL. Hu, Y.J. Zhu, Single-crystalline PbCrO_4 nanowires and their hydrothermal Transformation to Amorphous PbCr_3O_(10) Nanotubes [J], Chem.Lett., 2004, 33, 880-881.
    [4] W.W. Wang, Y.J. Zhu, Synthesis of PbCrO_4 and Pb_2CrO_5 Rods via Microwave Assisted Ionic Liquid Method [J], Cryst. Growth. Des., 2005, 5, 505-507.
    [5] D. Chen, K.T. Tang, Z.H. Liang, Fabrication of PbCrO_4 nanostructures: from nanotubes to nanorods [J], Nanotechnology, 2005, 16, 2619-2624.
    [6] J.K. Liu, Q.S. Wu, Y.P. Ding, W. Yi, Assembling synthesis of barium chromate nano-superstructures using eggshell membrane as template [J], Bull. Korean. Chem. Soc., 2004,25,1775-1778.
    [7] S.W. Liu, J.G. Yu., B. Cheng, Q.J. Zhang, Controlled synthesis of novel flower-shaped BaCrO_4 crystals [J], Chem. Lett., 2005, 34, 564-565.
    [8] Y. Yan, Q.S. Wu, L. Li, Y.P. Ding, Simultaneous synthesis of dendritic superstructural and fractal crystals of BaCrO_4 by vegetal Bi-templates [J], Cryst. Growth. Des., 2006, 6, 769-773.
    [9] J.H. Liang, Q. Peng, YD. Li, Chromate nanorods nanobelts: general synthesis, characterization and properties [J], Inorg. Chem., 2005,44, 9405-9415.
    [10] 刘相果,彭晓东,刘江,高纯碳酸锶的制备技术研究进展[J],材料导报,2003,17,54-57.
    [11] W.S. Wang, C.Y. Xu, W.Z. Shao, Large-scale synthesis of SrCrO_4 nanowires and PbCrO_4 nanorods by a solution-phase method at room temperature [J], Chem. Lett., 2006, 35, 268-269.
    [12] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots [J], Science, 1996, 271, 933-937.
    [13] J. Hu, T.W. Odom, CM. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes [J], Acc. Chem. Res., 1999, 32, 435-445.
    [14] CNR. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals [J], Chem. Eur. J., 2002, 8, 28-35.
    [15] Y. Cui, CM. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J], Science, 2001, 291, 851-853.
    [16] J. Hu, M. Ouyang, P. Yang, C. M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires [J], Nature, 1999, 399, 48-51.
    
    [17] C.M. Lieber, One-dimensional nanostructures: Chemistry, physics & applications [J], Solid. State. Commun., 1998, 107, 607-616.
    
    [18] M.P. Pileni, The Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals [J], Nat. Mater., 2003, 2, 145-150.
    
    [19] B.A. Simmons, S. Li, V.T. John, G.L. McPherson, A. Bose, W. Zhou, J. He, Morphology of CdS Nanocrystals Synthesized in a Mixed Surfactant System [J], Nano. Lett., 2002, 2, 263-268.
    
    [20] H. Shi, L. Qi, J. Ma, H. Cheng, Synthesis of single crystal BaWO_4 nanowires in catanionic reverse micelles [J], Chem. Commun. 2002, 1704-1705.
    
    [21] T. Negas, The System PbO-chromium Oxide in Air [J], J. Am. Ceram. Soc, 1968, 51, 716-719.
    
    [22] K.A. Wishah, MM. Abdul-Gader, Photoconduction and polarization effects in a heat-treated Au/Pb_2CrO_5/SnO_2 film device [J], Appl. Phys. A., 1998, 66, 229-234.
    
    [23] S. Yoshida, K. Toda, Contact-type line image sensor using Pb_2CrO_5 thin film [J], Appl. Opt., 1990, 29,1793-1797.
    
    [24] MA. El-Sayed, Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes [J], Accounts. Chem. Res., 2001, 34, 257-264.
    
    [25] H.T. Shi, L.M. Qi, J.M. Ma, N.Z. Wu, Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles [J], Adv. Funct. Mater., 2005, 15, 442-450.
    
    [26] B. Jonsson, P. Jokela, A. Khan, B. Lindman, A. Sadaghiani, Catanionic surfactants. phase behavior and microemulsions [J], Lamgmuir, 1991, 7, 889-895.
    
    [27] Y.K. Chen, Infrared Absorption Spectroscopy and Its Applications [M], Shanghai Jiaotong University Press, Shanghai, 1993.
    
    [28] S.I. Stupp, P.V. Braun, Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors [J], Science, 1997, 277, 1242-1248.
    
    [29] T.P. Hoar, J.H. Schulman, Transparent water-in-oil dispersions: the oleopathic hydromicelle [J], Nature, 1943, 152, 102-105.
    
    [30] J.H. Schulman, W. Stoeckenius, L.M. Prince, Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy [J], J. Phys. Chem., 1959, 63, 1677-1680.
    [31] P.G. De Gennes, C. Taupin, Microemulsions and the flexibility of oil/water interfaces [J], J. Phys. Chem., 1982, 86, 2294-2304.
    [32] D. Langevin, Microemulsions [J], Acc. Chem. Res., 1988,21,255-260.
    [33] M.J. Schwuge, K. Stickdorn, and R. Schom(?)cker, Microemulsions in Technical Processes [J], Chem. Rev., 1995,95,849-864.
    [34] W. M. Gelbart, A. Ben-Shail, The "New" Science of "Complex Fluids" [J], J. Phys. Chem., 1996, 100, 13169-13189.
    [35] P. Stilbs, K. Rapacki, B.J. Lindman, Effect of alcohol cosurfactant length on microemulsion structure [J], J. Colloid. Interface. Sci., 1983, 95, 582-585.
    [36] J.H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry [J], Chem. Rev., 1987, 87, 877-899.
    [37] M. Boutonnet, J. Kizling, P. Stenius, G. Maire, The preparation of monodisperse colloidal metal particles from microemulsions [J], Colloids Surf., 1982, 5, 209-225.
    [38] K. Kurihara, J. Kizling, P. Stenius, J.H. Fendler, Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemulsions [J], J. Am. Chem. Soc., 1983, 105,2574-2579.
    [39] C. Tojo, M.C. Blanco, F. Rivadulla, and MA. Lopez-Quintela, Kinetics of the Formation of Particles in Microemulsions [J], Langmuir, 1997, 13,1970-1977.
    [40] I. Capek, Preparation of metal nanoparticles in water-in oil (w/o) microemulsions [J], Advances in Colloid and Interface Science, 2004, 110, 49-74.
    [41] M.P. Pileni, Synthesis in situ of nanoparticles in reverse micelles [J], Progr. Colloid Polym. Sci., 1992, 93, 1-9.
    [42] M.P. Pileni, Nanosized particles made in colloidal assemblies [J], Langmuir, 1997, 13, 3266-3276.
    [44] KM. Manoj, R. Jagakuma, K. Rakshits, Physiochemical studies on reversemicelles of sodium bis(2-ethyl-hexy) sulfosuccinate at low water content [J], Langmuir, 1996, 12, 4068-4072.
    [43] 沈兴海,高宏成,纳米微粒的微乳液制备[J],化学通报,1995,1,6-9.
    [45] 赵国玺,表面活性剂物理化学[M],北京:北京大学出版社,1991.
    [46] 陈龙武,甘礼华,岳天仪,微乳液反应法制备α-Fe_2O_3超细粒子的研究[J],物理化学学报,1994,10,781-784.
    [47] M.L.Curri, A. Agostiano, L. Manna, and M.D. Monica, et al., Synthesis and Characterization of CdS Nanoclusters in a Quaternary Microemulsion: the Role of the Cosurfactant [J], J. Phys. Chem. B, 2000, 104, 8391-8397.
    [48] G. Palazzo, F. Lopez, M. Giustini, G. Colafemmina, and A. Ceglie, Role of the Cosurfactant in the CTAB/Water/n-Pentanol/n-Hexane Water-in-Oil Microemulsion. 1. Pentanol Effect on the Microstructure [J], J. Phys. Chem. B, 2003, 107, 1924-1931.
    [49] J. Zhang, L.D. Sun, X.C. Jiang, C.S. Liao, and C.H. Yan, Shape Evolution of One-Dimensional Single-Crystalline ZnO Nanostructures in a Microemulsion System [J], Cryst. Growth Des., 2004, 4, 309-313.
    [50] J. Tanon, N. Duxin, C. Pelil, et al., Synthesis of nanosized metallic and alloyed particles in ordered phased [J], J. Colloid Polym. Sci., 1995, 273, 886-892.
    [51] F.J. Arriagada, K. Osseo Asate, Synthesis of nanosized silica in a nonionic water-in-oil microemulsion [J], J. Colloid Interface Sci., 1999, 211, 210-220.
    [52] J. Economy, D.T. Meloon Jr., R.L. Ostrozynski, Supported barium chromate-A new oxidation catalyst [J], J. Catal., 1965, 4, 446-453.
    [53] J. Yin, Z. Zou, J. Ye, Photophysical and photocatalytic properties of new photocatalysts MCrO_4 (Sr, Ba) [J], Chem. Phys. Lett., 2003, 378, 24-28.
    [54] S.H. Yu, H. Colfen, M. Antonietti, Control of the Morphogenesis of Barium Chromate by Using Double-Hydrophilic Block Copolymers (DHBCs) as Crystal Growth Modifiers [J], Chem. Eur. J., 2002, 8, 2937-2945.
    [55] S.H. Yu, M. Antonietti, H. Co(?)lfen, J. Hartmann, Growth and Self-Assembly of BaCrO_4 and BaSO_4 Nanofibers toward Hierarchical and Repetitive Superstructures by Polymer-Controlled Mineralization Reactions [J], Nano Lett., 2003, 3, 379-382.
    [56] S.H. Yu, H. Co(?) lfen, M. Antonietti, The combination of colloid controlled heterogeneous nucleation and polymer controlled crystallization: facile synthesis of separated, uniform high aspect ratio single crystalline BaCrO_4 nanofibers [J], Adv. Mater., 2003, 15,133-136.
    [57] H.T. Shi, L.M. Qi, J.M. Ma, H.M. Cheng, B.Y. Zhu, Synthesis of Hierarchical Superstructures Consisting of BaCrO_4 Nanobelts in Catanionic Reverse Micelles [J], Adv. Mater., 2003, 15,1647-1651.
    [58] Y.B. Mao, S.S. Wong, General, Room-Temperature Method for the Synthesis of Isolated as Well as Arrays of Single-Crystalline ABO_4-Type Nanorods [J], J. Am. Chem. Soc., 2004, 126, 15245-15252.
    [59] J.H. Liang, Q. Peng, X. Wang, X. Zheng, R.J. Wang, X.P. Qiu, C.W. Nan, YD. Li, Chromate Nanorods/Nanobelts: General Synthesis, Characterization, and Properties [J], Inorg. Chem., 2005, 44, 9405-9415.
    [60] L. Liu, Q.S. Wu, Y.P. Ding, H. Liu, Morphologies of barium chromate controlled by carriers in an emulsion liquid membrane system [J], J. Cryst. Res. Technol., 2006, 41, 27-31.
    [61] Y. Yan, Q.S. Wu, L. Li, Y.P. Ding, Simultaneous Synthesis of Dendritic Superstructural and Fractal Crystals of BaCrO_4 by Vegetal Bi-templates [J], Cryst. Growth Des, 2006, 6, 769-773.
    [62] H. Shi, L. Qi, J. Ma, H. Cheng, Synthesis of single crystal BaWO_4 nanowires in catanionic reverse micelles [J], Chem. Commun., 2002, 16, 1704-1705.
    [63] 周萍,张杰,顾晓天,戴志晖,唐亚文,包建春,不同形状的钨酸钡纳米粒子的合成[J],应用化学,2006,23,370-373.
    [64] H. Shi, L. Qi, J. Ma, H. Cheng, Polymer-Directed Synthesis of Penniform BaWO_4 Nanostructures in Reverse Micelles [J], J. Am. Chem. Soc., 2003,125, 3450-3451.
    [65] G.J. Zhou, M.K. Lu, Z.L. Xiu, S.F. Wang, H.P. Zhang, W.G. Zou, Polymer micelle-assisted fabrication of hollow BaWO_4 nanospheres [J], J. Cryst. Growth, 2005, 276, 116-120.
    [66] X.F. Zhao, T.K. Li, Y.Y. Xi, DHL. Ng, J.G. Yu, Synthesis of BaWO_4 Hollow Structures [J], Cryst. Growth Des, 2006, 6,2210-2213.
    [67] S.H. Yu, H. Co(?) lfen, Bio-inspired crystal morphogenesis by hydrophilic polymers. [J], Mater. Chem., 2004,14, 2124-2147.
    [68] S.H. Yu, Bio-inspired Crystal Growth by Synthetic Templates [J], Top Curr. Chem., 2007,271,79-118.
    
    [69] J.H. Xiang, S.H. Yu, Z.L. Xu, Polymorph and Phase Discrimination of Lead Chromate Pigments by a Facile Room Temperature Precipitation Reaction [J], Cryst. Growth Des, 2004, 4, 1311-1315.
    
    [70] D. Chen, KB. Tang, Z.H Liang, Y.K. Liu, H.G. Zheng, Fabrication of PbCrO_4 nanostructures: from nanotubes to nanorods [J], Nanotechnology 2005, 16, 2619-2624.
    
    [71] Y.B. Mao, S.S. Wong, General, Room-Temperature Method for the Synthesis of Isolated as Well as Arrays of Single-Crystalline ABO-Type Nanorods [J], J. Am. Chem. Soc. 2004, 126, 15245-15252.
    
    [72] P.J. Miller, R.K. Khanna, E.R. Lippincott, Studies of coupled molybdate and tungstate vibrations [J], J. Phys. Chem. Solids 1973, 34, 533-540.
    
    [73] W. Scheuermann, C.J. H.Schutte, Raman and infrared spectra of BaCrO_4 and BaSeO_4 [J], J. Raman Spectrosc. 1973, 1, 605-618.
    
    [74] H.C. Lee, H.J. Kim, S.H. Chung, K.H. Lee, H.C. Lee, J.S. Lee, Synthesis of Unidirectional Alumina Nanostructures without Added Organic Solvents [J], J. Am. Chem. Soc, 2003, 125,2882-2883.
    
    [75] H.Y. Zhu, J.D. Riches, J.C. Barry, γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant [J], Chem. Mater., 2002, 14, 2086-2093.
    
    [76] P.G Cummins, J.B. Hayter, J. Penfold, E. Staples, A small angle neutron scattering investigation of shear aligned hexaethyleneglycolmonohexadecylether (C_(16)E_6) micelles as a function of temperature [J], Chem. Phys. Lett., 1987, 138, 436-440.
    
    [77] P.G. Cummins, E. Staples, J. Penfold, R.K. Heenan, The geometry of micelles of the poly(oxyethylene) nonionic surfactants C_(16)E_6 and C_(16)E_8 in the presence of electrolyte [J], Langmuir, 1989, 5, 1195-1199.
    
    [78] J. Penfold, E. Staples, P.G. Cummins, Small angle neutron scattering investigation of rodlike micelles aligned by shear flow [J], Adv. Colloid Interface Sci., 1991, 34, 451-476.
    
    [79] M. Adachi, T. Harada, M. Harada, Formation Processes of Silica Nanotubes through a Surfactant-Assisted Templating Mechanism in Laurylamine Hydrochloride/Tetraethoxysilane System [J], Langmuir, 2000, 16, 2376-2384.
    [1] M.T. Pope, Heteropoly and Isopoly Oxometalates [M], Springer, Berlin, 1983.
    [2] Berzelius, J. Pogg Ann, [J], 1826, 6, 369-380.
    [3] (a) L.M. Madeira, M.F. Portela, C. Mazzocchia, [J], Catal. Rev.-Sci.& Eng, 2004, 46,53.(b)汪信,陆路德,纳米金属氧化物的制备及应用研究的若干进展[J],无机化学学报,2000,3,213-217.(c)鲍骏,卞国柱,伏义路,用溶胶.凝胶法制备CoMoO_4超细粒子催化剂[J],催化学报,1999,20,645-648.
    [4] B.M. Wanklyn, F.R. Wondre, W. Davison, [J], J. Mater. Sci, 1976,11, 1607-1614.
    [5] H. Ringsdorf, B. Schlarb, J. Venzmer, [J], Angew.Chem.Int. Ed, 1988,27,113-158.
    [6] S. Kwan, P. Kim, J. Akana, P.D. Yang, Synthesis and assembly of BaWO_4 nanorods, [J], Chem.Commun., 2001, 5, 447-448.
    
    [7] (a) L. Qi, H. Cofen, M. Antonietti, Crystal design of barium sulfate using double-hydrophilic block copolymers [J], Angew. Chem. Int. Ed., 2000, 39, 604-607. (b) H. Shi, L. Qi, J. Ma, H. Cheng,, Synthesis of single crystal BaWO_4 nanowires in catanionic reverse micelles [J], Chem. Commun., 2002, 1704-1705. (c) L. Qi, J. Li, J. Ma, Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers [J], Adv. Mater., 2002, 14, 300-303. (d) D. Zhang, L. Qi, J. Ma, H. Cheng, Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions [J], Adv. Mater.2002, 14, 1499-1502. (e) H. Shi, L. Qi, J. Ma, H. Cheng, Polymer-directed synthesis of penniform BaWO_4 nanostructures in reverse micelles [J], J. Am. Chem. Soc, 2003, 125, 3450-3451. (f) H.T. Shi, L.M. Qi, J.M. Ma, N.Z. Wu, Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles [J], Adv Funct. Mater. 2005, 15,442-450.
    
    [8] (a) Q. Gong, X.P. Qian, H.L. Cao, W.M. Du, X.D. Ma, M.S. Ma, A Novel Shape Evolution of BaMoO_4 Microcrystals [J], J. Phys. Chem. B, 2006, 110, 19295-19299. (b) Q. Gong, G. Li, X.P. Qian, H.L. Cao, W.M. Du, X.D. Ma, Synthesis of single crystal CdMoO_4 octahedral microparticles via microemulsion-mediated route [J], J. Colloids and Interface Science, 2006, 304, 408-412. (c) Q. Gong, X.R. Qian, X.D. Ma, Z. K. Zhu, Large-scale fabrication of novel hierarchical 3D CaMoO_4 and SrMoO_4 mesocrystals via a microemulsion-mediated route [J], Cryst. Growth. Des., 2006, 6, 1821-1825.
    [9] (a) J. Gen, J. J. Zhu, H.Y. Chen, Sonochemical Preparation of Luminescent PbWO_4 Nanocrystals with Morphology Evolution [J], Cryst. Growth. Des., 2006, 6, 321-326. (b) J. Gen, Y.N. Lv, D.J. Lu, J.J. Zhu, Sonochemical synthesis of PbWO_4 crystals with dendritic, flowery and star-like structures [J], Nanotechnology 2006, 17, 2614-2620.
    [10] X.J. Cui, S.H. Yu, L.L. Li, B. Liu, H.B. Li, M.S. Mo, X.M. Liu, Selective Synthesis and Characterization of Single-Crystal Silver Molybdate/Tungstate Nanowires by a Hydrothermal Process [J], Chem. Eur. J., 2004,10, 218-226.
    [11] X.J. Cui, S.H. Yu, L.L. Li, K. Li, B. Yu, Fabrication of Ag_2SiO_3/SiO_2 composite nanotubes using a one-step sacrificial templating solution approach [J], Adv. Mater. 2004, 16,1109-1111.
    
    [12] P. Gao, Y. Xie, L. Xie, Y. Chen, Z. Li, Synthesis of Single-crystal BaMo_2O_7 Nanowire Bundles: A General, Low-temperature Hydrothermal Approach to 1D Molybdenum Oxide-based Nanostructures [J], Chem. Lett. 2006, 35, 162-163.
    
    [13] Y. Chen, Y.S. Wang, D.Q. Chen, F. Bao, Evolution of Single Crystalline Dendrites from Nanoparticles through Oriented Attachment [J], J .Phys. Chem. B, 2005, 109, 794-798.
    
    [14] Y.P. Xu, D.Y. Jiang, W.B. Bu, J.L. Shi, Hydrothermal Synthesis of Highly Ordered Micropompon of Lanthanum Molybdate Nanoflakes [J], Chem. Lett., 2005, 34 , 978-979.
    
    [15] J. Q. Yu, A. Kudo, Hydrothermal synthesis and photocatalytic property of 2-dimensional bismuth molybdate nanoplates [J], Chem. Lett., 2005, 34, 1528-1529.
    
    [16] M. Antonietti, G.A. Ozin, Promises and problems of mesoscale materials chemistry or why meso? [J], Chem. Eur. J. 2004, 10, 28-41.
    
    [17] S. Mann, The chemistry of form [J], Angew. Chem. Int. Ed., 2000, 39, 3392-3406.
    
    [18] M.P. Pileni, Nanocrystal Self-Assemblies: Fabrication and Collective Properties [J], J. Phys. Chem. B, 2001, 105, 3358-3371.
    
    [19] G.M. Whitesides, B. Grzybowski, A.Self-assembly at all scales [J], Science, 2002, 295,2418-2421.
    
    [20] D. Wang, CM. Lieber, Inorganic Materials: Nanocrystals Branch Out [J], Nat. Mater., 2003, 2, 355-356.
    
    [21] L. Manna, D.J. Milliron, A. Meisel, EC. Scher, A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals [J], Nat. Mater., 2003,2, 382-385.
    
    [22] P.X. Gao, Z.L. Wang, Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO [J], J. Phys. Chem. B, 2002, 106, 12653-12658.
    
    [23] J. Lao, J. Wen, Z. F. Ren, Hierarchical ZnO Nanostructures [J], Nano. Lett., 2002, 2, 1287-1291.
    
    [24] H.Q. Yan, R.R. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, Dendritic Nanowire Ultraviolet Laser Array [J], J. Am. Chem. Soc., 2003, 125, 4728-4729.
    [25] Z.A. Peng, X.G. Peng, Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor [J], J. Am. Chem. Soc, 2001, 123, 183-184.
    
    [26] Y.C. Cao, J.H. Wang, One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals [J], J. Am. Chem. Soc, 2004,126,14336-14337.
    
    [27] F. Gao, Q.Y. Lu, S.H. Xie, D. Y. Zhao, A Simple Route for the Synthesis of Multi-Armed CdS Nanorod-Based Materials [J], Adv. Mater., 2002, 14, 1537-1540.
    
    [28] J. H. Ryu, J.W. Yoon, C.S. Lim, KB. Shim, Microwave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation [J], Mater. Res. Bull., 2005, 40, 1468-1476.
    
    [29] Z.H. Li, J. M. Du, J. L. Zhang, T.C. Mu, Y. N. Gao, B. X. Han, J. Chen, J. W. Chen, Synthesis of single crystal BaMoO_4 nanofibers in CTAB reverse microemulsions [J], Mater. Lett., 2005, 59, 64-68.
    
    [30] X.Y. Wu, J. Du, H.B. Li, M.F. Zhang, B.J. Xi, H. Fan, Y.C. Zhu, Y. T. Qian, Aqueous mineralization process to synthesize uniform shuttle-like BaMoO_4 microcrystals at room temperature [J], J. Solid State Chem., 2007, 180, 3288-3295.
    
    [31] Q. Gong, X.F. Qian, H.L. Cao, W.M. Du, X.D. Ma, M.S. Mo, Novel Shape Evolution of BaMoO_4 Microcrystals [J], J. Phys. Chem. B, 2006,110, 19295-19299.
    
    [32] H. Shi, L. Qi, J. Ma, H. Cheng, B. Zhu, Synthesis of hierarchical superstructures consisting of BaCrO_4 nanobelts in catanionic reverse [J], Adv. Mater., 2003, 15, 1647-1651.
    
    [33] D. Chen, KB. Tang, F.Q. Li, H.G Zheng, A Simple Aqueous Mineralization Process to Synthesize Tetragonal Molybdate Microcrystallites [J], Cryst. Growth Des., 2006, 6, 247-252.
    
    [34] R.L. Penn, J.F. Banfield,. Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals [J], Science, 1998, 281, 969-971.
    
    [35] J.F. Banfield, S.A. Welch, HZ. Zhang, T.T. Ebert, R. L. Penn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J], Science, 2000, 289, 751-754.
    
    [36] B. Liu, H.C. Zeng, Symmetric and Asymmetric Ostwald Ripening in the fabrication of homogeneous core-shell semi- conductors [J], Small, 2005,1, 566-571.
    
    [37] M. Kahlweit, [J], Angew. Chem., Int. Ed. Engl, 1965,4, 444-445.
    
    [38] W.Z. Ostwald, [J], Phys. Chem., 1900, 34, 495-503.
    
    [39] M. Nikl, P. Bohacek, E. Mihokova, M. Kobayashi, M. Ishii, Y. Usuki, V. Babin, A. Stolovich, S. Zazubovich, M. Bacci, Excitonic emission of scheelit tugstates AWO_4 (A=Pb, Ca, Ba, Sr) [J], J. Lumin., 2000, 87-89,1136-1139.
    
    [40] A.P.A. Marques, DMA. Melo, CA. Paskocimas, PS. Pizami, M R Joya, E. R. Leite, E. Longo, Photoluminescent BaMoO_4 nanopowders prepared by complex polymerization method (CPM) [J], J. Solid State Chem, 2006,179, 671-678.
    
    [41] (a) C.N.R. Rao, A.K. Cheetham, Science and technology of nanomaterials: current status and future prospects [J], J. Mater. Chem, 2001, 11, 2887-2894. (b) CNR. Rao, A. MRller, A.K. Cheetham, The Chemistry of Nanomaterials [M], Wiley-VCH, Weinheim, 2004. (c) Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, YD. Yin, F. Kim, Y.Q. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications [J], Adv Mater, 2003, 15, 353-389.
    
    [42] (a) Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J], Science, 2006, 312, 242-246. (b) J.X. Huang, A.R. Tao, S. Connor, R.R. He, P.D. Yang, A General Method for Assembling Single Colloidal Particle Lines [J], Nano. Lett, 2006, 6, 524-529.
    
    [43] Y.Y. Xu, D.R. Chen, X.L. Jiao, Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route [J], J. Phys. Chem. B, 2005, 109, 13561-13566.
    
    [44] S.H. Chen, Z.Y. Fan, D.L. Carroll, Silver Nanodisks: Synthesis, Characterization, and Self-Assembly [J], J. Phys. Chem. B, 2002, 106:10777-10781.
    
    [45] Y. Ding, S.H. Yu, C. Liu, Z.G Zang, 3D Architectures of Iron Molybdate: Phase Selective Synthesis, Growth Mechanism, and Magnetic Properties [J], Chem. Eur. J, 2007, 13, 746-753.
    
    [46] J.B. Liang, J.W. Liu, Q. Xie, S. Bai, W.C Yu, YT. Qian, Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles [J], J. Phys. Chem. B, 2005 , 9, 9463-9467.
    [47] Y.D. Yin, Y. Lu, Y.G. Sun, Y.N. Xia, Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica [J], Nano. Lett., 2002, 2,427-430.
    [48] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals [J], Nature, 2000, 404, 59-61.
    [49] L. Manna, E.C. Scher, A.P. Alivisatos, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals [J], J. Am. Chem. Soc., 2000, 122, 12700-12706.
    [50] J.H. Ryu, J.W. Yoon, KB. Shim, Microwave-assisted synthesis of BaMoO_4 nanocrystallites by a citrate complex method and their anisotropic aggregation [J], J. Alloys. Compd., 2006,413,144-149.
    [51] M.F. Zhang, H. Fan, B.J. Xi, X.Y. Wang, C. Dong, Y.T. Qian, Synthesis, Characterization, and Luminescence Properties of Uniform Ln~(3+)-Doped YF_3 Nanospindles [J], J. Phys. Chem. C, 2007, 111, 6652-6657.
    [1] Y. Zhang, N.A.W. Holzwarth, R.T. Williams, Electronic Structure and Optical Properties of CdMoO_4 and CdWO_4 [J], Phys. Rev. B, 1998, 57, 12738.
    [2] D. Chen, G.Z. Shen, KB. Tang, H.G. Zheng, Y.T. Qian, Loe-temperature synthesis of metal tungstates nanocrystallites in ethylene glycol [J], Mater. Res. Bull., 2003, 38, 1783-1789.
    [3] N. Saito, N. Sonoyama, T. Sakata, Analysis of the excitation and emission spectra of tungstates and molybdate [J], Bulletin of the Chemical Society of Japan, 1996, 69, 2191-2194.
    [4] A.P. Chicagov, V.V. Ilykhin, N.V. Belov, The crystal structure of cadmium tungstate [J], Doklady Akademii Nauk SSSR,1966, 166, 87-89.
    [5] A. Kuzmin, J. Purans, Local atomic and electronic structure of tungsten ions in AWO_4 crystals of scheelite and wolframite types [J], Radiation Measurements, 2001, 33, 583-586.
    [6] H. Lotem, Z. Burshtein, Method for complete determination of a refractive-index tensor by bireflectance: application to cadmium tungstate (CdWO_4) [J], Optics Letters, 1987, 12, 561-563.
    [7] A.K. Chauhan, Czochralski growth and radiation hardness of BaWO_4 Crystals [J], Journal of Crystal Growth, 2003, 254, 418-422.
    [8] M. Nikl, P. Bohacek, E. Mihokova, M. Kobayashi, M. Ishii, Y. Usuki, V. Babin, A. Stoloich, S. Zazubvich, M. Bacci, Excitonic emission of scheelite tungstates AWO_4 (A=Pb,Ca,Ba,Sr) [J], Journal of Luminescence, 2000, 87-89, 1136-1139.
    [9] Y. Zorenko, M. Pashkovsky, A. Voloshinovskii, B. Kuklinski, M. Grinberg, The luminescence of CaWO_4: Bi single crystals. Journal of Luminescence [J], 2005, 116, 43-51.
    [10] K. Tanaka, Cathode luminescence of samarium, europium, and gadolinium ion doped scintillator CdWO_4 single crystals studied with x-ray photoelectron spectroscopy [J], Journal of Applied Physics, 2001, 89, 5449-5453.
    
    [11] Y.L. Huang, Q. Feng, Y. Yang, H.J. Seo, A study ofluminescence properties in the boron-doped lead tungstate [J], Physics Letters A, 2005, 336,490-497.
    
    [12] R.W.G Wyckoff, Crystal Structures [M], (2nd ed.), New York, Wiley, 1964, Vol.3, 1-67.
    
    [13] M. Itoh, M. F ujita, Opitical properties of scheelite and respite PbWO_4 crystals. Physical Review B: Condensed Matter and Materials Physics [J], 2000, 62, 12825-12830.
    
    [14] L. Nagomaya, S. Burachas, Y. Vostretsov, V. Martynov, V. Ryzhikov, Studies of ways to reduce defects in CdWO_4 single crystals. Journal of Crystal Growth [J], 1999, 198/199, 877-880.
    
    [15] M. Kobayashi, Y. Usuki, M. Ishii, M. Itoh, Modification of scintillation characteristics of CdWO_4 by doping with different ions. Radiation Measurements [J], 2004, 38, 375-379.
    
    [16] S.J. Chen, J.H. Zhou, XT. Chen, J. Li, L.H. Li, J.M. Hong, Z.L. Xue, Fabrication of nanocrystalline ZnWO_4 with different morphologies and sizes via hydrothermal route [J], Chem. Phys. Lett., 2003, 375, 185-190.
    
    [17] S. Nishigaki, S. Yano, H. Kato, T. Hirai, T. Nonomura, Barium oxide-titanium dioxide-tungsten trioxide microwave ceramics and crystalline barium tungstate (BaWO_4) [J], Journal of the American Ceramic Society, 1988, 71, C11-C17.
    
    [18] W. Cho, M. Yoshimura, Hydrothemal, hydrothermal-electrochemical and electrochemical synthesis of highly crystallized barium tungstate films [J], Japanese Journal of Applied Physics, 1997, 36,1216-1222.
    
    [19] M.A. Damian, Y. Rodriguez, J.L. Solis, W. Estrada, Characterization and butanol/ethanol sensing properties of mixed tungsten oxide and copper tungstate films obtained by spray-sol-gel [J], Thin Solid Films, 2003, 444, 104-110.
    
    [20] H. Jeong, S. Chang, H. Keun, Synthesis of ZnWO_4 nanocrystalline powders, by the polymerized complex method [J], Materials Letters, 2003, 57, 1550-1554.
    
    [21] H.M. Shang, Y Wang, M. Bliss, GZ. Cao, Hydrothemal growth and photoluminescence property of textured CdWO_4 scintillator films [J], Applied Physcics Letters, 2005, 87, Art. No. 051909.
    [22] 胡兴定,张文朴,张改莲,钨酸铋和钨酸铁铋气体敏感材料的研究[J],稀有金属,1995,19,255-259.
    [23] 周新木,焦晓燕,周桂银,陈卫玲,钨酸钇的制备及粒度分析[J],南昌大学学报(理科版),2000,24,268-273.
    [24] 周际新,吴建生,孔向阳,钨酸锌晶须的制备[J],实验室研究与探索,2003,22,53-56.
    [25] S.H. Yu, B. Liu, M.S. Mo, J.H. Huang, X.M. Liu, Y.T. Qian, General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires, A Facile, Low-Temperature Solution Approach [J], Adv. Funct. Mater., 2003, 13, 639-647.
    [26] S. Lei, K. Tang, Z. Fang, Y. Huang, H. Zheng, Synthesis of MnWO_4 nanofibres by a surfactant-assisted complexation-precipitation approach and control of morphology [J], Nanotechnology, 2005, 16, 2407-2411.
    [27] B. Liu, S.H. Yu, L. Li, F. Zhang, Q. Zhang, M. Yoshimura, P. Shen, Nanorod-Direct Oriented Attachment Growth and Promoted Crystallization Processes Evidenced in Case of ZnWO_4 [J], J. Phys. Chem. B, 2004, 108, 2788-2792.
    [28] B. Xie, Y. Wu, Y. Jiang, F. Li, J. Wu, S. Yuan, W. Yu, Y. Qian, Shape-controlled synthesis of BaWO_4 crystals under different surfactants [J], J. Cryst. Growth, 2002, 235, 283-286.
    [29] S.J. Chen, XT. Chen, Z. Xue, J.H. Zhou, J. Li, J.M. Hong, X.Z. You, Morphology control of MnWO_4 nanocrystals by solvothermal route [J], J. Mater. Chem., 2003, 13, 1132-1135.
    [30] H. Shi, L. Qi, J. Ma, H. Cheng, Polymer-Directed Synthesis of Penniform BaWO_4 Nanostructures in Reverse Micelles [J], J. Am. Chem. Soc., 2003, 125, 3450-3451.
    [31] S. Kwan, F. Kim, J. Akana, P. Yang, Synthesis and assembly of BaWO_4 nanorods [J], Chem. Comm., 2001,447-448.
    [32] S.H. Yu, M. Antonietti, H. Clfen, M. Giersig, Synthesis of Very Thin 1D and 2D CdWO_4 Nanoparticles with Improved Fluorescence Behavior by Polymer-Controlled Crystallization [J], Angew. Chem. Int. Ed., 2002, 41, 2356-2360.
    [33] (a) Z.L. Wang, J.H. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J], Science, 2006, 312, 242-246. (b) Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications [J], AdV. Mater, 2003, 15, 353-389. (c) J.X. Huang, A.R. Tao, S. Connor, R.R. He, P.D. Yang, A General Method for Assembling Single Colloidal Particle Lines [J], Nano Lett., 2006, 6, 524-529.
    
    [34] B.L. Chamberland, J.A. Kafalas, J.B. Goodenough, Characterization of chromium manganese oxide (MnCrO_3) and chromium(III) manganate [J], Inorg. Chem, 1977, 16, 44-46.
    
    [35] F.A. Kroger, Some Aspects of the Luminescence of Solids, Elsevier, Amsterdam, 1948, pp. 107.
    
    [36] G. Blasse, W.J. Schipper, Low-temperature photoluminescence of strontium and barium tungstate [J], Phys. Status Solidi A, 1974, 25, K163-K165.
    
    [37] T.T. Basiev, A.A. Sobol, Yu.K. Voronko, P.G. Zverev, Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers [J], Opt. Mater., 2000, 15,205-216.
    
    [38] D. Christofilos, G.A. Kourouklis, S. Ves, High pressure Raman study of calcium molybdate [J], J. Phys. Chem. Solids, 1995, 56, 1125-1129.
    
    [39] M. Anicete-Santos, F.C. Picon, M.T. Escote, E.R. Leite, PS. Pizani, J.A. Varela, E. Longo, Room-temperature photoluminescence in structurally disordered SrWO_4[J], Appl. Phy. Lett., 2006, 88, 211913-211915.
    
    [40] Z.C. Ling, H.R. Xia, D.G. Ran, F.Q. Liu, S.Q. Sun, J.D. Fan, H.J. Zhang, J.Y. Wang, L.L. Yu, Lattice vibration spectra and thermal properties of SrWO_4 single crystal [J], Chem. Phys. Lett., 2006,426, 85-90.
    
    [41] G. Zhang, R. Jia, Q. Wu, Preparation, structural and optical properties of AWO_4 (A = Ca, Ba, Sr) nanofilms [J], Mater. Sci. Eng. B, 2006, 128, 254-259.
    
    [42] H. Jelinkova, J. Sulc, T.T. Basiev, P.G. Zverev, S.V. Kravsov, Stimulated Raman scattering in Nd:SrWO_4 [J], Laser Phys. Lett., 2005, 2, 4-11.
    
    [43] L.I. Ivleva, T.T. Basiev, IS. Voronina, P.G. Zverev, V.V. Osiko, N.M. Polozkov, SrWO_4: Nd~(3+) - New material for multifunctional lasers [J], Opt. Mater., 2003, 23, 439-442.
    [44] L. Sun, Q. Guo, X. Wu, S. Luo, W. Pan, K. Huang, J. Lu, L. Ren, M. Cao, C. Hu, Effective of ginkgolides on expression of apoptosis related gene during PCl_2 cells glucose deprivation [J], J. Phys. Chem. C, 2007, 111, 532-535.
    
    [45] X. Zhao, T.L.Y. Cheung, X. Zhang, DHL. Ng, J. Yu, Facile preparation of strontium tungstate and tungsten trioxide hollow spheres [J], J. Am. Ceram. Soc, 2006, 89, 2960-2963.
    
    [46] Z. Lou, M. Cocivera, Cathodoluminescence of CaWO_4 and SrWO_4 thin films prepared by spray pyrolysis [J], Mater. Res. Bull., 2002, 37, 1573-1582.
    
    [47] Z. Zhang, H. Sun, X. Shao, D. Li, H. Yu, M. Han, General matrix algorithm for distribution system fault locating [J], AdV. Mater., 2005, 17, 42-43.
    
    [48] C.B. Murray, C.R. Kagan, M.G. Bawendi, Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices [J], Science, 1995, 270, 1335-1338.
    
    [49] Y.D. Yin, Y. Lu, Y.G. Sun, Y.N. Xia, Silver Nanowires Can Be Directly Coated with Amorphous Silica to Generate Well-Control led Coaxial Nanocables of Silver/Silica [J], Nano Lett., 2002, 2, 427-430.
    
    [50] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals [J], Nature, 2000, 404, 59-61.
    
    [51] L. Manna, EC. Scher, A.P. Alivisatos, Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals [J], J. Am. Chem. Soc., 2000, 122, 12700-12706.
    
    [52] J.H. Ryu, J.W. Yoon, C.S. Lim, KB. Shim, Microwave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation [J], Mater. Res. Bull., 2005,40, 1468-1476.
    
    [53] J.H. Ryu, J.W. Yoon, KB. Shim, Microwave-assisted synthesis of BaMoO_4 nanocrystallites by a citrate complex method and their anisotropic aggregation [J], J. Alloys. Compd., 2006, 413, 144-149.
    
    [54] A.P.A. Marquesa, DMA. Meloa, C.A. Paskocimasb, PS. Pizanic, M.R. Joyac, E.R. Leited, E. Longo, Photoluminescent BaMoO_4 nanopowders prepared by complex polymerization method (CPM) [J], J. Solid. State. Chem., 2006, 179, 671-678.
    [55] Woo-seok Cho, M. Yashima, M. Kakihana, et al., Room-temperature preparation of highly crystallized luminescent SrWO_4 film by an electrochemical method [J], J. Am. Ceram. Soc., 1995, 78, 3110-3112.
    
    [56] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and p roperties ofnanocrystals of different shapes [J], Chem. Rev., 2005, 105, 1025-1102.
    
    [57] J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly monodisperse Cu_2O and CuO nanospheres: Preparation and applications for sensitive gas sensors [J], Chem. Mater., 2006,18,867-871.
    
    [58] L.P. Chen, Y.H.Gao, Fabrication of luminescent SrWO_4 thin films by a novel electrochemical method [J], Mater. Res. Bull., 2007,42,1823-1830.
    
    [59] J.W. Mullin, Crystallization [M], 3rd ed. Butterworth-Heinemaan, Oxford, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700