锗硅异质结晶体管及其微波低噪声放大器技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,移动通信、雷达、GPS及高速数据处理系统的迅猛发展大大刺激了市场对高性能半导体器件的需求,高频、低压、低功耗、低噪声、小体积、多功能、低价格成为半导体器件的发展方向。而与硅和Ⅲ-Ⅴ族化合物半导体器件相比,以能带工程为理论基础的SiGe技术产品以更高的性价比迎合了市场的发展需求,成为国内外的热门研究领域。
     国外对SiGe技术的研究已有多年,且集中于大公司的研发部门,如IBM公司一直是SiGe技术的领跑者,其大量产品已投入市场。国内起步较晚,研究工作主要集中于高校,研究内容也偏重于理论,对SiGe产品的开发受工艺条件限制进展较慢。鉴于此,选择低成本、可实现量产的SiGe HBT及其低噪声放大器为研究对象,以中国电子科技集团公司第十三研究所硅芯片工艺部和硅设计应用部0.6μm工艺线为研究平台,开展了对实用SiGeHBT及以其为基础的低噪声放大器研究。
     1)讨论了SiGe合金材料特性,包括临界厚度、迁移率、禁带宽度、介电常数、有效态密度、重掺杂禁带变窄效应、本征载流子浓度等,并对SiGe HBT的直流特性和交流特性进行了理论分析。
     2)根据SiGe HBT电学参数要求,基于器件异质结构与实际工艺条件,设计了SiGe HBT的横、纵向结构参数,根据设计结构参数对SiGe HBT的特征频率和最大电流增益进行了理论计算,计算得到fT为16.9GHz,最大电流增益β=103。
     3)将APCVD SiGe外延技术,发射区台面自终止腐蚀技术,多晶硅磷掺杂及退火技术,铂硅金属硅化物制作技术有机结合起来,开发了一套多晶硅发射极台面SiGe HBT的制作工艺。基于该工艺制作的器件常温下测得β为70,集电极电流25mA下发射结正向导通电压V_(BEF)=0.85V,发射极开路下集电极与基极反向击穿电压BV_(CBO)=25V,最高截止频率为11.2GHz,在1GHz下最小噪声系数为1.54dB,相关功率增益达13.86dB。
     4)将SiGe HBT的管壳用等效电路表示,采用微波仿真软件Microwave Office提取了晶体管管芯S参数。
     5)采用制备的SiGe HBT作为有源器件,设计了一款两级级联低噪声放大器,在发射极上并联电容平衡了带宽内增益平坦度与电路噪声性能之间的关系。仿真结果表明:传输增益S21在0~2GHz内达到20dB以上,增益平坦度控制在1dB以内,噪声系数在0~2GHz频段内小于2.5dB,并在整个频带内稳定性系数大于1。
The rapid development of mobile communication, radar, GPS and high speed data processsystem stimulates a lot of demands to high-performance semiconductor devices greatly in recentyears, semiconductor devices turn to high frequency, low voltage, low power consumption, lownoise, small size and low cost application. Compared with Si devices and Ⅲ-Ⅴcompoundsemiconductor devices, the SiGe technology products with higher performance-cost ratio cater tothe development needs of market and become the hot field in the semiconductor world.
     Foreign research and development departments of large companies have studied SiGetechnology for many years, IBM has pushed much products into commerce. The research ofSiGe technology starts a little later in our country and is mostly developed in university, whichjust pay their attention on the theoretical research, the development of SiGe products advancedslowly by limited process conditions. Therefore, we choose the low cost SiGe HBT withAPCVD epitaxy and SiGe low noise amplifier as research object, we use the0.6μm Si processesline of the13thresearch Institute of China Electronics Technology Group Coporation as ourexperimental platform to develope practical SiGe products, the main research contents in thisdissertation are as follows:
     1) Models of SiGe physical parameter are summarized, emitter junction current injectionration, the hole reversed injection current in base, neutral base region recombination,space-charge region SRH recombination and space-charge region Augre recombination areanalysized, on the base of which the model of AC parameter and DC parameter are analyzed.
     2) According to requirement of electrical parameters of SiGe HBT, the hetero emitterjunction structure and practical process conditions, lateral and vertical structure parameters ofSiGe HBT are optimized, based on which characteristic frequency and the maximum current gain are expected, fT=16.9GHz, β=103.
     3) APCVD SiGe epitaxy technique, emission mesa self-ceasing etching technique, N typedoping poly silicon and annealing technique, and metal silicide fabricating technique are realizedsuccessfully, a set of processing technology of poly silicon emission mesa SiGe HBT isdeveloped, the test results show that the maximum DC current gain is70, its V_(BEF)is0.85V atIB=25mA, BV_(CBO)is up to25V, fT=11.2GHz, its Noise Fingure is1.54dB and GPis13.86dB atf=1GHz.
     4) The SiGe HBT package is represented by equivalent circuit and S parameter of the chipextraction is realized by Microwave Office.
     5) A low noise amplifiers using two stage cascade topology is designed, SiGe HBT as theactive device is used in the circuit. The contradiction between gain flatness in the wholebandwidth and the noise performance of circuit is solved by shunt capacitance at the emitter,simulation results show that its gain S21≥20dB, gain flatness is controlled in1dB, NoiseFigure≤2.5dB and the stability factor≥1in the whole0~2GHz frequencies.
引文
[1] Shockley W. Circuit element utilizing semiconductive materials. US Patent,2569347. Filed26June1948,expired24September1968
    [2] Koemer H. Theory of a wide-gap emitter for transistors. Proceedings of the IRE,1957,45(11):1535-1537
    [3] Bean J, Sheng T. Pseudomorphic growth of GeSi on Si by MBE. Appl.phys.Lett.,1983,44(1):102-104
    [4] People R, Bean J. Calculation of cirtical layer thickness versus lattice mismatch for GeSi/Siheterostructures. Appl.Phys.Lett.,1985,47(3):322-324
    [5] Bean J. Silicon-based semiconductor heterostructures: column Ⅳ bandgap engineering. Proceedings ofIEEE,1992,80(4):571-587
    [6] Caughey D, Thomas R. Carrier Mobilities in Silicon Emprically Related to Doping and Field. Proceedingsof IEEE,1967,55(12):2192-2193
    [7] Clifford A, Judy L. Bandgap and transport properties of Si1-xGexby analysis of nearly ideal Si/Si1-xGex/Siheterojunction bipolar transistors. IEEE Transanctions on Electron Devices,1989,36(10):2093-2104
    [8] Hinckley J M, Singh J. Hole transport theory in pseudomorphic Si1-xGexalloys grown on Si (001)substrates. Physical Review B,1990,41(5):2912-2926
    [9] Martin M R, Vogl P. Electronic band parameters in strained Si1-xGexalloys on Si1-yGeysubstrates. PhysicalReview B,1993,48(19):14276-14287
    [10] Crow R F C. Molecular Beam Epitaxy. New Jersey: Noyes Pulication,1995.465
    [11] Ismail K, Nelson S F, Chu J O, et al. Electron transport properties of Si/SiGe heterostructures:Measurements and device implications. Appl.Phys.Lett,1993,63(5):660-662
    [12] Crow G C, Abram R A. High mobility electron gases in Si/Si0.77Ge0.23quantum wells at1.7K.Semiconductor Science Technology,1999,14(8):721-726
    [13] Kasper E, Herzog H J, Kibbel H. Aone-dimensional SiGe superlattice grown by UHV epitaxy.Appl.Phys,1975,8(3):199-205
    [14] Bean J. Proceesings of the first international Symposium on silicon Molecular Beam Epitaxy. California:Electrochemical Society,1985.337
    [15]李炳辉,韩汝琦,王阳元.SiGe/Si应变异质结构应变和应力分布的模型研究.半导体学报,1996,17(2):81-86
    [16] Zhang J P, Hemment P L F, Parker E H C. Kinetics of wet oxidation at1000℃of Si0.5Ge0.5relaxed alloy.Semicond.Sci.Technol,1999,14:484-487
    [17]于卓,李代宗,成步文,等.UHV/CVD外延生长SiGe/Si表面反应动力学.半导体学报,2000,21(6):565-569
    [18] Nobuyuki Sugii. Thermal stability of the strained-Si/Si0.7Ge0.3heterostructure. Journal of Applied Physics,2001,89(11):6459-6463
    [19]黄文韬.SiGe/Si外延与SiGe HBT微波单片放大电路研究:[博士学位论文].保存地点:清华大学,2004
    [20]戴显英,金国强,董洁琼,等.锗硅/硅异质结材料的化学气相淀积生长动力学模型.物理学报,2011,60(6):1-7
    [21] Iyer S S, Patton G L, Delage S S, et al. Silicon-germanium base heterojunction bipolar transistors bymolecular beam epitaxy. IEDM’87Technical Digest. San Francisco, CA, USA: Proceedings of IEEE,1987.874-876
    [22] Gibbons J F, King C A, Hoyt J L, et al. Si/Si1-xGexheterojunction bipolar transistors fabricated by limitedreaction processing. IEDM’88Technical Digest. San Francisco, CA, USA: Proceedings of IEEE,1988.566-569
    [23] Patton G L, Harame D L, Stork J M C, et al. Graded-SiGe-base poly-emmiter hetorjunction bipolartransistors. IEEE Electron Device Letters,1989,10(12):534-535
    [24] Patton G L, Comfort J H, Meyrson B S.75GHz fTSiGe base HBTs, IEEE Electron DeviceLetters,1990,11(4):171-173
    [25] Fumihiko S,Takasuke H, Hiroshi T, etal. Sub-20psec ECL circuits with50GHz SiGe HBTs. IEDM’92Technical Digest. San Francisco, CA, USA: Proceedings of IEEE,1992.397-400
    [26] Crabble E F, Comfort J H, Lee W W, et al.73-GHz self-aligned SiGe-base Bipolar Transistors withPhosphorus doped polysilicon emitters, IEEE Electron Device Letters,1992,13(5):259-261
    [27] Harame D L, Crabbe E F, Cressler J D, et al. A high performance epitaxial SiGe-baseECL BiCOMStechnology. IEDM’92Technical Digest. San Francisco, CA, USA: Proceedings of IEEE,1992.19-22
    [28] Burghartz J N, Detlev A, Thomas O S, et al. High performance emitter-up/down SiGe HBT’s. IEEEElectron Device Letters,1994,15(9):360~362
    [29] Schuppen A, Gruhle A, Erben U,et al. Enhanced SiGe heterojunction bipolar transistor with160GHz-fmax,IEDM’95Technical Digest. Washington, DC, USA: Proceedings of IEEE,1995.743-746
    [30]张万荣,曾峥,罗晋生.线性缓变SiGe HBT低温基区渡越时间研究.微电子学,1996,26(3):204-211
    [31]张万荣,曾峥,罗晋生.Si/SiGe/Si双异质结晶体管的异质结势垒效应.电子学报,1996,24(11):43-47
    [32] Oda K, Ohue E, Tanabe M, et al.130GHz fTSiGe HBT technology. IEDM’97Technical Digest. SanFrancisco, CA, USA: Proceedings of IEEE,1997.791-794
    [33]张万荣,罗晋生,李志国,等.Si/SiGe/Si HBT直流特性的解析模型与模拟.北京工业大学学报,1998,24(2):32-36
    [34]张万荣,罗晋生,李志国,等.Si/SiGe/Si HBT频率特性的解析模型与模拟.固体电子学研究与进展,1998,18(3):291-300
    [35]张万荣,李志国,郭伟玲,等.Si/SiGe/Si HBT的优化设计,半导体技术,1998,23(4):13-18
    [36] Fumihiko S, Takasuke H, Hiroshi T, et al. A60GHz fTsuper self aligned selectively grown SiGe-BsaeBipolar transistor with trench isolation fabricated on SOI substrate and its Application to20Gb/s opticaltransmitter IC’s. IEEE Electron Devices,1999,46(7):1332-1338
    [37] Wasshio K, Ohue E, Shimamoto H, et al. A0.2-μm180-GHz-fmax6.7-ps-ECL SOI/HRS self aligned SEGSiGe HBT/CMOS technology for microwave and high-speed digital applications, IEDM’2000TechnicalDigest. San Francisco, CA, USA: Proceedings of IEEE,2000.741-744
    [38]钱伟,张进书,贾宏勇,等.微波低噪声SiGe HBT的研制.半导体学报,2000,21(5):445-450
    [39]贾霖,倪学文,关东旭,等. fT为13.5GHz的平面结构SiGe异质结构双极晶体管的研制.北京大学学报,2001,37(3):354-357
    [40] Jagannathan B, Khater M, Pagette F, et al. Self-alighed SiGe NPN Transistors with285GHz fmaxand207GHz fTin a Manufacturable Technology. IEEE Electron Devices,2002,23(5):258-260
    [41] Reich J, Jagannathan B, Chen H, et al. Performance and desigh considerations for high speed SiGe HBTsof fT/fmax=375GHz/210GHz. IEEE Inium Phosphide and Related Material Sonferance. Santa Barbara, CA,USA: Proceedings of IEEE,2003.741-744
    [42]刘道广,郝跃,徐世六,等.基于MBE的fmax为157GHZ的SiGe HBT器件.半导体学报,2005,26(3):528-530
    [43]徐阳,张伟,岳磊,等.一种新型双多晶自对准结构的高压功率SiGe HBT.微电子学与计算机,2006,23(5):93-96
    [44]张伟,王玉东,熊小义,等. TiSi2在微波低噪声SiGe HBT中的应用.半导体技术,2006,31(1):40-43
    [45] Krithivasan R, Yuan Lu, Cressler J D, et al. Half-terahertz operation of SiGe HBT. Electron DeviceLetters,2006,27(7):567-569
    [46] Jiahui Yuan, Cressler J D, Krithivasan R, et al. On the performance limits of cryogenically operated SiGeHBTs and its relation to Scaling for teraherz speeds. IEEE transactions on electron devices,2009,56(5):1007-1019
    [47] Rieh J S, Greenberg D, Stricker A, et al. Scaling of SiGe Heterojunction Bipolar Transistors. Proceedingsof the IEEE,2005,93(9):1522-1538
    [48] Bsnerjee B, Venkataraman S, Cressler D, et al. Cryogenically operation of third-generation200GHz peakfTsilicon-germanium heterojunction bipolar transistors. IEEE transactions on electron devices,2005,52(4):585-593
    [49] Cressler J D. Silicon-Germanium as an enabling technology for extreme environment electronics. IEEEtransactions on Device and Materials Reliability,2010,10(4):437-448
    [50] Chevalier P, Zerounian N, Barbalat B, et al. On the use of cryogenic measurements to Investigate thepotential of Si/SiGe: C HBTs for Terahertz application. IEEE Bipolar/BiCMOS Circuits andTechnology Meeting. Minneapolis, MN, USA: Proceedings of IEEE,2007.26-29
    [51] Potyraj P A, Petrosky A.230Watt S band SiGe heterojunction bipolar transistor. IEEE TransactionsMicrowave Theory Technolgy,1996,44(12):2392-2397
    [52] Mohammadi S, Ma Z Q, Park J, et al. SiGe/Si power HBTs for X-to K-Band applications. Digest ofIEEE REIC Symosium.Seattle, WA.2002.373-376
    [53] http://www.atmel.com
    [54] http://www.maxim.com
    [55] http://www.motorola.com
    [56] http://www.philips.com/semiconductor
    [57] http://www.infineon.com
    [58] http://www.conexant.com
    [59] http://www.st.com
    [60]刘道广.SiGe异质结晶体管及集成技术研究:[博士学位论文].保存地点:西安电子科技大学,2004
    [61]张静,李荣强,刘伦才,等.一种基于MBE差分外延技术的SiGe低噪声放大器.电子学,2006,36(5):569-571
    [62]黄毅文,张万荣,谢红云,等.一种无电感超宽带低噪声放大器的设计.微电子学,2009,39(6):807-810
    [63]黄璐,张万荣,谢红云,等.兼顾群延时与宽带匹配的SiGe HBT LNA设计.半导体技术,2009,34(11):1118-1121
    [64]孙博韬,张万荣,谢红云,等.采用噪声抵消技术的宽带SiGe HBT低噪声放大器设计.电子器件,2010,33(4):456-459
    [65] People R, Bean J C. Calculation of critical layer thickness versus lattice mismatch for GeSi/Sistrained-layer heterostructures.Appl.Phys.Lett.1985,47(3):322-324
    [66] Caughey D M, Thomas R E. Carrier Mobilities in Silicon Empirically Related to Doping and Field.Procceeding of IEEE,1967,55(12):2192-2193
    [67] Makoto M, Hiromi S, Katsuya O, et al. Ultra-Low-Power SiGe HBT Technology for Wide-RangeMicrowave Application. IEEE Bipolar/BiCMOS Circuits and Technology Meeting. Minneapolis, MN,USA: Proceedings of IEEE,2008.129-132
    [68] Rosenfeld D, Alterovitz S A. The effect of strain on the base resistance and transit time of ungraded andcompositional-graded SiGe HBTs. Solid-state Electronics,1994,37(1):119-126
    [69] Braunstein R, Moore A R, Herman F. Intrinsic optical absorption in germanium silicon alloys. PhysicalReview,1958,109(3):695-710
    [70] Bean J C, Sheng T T. Pseudomorphic growth of SiGe on Si by MBE. Applied Physics Letters,1983,44(1):102-104
    [71] People R, Bean J C. Modulation doping in SiGe/Si strained layer heterostructures. Applied PhysicsLetters,1984,45(11):1231-1233
    [72] People R, Bean J C. Calculation of critical layer thickness versus lattice mismatch for SiGe/Siheterostructures. Applied Physics Letters,1985,47(3):322-324
    [73] Bean J C. Silicon based semiconductor heterostructure: column Ⅳ bandgap engineering. Proceedings ofIEEE,1992,80(4):571-587
    [74] Yuan J S. Modeling Si/Si1-xGexHeterojunction Bipolar Transistors with High Breakdown Voltage.Solid-state Electronics,1992,35(7):921-926
    [75] Pejcinovic B, Leonard E K, Tang T W. Numerical simulation and comparison of Si BJT’s and Si1-xGexHBT’s. Transaction on Electron Devices,1989,36(10):2129-2136
    [76] Cressler J D, Comfort J H. On the profile design and optimization of epitaxial Si and SiGe base bipolartechnology for77k application–Part Ⅰ: transistor DC design considerations and part Ⅱ:circuitperformance issues. Transaction on Electron Devices,1993,40(3):523-556
    [77]陈治明,王建农.半导体器件的材料物理学基础.北京:科学出版社,2003.222
    [78] Mamontov Y V, Willander M. Simulation of bandgap narrowing and incomplete ionization in strainedSiGe alloys on <001>Si substrate. Solid-State electronics,1995,38(3):599-607
    [79] Poortmans J, Jain S C. Theoretically calculation and experimental evidence of the real and apperentbandgap narrowing due to heavily doping in p-type Si and strained SiGe layers. Solid-State Electronics,1993,36(12):1763-1771
    [80] Jain S C, Gosling T J.The combined effects of strain and heavy doping on the indirect bandgap Si andSiGe alloys. Solid-State Electronics,1991,34(5):445-452
    [81] matutinovic-krstelj Z, Venkataraman V. Base resistance and effective bandgap reduction in npn Si/SiGe/SiHBTs with heavy base doping. Transaction on Electron Devices,1996,43(3):457-465
    [82] Ashburn P, Boussetta H. Electrical determination of bandgap narrowing in bipolar transistors withepitaxial Si, epitaxial SiGe,and ion implanted base. Transaction Electron Devices,1996,43(5):774-783
    [83] Jain S C, Roulston D G. A simple expression for bandgap narrowing (BGN) in heavily doped Si, Ge,GaAs and GeSi strained layers. Solid-State Electronics,1991,34(5):453-465
    [84] Klaassen D B M, Slotboom J W. Unified apparent bandgap narrowing in n-type and p-type silicon.Solid-State Electronics,1999,35(2):125-129
    [85] Slotboom J W, Graaff H C. Measurement of Bandgap Narrowing in Si Bipolar Transistors. Solid-StateElectronics,1991,34(5):453-465
    [86] Kroemer H. Two Integral Relation Pertaining to the Electron Transport Through a Bipolar Transistor WithNonuniform Energy Gap in the Base Region. Solid-State Electronics,1985,28(11):1101-1103
    [87] Cotterll P, Yu Z. Velocity Saturation in the Collector of Si/Ge/sub x/Si/sub1-x//Si HBT’s. IEEE TransElectron Dev Lett,1990,11(10):431-433
    [88]戴显英,张鹤鸣,胡辉勇,等. SiGe HBT直流特性模型研究.西安电子科技大学学报,2004,31(2):165-169
    [89]胡辉勇.微波功率SiGe HBT关键技术研究:[博士学位论文].保存地点:西安电子科技大学,2006
    [90] Searle S, Pulfrey D L. An Analysis of Space-charge-region Recombination in HBT’s. IEEE Trans onElectron Devices,1994,41(4):476-483
    [91]张万荣,罗晋生,李志国,等.Si/SiGe/Si HBT频率特性的解析模型与模拟.固体电子学研究与进展,1998,18(3):291-300
    [92] Koldehoff A, Schorter M, Rein H M. A compact bipolar transistor model for very-high-frequencyapplications with special regard to narrow emitter stripes and high current densisties. Solid-StateElectorn,1993,36(7):1035-1048
    [93] Schuppen A, Gerlach S, Dietrich H, et al.1-W SiGe power HBT’s for mobile communication. IEEEMicrowave Guided Wave Letters,1996,1(9):341-343
    [94]陈星弼,张庆中.晶体管原理与设计.第二版.北京:电子工业出版社,2006.276
    [95]陈星弼,张庆中.晶体管原理与设计.第二版.北京:电子工业出版社,2006.143
    [96] Gruhle A. The influence of emitter-base junction design on collector saturation current, ideality factor,early voltage and device switching speed of Si/SiGe HBT’s. IEEE Transactions on Electron Devices,1994,41(2):198-203
    [97] Baliga B J. Modern Power Devices. second edition. New York: Wiley,1987.68-69
    [98] H Koemer. Theory of a wide-gap emitter for transistors. Proceedings of the IRE,1957,45(2):1535-1537
    [99]顾书林,王荣华,张荣,等. SiH4和GeH4生长SiGe合金的CVD反应研究.半导体学报,1995,16(7):528-532
    [100] Deboer W B, Meyer D J. Low-temperature chemical vapor deposition of epitaxial Si and SiGe layers atatmosphere pressure. Appl.Phys.Lett.1991,58:1286-1288
    [101]雷震霖,赵科新,余金中,等.UHV/CVD设备及其特性.真空.1997,12(6):14-17
    [102]刘志农,贾宏勇,罗广礼,等. UHV/CVD系统Si、SiGe低温掺杂外延.半导体学报,2001,22(3):317-321
    [103] Huang Wentao, Luo Guang li, Shi Jin, et al. HV/CVD grown relaxed SiGe buffer layers for SiGeHMOSFETs. Tsinghua Science and Technology.2003,8(2):130-134
    [104]徐世六,谢孟贤,张正璠. SiGe微电子技术.北京:国防工业出版社,2007.38-39
    [105] Chang G K, Carns T K, Rhee S S, et al. Selective etching of SiGe on SiGe/Si heterostructures.Electrochem.Soc,1991,138(1):202
    [106]邹德恕,徐晨,罗辑,等.射频溅射SiO2在制造Si/SiGe HBT中的应用.半导体技术,1999,24(4):14
    [107]王阳元,张利春,赵宝瑛,等.多晶硅发射极晶体管及其集成电路.北京:科学出版社,1992.149-155
    [108] Emmanuel F, Wai L, John D C, et al.73-GHz Self-Aligned SiGe-Base Bipolar Transistors withPhosphorus-Doped polysilicon Emitters. IEEE Electron devices,1992,13(5):259-261
    [109] Einspruch N G. VLSI Electronis Microstructure Science. New York: Academic Press,1981.121
    [110]张万荣,邱建军,金冬月,等. SiGe/Si HBT高频噪声特性研究.微电子学,2006,36(1):27-29
    [111]《中国集成电路大全》编委会著,微波集成电路.1995
    [112] Rwinhold Loding,Pavel Bretchko著.王子宇译.射频电路设计——理论与应用.北京:电子工业出版社,2002.95-97
    [113]冯新宇,车向前,穆秀春. ADS2009射频电路设计与仿真.北京:电子工业出版社,2010.110-112
    [114] Guillermo G. Microwave Transistor Amplifier Analysis and Design. Second Edition. Michigan: PrenticeHall,1997.345
    [115]秦世才,贾香莺.模拟集成电子学.天津:天津科学技术出版社,1994.136-137,388-392
    [116] David M P. Microwave and RF Wireless Systems. New York: John Wiley,2001.212
    [117]陈艳华,李朝辉,夏玮. ADS应用详解.北京:人民邮电出版社,2008.21
    [118]温左阳,王军. SiGe HBT小信号等效电路的参数直接提取.微电子学,2009,39(3):434-437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700