用双重识别基团分子印迹聚合物富集天然微量蛋白质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分为两个部分:第一部分是用蛋白质印迹聚合物分离富集天然微量蛋白质的研究;第二部分是用nested PCR方法阐明编码猪内质网体中FKBP23的cDNA及克隆表达的研究。
     第一部分的研究工作是在本课题组蛋白质印迹技术研究成果基础上的进一步发展。近年来,许多研究者开展了以蛋白质为模板的分子印迹聚合物的研究,希望能够以此作为分离纯化蛋白质的一种重要手段。在高等生命体中,绝大多数蛋白质在细胞中的含量是非常微小的,一般只占细胞液中总蛋白量的万分之几或者更少,但是它们具有及其重要的生物学功能。分子克隆技术的建立和发展,使得人们可以用分子克隆的手段在大肠杆菌和酵母等低等生命体中表达高等生命体中的微量蛋白质,通过低等生物的大量培养繁衍,得到较大的收获量。尽管克隆蛋白质和天然蛋白质十分接近,但仍具有不同之处。高等生命体中的许多蛋白质都含有修饰基团,这些基团都是在基因表达蛋白质肽链合成后由专一的修饰体系完成的。而在低等生命体中不含有这些专一的修饰体系。这些结构上的差异带来功能上的差别,有时是很大的。因此纯化与鉴定这些天然的微量蛋白质一直是科学家们非常感兴趣的事情。在以前的研究工作中,我们在识别体系中引入了限长的辅助识别聚合物链,提高了对目标蛋白质识别的专一性,取得了很好的富集效果。
     在本工作中,我们引入带有双重识别基团的辅助识别聚合物链。在聚合物链上随机分布有羧基和吡啶基团作为识别基团。以在大肠杆菌中克隆表达的猪亲环素18蛋白质作为模板。我们将辅助识别聚合物链与模板蛋白质进行自组装,然后将组装体与作为第二单体的丙烯酰胺共同以聚乙烯醇接枝的大孔树脂为固相载体在水相中进行交联聚合,洗脱掉模板蛋白质后就得到了蛋白质印迹聚合物。我们应用该蛋白质印迹聚合物对天然细胞提取物中的蛋白质进行吸附,结果发现在吸附后的洗脱液中,目标蛋白质在总蛋白质中的含量提高了200倍。在洗脱液中目标蛋白质的浓度达到了1.2μg/mL。这样的浓度使我们可以对提取的天然猪亲环素18进行肽脯氨酰顺反异构酶活性(PPIase)的测定。我们发现提取的天然猪亲环素18的PPIase活性高于克隆的猪亲环素18,并且天然的猪亲环素18对外源配体免疫抑制剂环孢菌素A(CsA)的敏感性显著高于克隆的蛋白质。
     第二部分的研究工作是用nested PCR方法阐明编码猪内质网体中FKBP23的cDNA及克隆表达的研究。我们希望提高蛋白质印迹聚合物的广适性,并且进一步研究纯化的天然蛋白质的性质。我们选取猪FKBP23作为模板蛋白质,因为FKBP23是在内质网体中的一种糖蛋白,具有重要的生物学意义。在内质网体的选择方面,我们选择了猪肝中的内质网体。因为猪肝容易获得且廉价。因此需要克隆表达猪FKBP23为后续的工作奠定基础。
     由于猪FKBP23的序列并未报道,我们根据已知物种的FKBP23序列的同源性分析,设计引物,PCR及序列分析,得到猪FKBP23的一段序列。再根据获得的序列,应用nested PCR的方法找寻FKBP23的5'及3'端序列,接拼得到632 bp cDNA序列。已申请NCBI的GenBank得到的序列号为No.EU545235。根据序列分析猪FKBP23的结构域及性质。我们根据获得的序列构建重组质粒,在大肠杆菌中克隆表达及提纯猪FKBP23蛋白质。采用亲和吸附法研究发现重组猪FKBP23与内质网体中天然BiP可以特异性结合并且结合受Ca~(2+)浓度的调控。为进一步研究蛋白质印迹聚合物的广适性,以猪FKBP23为模板的蛋白质印迹聚合物的制备,及研究纯化的天然猪FKBP23性质奠定了基础。
This dissertation is composed of two parts: the first part investigated separation/enrichment of active natural low content protein using protein imprinted polymer; The second part of this dissertation studied de novo cloning of FKBP23 cDNA from pig ER using nested PCR and protein expression.
     Protein imprinted polymer studied in the first part is based on previous research production of our laboratory. In addition to small molecules, proteins can also be used as templates. There are thousands of types of protein within a cell and most are present at relatively low levels. Indeed, some proteins can exist in just a few copies, even though they perform important biological functions within a cell. Molecular-cloning techniques allow scientists to study these proteins by producing them in large quantities from cloned genes. However, cloned proteins are not identical to natural ones in vivo. Therefore, researchers are interested in purifying natural proteins from cell extracts all the time. In previous work, we reported a new method for protein imprinting with the assistant recognition polymer chains (ARPCs), which shows good recognition specificity.
     In this work, we synthesized a new type of the assistant recogniton polymer chains with random distributed double recognition sites. Pyridyl and carboxyl groups were used as recognition sites. Cloned pig cyclophilin 18 (pCyP18) was used as template. The template protein was selectively assembled with ARPCs from their library. These assemblies of protein and ARPCs were adsorbed by porous polymeric beads and immobilized by cross-linking polymerization. After removing the template, the synthesized imprinted polymer was used to adsorb authentic pCyP18 from cell extract, and its proportional content was enriched 200 times. The concentration of natural pCyP18 adsorbed in eluent in this work enables the assay of PPIase activity to be performed. The assay of peptidyl-prolyl cis-trans-isomerase (PPIase) activity showed that natural pCyP18 is more active than cloned pCyP18 and, in particular, it is much more sensitive to the suppressant cyclosporine A (CsA).
     The second part of this thesis studied de novo cloning of FKBP23 cDNA from pig ER using nested PCR and protein expression. We hope to improve the eurytopicity of protein imprinted polymer and research natural protein. FKBP23 is a glycoprotein retained in endoplasmic reticulum (ER). If cloned pig FKBP23 as template protein can be prepared, natural pig FKBP23 in the ER can be acquired by protein imprinted polymer. We are interested in purifying natural FKBP23 and researching the function of glycosyl in FKBP23. Pig liver is a handy and abundant source to acquire the ER.
     The sequence of pFKBP23 was not reported. According to two highly conservative regions of nucleotide sequences of several detected species, we designed primers and used PCR to amplify the middle segment of the pFKBP23 gene. From this sequence we used nested PCR to extend the nucleotide sequence towards 5' and 3' ends for detecting the full length cDNA encoding pig FKBP23. Our result is available from GenBank with accession No. EU545235. We constructed a plasmid to express pFKBP23. Furthermore, we proved that the recombinant pFKBP23 can specifically bind to natural BiP, and the binding is interrelated with the Ca~(2+)concentration. These will be a foundation to research natural pFKBP23.
引文
[1] Pauling L. A Theory of the structure and process of formation of antibodies. J Am Chem Soc, 1940, 62 (3): 2643-2657.
    
    [2] Dickey F H. The role of organic peroxides in the induction of mutations. Proc Natl Acad Sci, 1949, 35 (5): 227-229.
    [3] Wulff G, Sarhan A. Uber die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angewandte Chemie, 1972, 84 (8): 364.
    [4] Vlatakis G, Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361: 645-647.
    [5] Shea K J, Spivak D A, Sellergren B. Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers. J Am Chem Soc, 1993, 115 (8): 3368-3369.
    [6] Ji H S, Mc Niven S, Ikebukuro K, et al. Selective piezoelectric odor sensors using molecularly imprinted polymers. Anal Chim Acta, 1999, 390 (13): 93-100.
    [7] Mosbach K, Haupt K. Some new developments and challenges in non-covalent molecular imprinting technology. J Mol Recogni, 1998, 11: 62-68.
    [8]Kugimiya A, Takeuchi T. Molecularly Imprinted Polymer-Coated Quartz Crystal Microbalance for Detection of Biological Hormone. Electroanalysis, 1999, 11(15): 1158-1160.
    [9] Liu J Q, Wulff G. Functional mimicry of the active site of carboxypeptidase a by a molecular imprinting strategy: cooperativity of an amidinium and a copper ion in a transition-state imprinted cavity giving rise to high catalytic activity. J Am Chem Soc, 2004, 126 (24): 7452-7453.
    
    [10] Liu J Q, Wulff G. Molecularly imprinted polymers with strong carboxypeptidase a-like activity: combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities. Angew Chem Int Ed Engl, 2004, 43 (10 ): 1287-1290.
    
    [11] Mao S Z, Dong Z Y, Liu J Q, et al. Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J Am Chem Soc, 2005, 127 (33): 11588-11589.
    
    [12] Sieman M, Andersson L I, Mosbach K. Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers. J Agric FoodChem, 1996, 44 (1): 141-145.
    [13] Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew Chem Int Ed Engl, 1995, 34: 1812-1832.
    [14] Mosbach K, Ramstroem. O. The emerging technique of molecular imprinting and its future impact on biotechnology. Bio/Technology, 1996, 14: 163-170.
    [15] Wulff G, Laucer M, Bohnke H. Rapid Proton Transfer as Cause of an Unusually Large Neighboring Group Effect. Angew Chem Int Ed Engl, 1984, 23: 741-742.
    [16] Wulff G, Haarer J. Enzyme-analog built polymers. 29.The preparation of defined chiral cavities for the racemic resolution of free sugars. Makromol Chem, 1991,192: 1329-1333.
    [17] Wulff G, Schulze I, Zabrocki K, et al. Enzyme-analog built polymers. 11. Binding sites in polymers with different numbers of binding groups. Makromol Chem, 1980, 181 (3): 531-544.
    [18] Andersson L I, O' Shannessy D J, Mosbach K. Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acid amides. Chromatographia, 1990, 513: 167-179.
    [19] Wulff G, Vietmeier J. Enzyme-analog built polymers. 26. Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules. Makromol Chem, 1989,190 (7): 1727-1735.
    [20] Shea K J, Sasaki D Y. On the control of microenvironment shape of functionalized network polymers prepared by template polymerization. J Am Chem Soc, 1989, 111 (9): 3442-3444.
    [21] Dickert F L, Besenbook H, Tortschanoff G. Molecular Imprinting Through van der Waals Interactions: Fluorescence Detection of PAHs in Water. Adv Mater, 1998,10 (2): 149-151.
    [22] Andersson L I, Mosbach K. Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions. J Chromatogr, 1990, 516: 313-322.
    [23] Sellergren B, Shea K J. Chiral ion-exchange chromatography: Correlation between solute retention and a theoretical ion-exchange model using imprinted polymers. J Chromatogr, 1993, 654: 17-28.
    [24] Sellergren B, Ekberg B, Mosbach K. Molecular imprinting of amino acid derivatives in macroporous polymers: Demonstration of substrate- and enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives. J Chromatogr, 1985, 347: 1-10.
    [25] Kempe M, Mosbach K. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase. J Chromatogr A, 1994, 664 (2): 276-279.
    [26] Dauwe C, Sellergren B. Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers. J Chromatogr A, 1996, 753: 191-200.
    [27] Whitcombe M J, Martin L, Vulfson E N. Predicting the selectivity of imprinted polymers. Chromatographia, 1998,47 (7/8): 457-464.
    [28] Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol. J Am Chem Soc, 1995,117:7105-7111.
    [29] Piletsky S A, Piletskaya E V, Yano K, et al. A biomimetic receptor system for sialic acid based on molecular imprinting. Anal Lett, 1996, 2: 157-170.
    [30] Fujii Y, Matsutani K, Kikuchi K. Formation of a specific coordination cavity for a chiral amino acid by template synthesis of a polymer Schiff base cobalt(III) complex. J Chem Soc, 1985,7:415-417.
    [31] Dhal P K, Arnold F H. Template-mediated synthesis of metal-complexing polymers for molecular recognition. J Am Chem Soc, 1991, 113 (19): 7417-7418.
    [32] Yoshikawa M, Ooi T, Izumi J I. Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate. J Appl Polym Sci, 1999, 72: 493-499.
    [33] Ramstroem O, Nicholls I A, Mosbach K. Synthetic peptide receptor mimics: highly stereoselective recognition in non-covalent molecularly imprinted polymers. Tetrahedron Asymmetry, 1994, 5: 649-655.
    [34] Kempe M, G lad M, Mosbach K. An approach towards surface imprinting using the enzyme ribonuclease A. J Molrecogn, 1995, 8: 35-39.
    [35] Liu X C, Olof R, Mosbach K, et al. Sugar acrylate-based polymers as chiral molecularly unprintable hydrogels. J Polym Sci PartA: Polymer Chemistry, 1999, 37: 1665-1671.
    [36] Yoshida M, Uezu K, Nakashio F, et al. Polyphosphazene Electrolytes. 2. Synthesis and Properties of New Polymer Electrolytes Based on Poly((amino)[(2-methoxyethoxy)ethoxy]) phosphazenes. Macromolecules, 1999, 33: 1237-1243.
    [37] Wulff G, Minarik M. J Liq. emplate imprinted polymers for HPLC separation of racemates. Chromatographia, 1990, 13 (15): 2987- 3000.
    [38] Haupt K. Molecularly imprinted sorbent assays and the use of non-related probes. Reactive&Functional Polymers, 1999,41: 125-131.
    [39] Matsui J, Miyoshi Y, Doblhoff D, et al. A molecularly imprinted synthetic polymer receptor selective for atrazine. Anal Chem, 1995, 67: 4404.
    [40] Sreenivasan K. On the application of molecularly imprinted poly (HEMA) as a template responsive release system. J Appl Polym Sci, 1999, 71 (11): 1819-1821.
    [41] Bartels H. On the order in silica gels with specific adsorption power. J Chromatogr, 1967, 30: 113.
    [42] Bartels H. Specifically absorbing silica gels. VI. Zeitschrift fuer Anorganische und Allgemeine Chemie, 1967, 350: 143.
    [43] Beckett A H, Anderson P. The determination of the relative configuration of morphine, levorphanol and laevophenazocine by stereoselective adsorbents. J Pharm Pharmacol, 1960, 12: 228-236.
    [44] Beckett A H, Youssef H Z. Active sites in stereoselective adsorbents as models of drug receptors and enzyme active site. J Pharm Pharmacol, 1963, 15: 253-266.
    [45] Morihara K, Kurihara S, Suzuki J. Footprint catalysis. I. A new method for designing tailor-made catalysts with substrate specificity: silica (alumina) catalysts for butanolysis of benzoic anhydride. Bull Chem Soc Jpn, 1988, 61(11): 3991-3998.
    [46] Morihara K, Kurokawa M, Kamata Y, et al. Enzyme-like enantioselective catalysis over chiral 'molecular footprint' cavities on a silica (alumina) gel surface. J Chem Soc Chem Comm, 1992,358.
    [47] Morihara K, Kawasaki S. Footprint catalysis. VI. Chiral molecular footprint catalytic cavities imprinted by a chiral template, bis(N-benzyloxycarbonyl-L-alanyl)amine, and their stereoselective catalyses. Bull Chem Soc Jpn, 1993, 66 (3): 906-913.
    [48] Kodakari N, Katada N, Niwa M. Molecular sieving silica overlayer on tin oxide prepared using an organic template. J Chem Soc Chem Comm, 1995, 623.
    [49] Kodakari N, Katada N, Niwa M. Molecular sieving property of silica overlayer on tin oxide generated by organic template. Appl Surf Sci, 1997, 121/122,292.
    [50] Kodakari N, Sakamoto T, Shinkawa K, et al. Molecular-sieving gas sensor prepared by chemical vapor deposition of silica on tin oxide using an organic template. Bull Chem Soc Jpn, 1998,71 (2): 513-519.
    [51] Dai S, Shin Y, Barnes C E, et al. Enhancement of uranyl adsorption capacity and selectivity on silica sol-gel glasses via molecular imprinting. Chem Mater, 1997, 9 (11): 2521.
    [52] Makote R D, Dai S. Matrix-induced modification of imprinting effect for Cu~(2+) adsorption in hybrid silica matrices. Anal Chim Acta, 2001,435 (1): 169-175.
    [53] Glad M, Norrlow O, Sellergren B, et al. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J Chromatogr, 1985, 347: 11-23.
    [54] Burow M, Minoura N. Molecular Imprinting: Synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase. Bioche Biophys Res Commun, 1996,227 (2): 419-422.
    [55] Ye L, Weiss R, Mosbach K. Synthesis and Characterization of Molecularly Imprinted Microspheres. Macromolecules, 2000, 33 (22): 8239-8245.
    [56] Bossi A, Piletsky S A, Piletska E V, et al. Surface-grafted molecularly imprinted polymers for protein recognition. Anal Chem, 2001, 73: 5281-5286.
    [57] Glad M, Reinholdsson J, Mosbach K L. Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations. React Poly, 1995, 25: 47.
    [58] Aherne A, Alexander C, Payne M J, et al. Bacteria-mediated lithography of polymer surfaces. J Am Chem Soc, 1996, 118 (36): 8771-8772.
    [59] Guo M, Zhao Z, Fan Y, Wang C, Shi L, et al. Protein-imprinted polymer with immobilized assistant recognition polymer chains. Biomaterials, 2006,27: 4381-4387.
    [60] Zhao Z, Wang C, Guo M , Shi L, Fan Y, Long Y, Mi H. Molecular imprinted polymer with cloned bacterial protein template enriches authentic target in cell extract. FEBS Letters, 2006, 580: 2750-2754.
    [61] Qin L, He X, Zhang W, et al. Surface-modified poly styrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins. Journal of Chromatography A, 2009, 1216: 807-814.
    [62] Ulbricht M, Belter M, Langenhangen U, et al. Novel molecularly imprinted polymer (MIP) composite membranes via controlled surface and pore functionalizations. Desalination, 2002, 149:293-295.
    [63]Sergeyeva T A,Piletsky S A,Piletska E V,et al.In Situ Formation of Porous Molecularly Imprinted Polymer Membranes.Macromolecules,2003,36:7352-7357.
    [64]Piletsky S A,Matuschewski H,Schedler U,et al.Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water.Macromolecules,2000,33:3092-3098.
    [65]Byrne M E,Park K,Peppas N A.Molecular imprinting within hydrogels.Advanced drug delivery reviews,2002,54:149-161.
    [66]William J,Wizeman W,Kofinas P.Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding.Biomaterials,2001,22(12):1485-1491.
    [67]Kimhi O,Bianco-peled H.Study of the interaction between protein-imprinted hydrogels and their templates.Langmuir,2007,23:6329-6335.
    [68]Casey B J,Kofinas P.Selective binding of carcinoembryonic antigen using imprinted polymeric hydrogels.J Biomed Mater Res A,2008,87(2):359-363.
    [69]雷建都,谭天伟。壳聚糖血红蛋白分子印迹介质的制备及优化。化学通报,2002,4:265-268。
    [70]Guo T,Xia Y,Hao G,et al.Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads.Biomaterials,2004,25:5905-5912.
    [71]Guo T,Xia Y,Hao G,et al.Chemically modified chitosam beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer.Carbohydrate Polymers,2005,62:214-221.
    [72]Okutucu B,Zihnioglu F,Telefoncu A.Shell-core imprinted polyacrylamide crosslinked chitosan for albumin removal from plasma.J Biomed Mater Res A,2008,84(3):842-845.
    [73]Shi H,Tsai W B,Ferrari S,Ratner B D.Template-imprinted nanostructured surfaces for protein recognition.Nature,1999,398:593-597.
    [74]Li Y,Yang H,You Q,et al.Protein Recognition via Surface Molecularly Imprinted Polymer Nanowires.Anal Chem,2006,78:317-320.
    [75]Choe J,VanderNoot V A,Linhardt R J,et al.Parameters Affecting the Efficiency of Affinity-Based Reversed Micellar Extraction and Separation(ARMES) in Glycoprotein Purification.Biotechnol progre,1997,13(4):440-445.
    [76]Venton D L,Gudipatie.Influence of protein on polysiloxane polymer formation:evidence for induction of complementary protein-polymer interaction.Biochimicaet Biophysica Acta,1995,1250:126-136.
    [77]Hirayama K,Burow M,Morikawa Y,et al.Synthesis of polymer-coated silica particles with specific recognition sites for glucose oxidase by the molecular imprinting technique.Chem Lett,1998,8:731-732.
    [78]Liao J L,Wang Y,Hjerten J.A novel support with artificially created recognition for the selective removal of proteins and for affinity chromatography.Chromatography,1996,42:259-262.
    [79]Hjerten J,Liao J L,Nakazato Ketal.Gels mimicking antibodies in there selective recognition of proteins.Chromatography,1997,44:227-234.
    [80]Hirayama K,Kameoka K.Synthesis of polymer particles with specific binding sites for lysozyme by a molecular imprinting technique and its application to a quartz crystal microbalance sensor.Bunseki kagaku,2000,49(1):29-33.
    [81]Slade C J.Molecular imprining of bovine serum albumin.Journal of Molecular Catalysis B:Enzymatic,2000,9:97-105.
    [82]Kempe M,Mosbach K.Separation of amino acids,peptides and proteins on molecularly imprinted stationary phases.J Chromatography A,1995,691:317-323.
    [83]Janiak D S,Kofinas P.Molecular imprinting of peptides and protiens in aqueous media.Anal Bioanal Chem,2007,389(2):399-404.
    [84]Andersson H S,Karlsson J G,et al.Study of the nature of recognition in molecularly imprinted polymers,Ⅱ[1]-Influence of monomer-template ratio and sample load on retention and selectivity.Journal of Chromatography A,1999,848:39-49.
    [85]Hirayama K,Burow M,Morikawa Y,et al.Synthesis of polymer-coated silica particles with specific recognition sifes for glucose oxidase by the molecular imprinting technique.Chem Lett,1998,8:731-732.
    [86]Tong D,Hetenyi C,Bikadi Z,et al.Some studies of the chromatographic properties of gel ('artificial antibodies/receptors') for selective adsorption of proteins.Chromatographia,2001,54(1-2):7-14.
    [87]Mayes A G,Mosbach K.Molecularly imprinted polymer beads:suspension polymerization using a liquid perfluorocarbon as the dispersing phase.Anal Chem,1996,68(21):3769-3774.
    [88]Bradley R,Kenneth J.Molecular Imprinting for the Recognition of N-Terminal Histidine Peptides in Aqueous Solution.Maeromolecules,2002,35:6192-6201.
    [89]Matsunaga T,Hishiya T,Takeuchi T.Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films.Analytica Chimica Acta,2007,591:63-67.
    [90]Fu Q,Sanbe H,Kagawa C,et al.Uniformly sized molecularly imprinted polymer for (S)-nilvadipine.Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein.Analytical Chemistry A,2003,75(2):191-198.
    [91]Rachkov A,Minoura N.Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach.J Chromatography A,2000,889:111-118.
    [92]Nishino H,Huang C S,Shea K J.Selective protein capture by epitope imprinting.Angew.Chem.Int.Edit,2006,45(15):2392-2396.
    [93]王虹,孙彦。分子印迹聚合物研究:从小分子到生物大分子。高分子通报,2005,1:86-93。
    [94]Piletsky S A,Piletsky E V,Chen B,et al.Chemical grafting of molecularly imprinted homopolymers to the surface of microplates.Application of artificial adrenergic receptor in enzyme-linked assay for b-agonists determination.Anal Chem,2000,72:4381-4385.
    [95]Deore B,Chen Z,Nagaoka T L.Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole.Anal Chem,2000,72:3989-3994.
    [96]Dickert F L,Hayden O,Halikias K P.Synthetic receptors as sensor coatings for molecules and living cells.Analyst,2001,126:766-771.
    [97]Malitesta C,Losito I,Zambonin P G.Molecularly imprinted electrosynthesized polymers:new materials for biomimetic sensors.Anal Chem,1999,71:1366-1370.
    [98]Peng H,Liang C,Zhou A,et al.Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine.Anal Chim Acta,2000,423(2):221-228.
    [99]Liu J K,Pan T,Woolley A T,et al.Surface-modified poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis.Anal Chem,2004,76:6948-6955.
    [100]郭天瑛,夏永青,郝广杰,张邦华。蛋白质分子印迹技术的研究进展。化工进展,2003,22:713-716。
    [101]Hoshino Y,Kodama T,Okahata Y,Shea K J.Peptide imprinted polymer nanoparticles:a plastic antibody.J Am Chem Soc,2008,19,130(46):15242-15243.
    [102]Tao Z Y,Tehan E,Bukowski R,et al.Templated xerogels as platforms for biomolecule-less biomolecule sensors.Analytica Chimica Acta,2006,564:59-65.
    [103]Wang Y,Zhou Y,Sokolov J,Rigas B,Levon K,Rafailovich M.A potentiometric protein sensor built with surface molecular imprinting method.Biosens Bioelectron,2008,24(1):162-166.
    [104]Long Y,Sun Y,Wang Y,Xing X C,et al.Molecular imprinted polymer with positively charged assistant recognition polymer chains for adsorption/enrichment of low content target protein.Chinese Science Bulletin,2008,53(17):2617-2623.
    [105]Sigal N H,Dumont F J.Cyclosporin A,FK-506,and rapamycin:pharmacologic probes of lymphocyte signal transduction.Annu.Rev.Immunol,1992,10:519-560.
    [106]Kofron J L,Kuzmic P,Kishore V,Colon-Bonilla E,Rich D H.Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay.Biochemistry 1991,30(25):6127-6134.
    [107]Schonbrunner E R,Mayer S,Tropschug M,Fischer G,Takahashi N,Schmid F X.Catalysis of protein folding by cyclophilins from different species.J.Biol.Chem.1991,266(6):3630-3635.
    [108]Schiene C,Fischer G.Enzymes that catalyse the restructuring of proteins.Curr.Opin.Struct.Biol,2000,10(1):40-45.
    [109]Superdock K R,Helderman J H.Immunosuppressive drugs and their effects.Semin.Respir.Infect,1993,8(3):152-159.
    [110]Rassow J,Mohrs K,Koidl S,Barthelmess I B,Pfanner N,Tropschug M.Cyclophilin 20 is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60. Mol. Cell. Biol, 1995, 15 (5): 2654-2662.
    [111] Fischer G. Peptidyl-prolyl cis/trans isomerases and their effectors. Angew. Chem. Int. Ed. Engl, 1994, 33(14): 1415-1436.
    [112] Harrison R K, Stein R L. Mechanistic studies of peptidyl prolyl cis-trans isomerase: evidence for catalysis by distortion. Biochemistry, 1990, 29: 1684-1689.
    [113] Harrison R K, Stein R L. Substrate specificities of the peptidyl prolyl cis-trans isomerase activities of cyclophilin and FK-506 binding protein: evidence for the existence of a family of distinct enzymes. Biochemistry, 1990, 29: 3813-3816.
    [114] Kofron J L, Kuzmic P, Kishore V, Colon-Bonilla E, Rich D H. Determination of kinetic constants for peptidyl prolyl cis-trans isomerase by an improved spectrophotometric assay. Biochemistry, 1991, 30: 6127-6134.
    [115] Ba Denian. Technique and Application of Modern immunology [M], United Press of Beijing Medical University and Chinese Academy of Medical Sciences, Peking Union Medical College, 1998, Beijing (in Chinese).
    [116]Ye Qifa. Clinical Guideline of Organ Transplantation [M], Science Press, 1999, Beijing (in Chinese).
    [117] Kahan B D. Cyclosporine: a revolution in transplantation. Transplant. Proc, 1999, 31 (1-2A): 14S-15S.
    
    [118] Marks AR. Cellular functions of immunophilins. Physiol. Rev, 1996, 76 (3): 631-649.
    [119] Handschumacher R E, Harding M W, Rice J, Drugge R J, Speicher D W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science, 1984, 226 (4674): 544-547.
    [120] Mi H, Kops O, Zimmermann E, Jaschke A, Tropschug M. A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett, 1996, 398 (2-3): 201-205.
    [121] Wang Y, Han R F, Zhang W Q, Yuan Y F, Zhang X B, Long Y, Mi H F. Human CyP33 binds specifically to mRNA and binding stimulates PPIase activity of hCyP33. FEBS Lett, 2008, 582: 835-839.
    [122] Kieffer L J, Seng T W, Li W, Osterman D G, Handschumacher R E, Bayney R M. Cyclophilin-40, a protein with homology to the P59 component of the steroid receptor complex. Cloning of the cDNA and further characterization. J. Biol. Chem, 1993, 268(17): 12303-12310.
    [123] Stamnes M A, Shieh B H, Chuman L, Harris G L, Zuker C S. The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell, 1991, 65 (2): 219-227.
    [124] Ferreira P A, Nakayama T A, Pak W L, Travis G H. Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Nature, 1996, 383 (6601): 637-640.
    [125] Barth S, Nesper J, Hasgall P A, Wirthner R, et al. The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol. Cell. Biol, 2007, 27: 3758-3768.
    [126] Lima A, Lima S, Wong J H, Phillips R S, et al. A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc. Natl. Acad. Sci, USA 2006, 103: 12631-12636.
    [127] Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S. Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. Eur. J. Biochem, 2004, 271: 1372-1381.
    [128] Schreiber S L. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science, 1991, 251 (4991): 283-287.
    [129] Jin Y J, Albers M W, Lane W S, Bierer B E, Schreiber S L, Burakoff S J. Molecular cloning of a membrane-associated human FK506- and rapamycin-binding protein, FKBP-13. Proc. Natl. Acad. Sci, USA 1991, 88 (15): 6677-6681.
    [130] Walensky L D, Gascard P, Fields M E, Blackshaw S, et al. The 13-kD FK506 binding protein, FKBP13, interacts with a novel homologue of the erythrocyte membrane cytoskeletal protein 4.1. J.Cell Biol, 1998, 141 (1): 143-153.
    [131] Solscheid B, Tropschug M. A novel type of FKBP in the secretory pathway of Neurospora crassa. FEBS Lett, 2000, 480 (2-3): 118-122.
    [132] Nakamura T, Yabe D, Kanazawa N, Tashiro K, Sasayama S, Honjo T. Molecular cloning, characterization, and chromosomal localization of FKBP23, a novel FK506-binding protein with Ca~(2+)-binding ability. Genomics, 1998, 54 (1): 89-98.
    [133] Leclercq M, Vinci F, Galat A. Mammalian FKBP-25 and its associated proteins. Arch. Biochem. Biophys, 2000, 380 (1): 20-28.
    [134] Lam E, Martin M, Wiederrecht G. Isolation of a cDNA encoding a novel human FK506-binding protein homolog containing leucine zipper and tetratricopeptide repeat motifs. Gene, 1995, 160 (2): 297-302.
    [135] Silverstein A M, Galigniana M D, Kanelakis K C, Radanyi C, et al. Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein. J. Biol. Chem, 1999, 274 (52): 36980-36986.
    [136] Coss M C, Winterstein D, Sowder R C, Simek S L. Molecular cloning, DNA sequence analysis, and biochemical characterization of a novel 65-kDa FK506-binding protein (FKBP65). J. Biol. Chem, 1995, 270 (49): 29336-29341.
    [137] Patterson C E, Schaub T, Coleman E J, Davis E C. Developmental regulation of FKBP65. An ER-localized extracellular matrix binding-protein. Mol. Biol. Cell, 2000, 11 (11): 3925-3935.
    [138] Kleizen B. Braakman I. Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell. Biol, 2004, 16: 343-349.
    [139] Helenius A. Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem, 2004, 73: 1019-1049.
    [140] Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell, 2006, 125:443-451.
    [141] Haas I G, Wabl M. Immunoglobulin heavy chain binding protein. Nature, 1983, 306 (5941): 387-389.
    [142] Munro S, Pelham H R. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell, 1986, 46 (2): 291-300.
    [143] Haas I G, Meo T. cDNA cloning of the immunoglobulin heavy chain binding protein. Proc. Natl. Acad. Sci, USA 1988, 85 (7): 2250-2254.
    [144] Zhang X, Wang Y, Li H, Zhang W, Wu D, Mi H. The mouse FKBP23 binds to BiP in ER and the binding of C-terminal domain is interrelated with Ca~(2+) concentration. FEBS Letters, 2004, 559 (1-3): 57-60.
    [145] Chen C, Ma H, Wang Y, Mi H. Binding of FKBP23 to BiP in ER shown by Gel Filtration Chromatography. Z. Naturforch C, 2007, 62c: 133-137.
    [146] Wang Y, Han R, Wu D, Li J, Chen C, Ma H, Mi H. The Binding of FKBP23 to BiP modulates BiP's ATPase Activity with its PPIase Activity. Biochem. Biophys. Res. Commun, 2007, 354 (1): 315-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700