陶瓷材料SHS/QP超快速烧结机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自蔓延高温合成快速加压技术(SHS/QP)是一种节能高效的新型材料制备技术,它充分利用了SHS过程的优点,将其与动态快速加压过程有机地结合起来,一次完成材料的合成与密实化过程。其特点是成本低,制备时间短,各种工艺参数可自由调节,整个过程自动控制,设备简单,产品尺寸可较大并具有特殊的性能。
     SHS/QP技术制备陶瓷及陶瓷基复合材料耗时短(<5min),产物密度接近理论密度,用传统的扩散烧结机理很难解释,预示着不同的烧结机理。本文用SHS/QP工艺制备TiB_2陶瓷材料和TiB_2—Al_2O_3复相陶瓷,通过分析不同工艺条件对产物微观结构及残余应力的影响,提出了新的陶瓷材料SHS/QP超快速烧结机理。
     单相陶瓷材料SHS/QP超快速烧结机理:SHS反应后热量来不及散失,试样处于半固态。经过一定延迟时间对其施加一定的准等静压,陶瓷晶粒在高温高压下发生塑性变形及流动,杂质气体被排出,晶粒间通过扩散作用形成烧结颈部,最终得到密实化的烧结产物。材料烧结致密化主要由晶粒的粒子重排和塑性重排机制所控制;晶粒在高温下的扩散蠕变对晶粒间烧结颈部的连接有贡献,但受烧结时间的限制,对材料的烧结致密化贡献十分有限。
     复相陶瓷体系SHS/QP超快速烧结机理:SHS反应完成后,产物处于高温下的液一固混合态,材料烧结致密化主要由液相存在条件下晶粒的粒子重排和塑性重排机制所控制,主要通过各晶粒沿着有液相存在的晶界的相对滑动、转动和自身塑性变形方式来进行:液相的存在加快了颗粒重排和塑性重排的进程,同时液相填充孔隙和晶粒问的空隙,进一步提高了材料的致密化程度;固相的晶粒间扩散受到液相的限制,使得固相晶粒尺寸较小,扩散作用受烧结时间的限制,对材料的烧结致密化贡献十分有限。
Self-propagating High-temperature Synthesis/Quick Pressing or SHS/QP is a new processing technique with high efficiency and low cost. In the process, following the SHS reaction, when the sample is still in a red hot and soft state, a quick and high hydraulic force is applied on the sample, so that dense product can be obtained.
    The relative density of ceramic composites fabricate by SHS/QP in few minutes was nearly theoretical, which is hard to explain by traditional diffuse sintering theory and indicates a new sintering mechanism. In this paper, the TiB2 ceramic and TiB2-AI2O3 composites were processed by SHS/QP, and the microstructure and residual stress of the products under different relevant parameters were studied. A new mechanism of superfast sintering of ceramic composites by SHS/QP was firstly represented.
    The mechanism of sinter single-phase ceramic by SHS/QP is: after SHS the product is in a state of semi-solid because of the extra high combustion temperature. Once the reaction completes, and at a pre-established time delay, a quick and high hydraulic force is applied on the sample. The re-arrangement and plastic deformation of the grains under high temperature and pressure lead to the densification of the product. The gas impurities are excluded and finally the dense ceramic is obtained. The diffuse of the grains strengthens the neck of sintering. However, it has few contributions to the densification of materials due to the time limit.
    The mechanism of sinter diphase ceramic by SHS/QP is: after SHS the product is liquid-solid mixture because of the extra high combustion temperature. Once the reaction completes, and at a pre-established time delay, a quick and high hydraulic force is applied on the sample, which cause the re-arrangement by the gliding, turning of the grains following the channel of liquid and then the plastic deformation. At the same time the
    
    
    growth and diffuse of the solid grains are proceeding but limited by the extinction of liquid phase. The extinction of liquid phase accelerates the re-arrangement of the grains and enhances the densification by filling the clearance between solid grains. Since the time when the product is in high temperature is very short, the contribution of the diffuse is very limited to the densification of diphase composites, which is controlled by the re-arrangement and plastic deformation of the grains under high temperature and pressure.
引文
1. Z.A.Muzir, Synthesis of High Temperature Materials by Self-Propagating Combustion Methods, Am. Ceram. Sco. Bull., 1988, 67(2), 342-349
    2.傅正义.SHS技术研究进展——纪念SHS技术诞生三十周年.复合材料学报.2000,17(1):5
    3. W.Stadlbauer, W.Klading, Jj .Mater. Sci. Lett., vol.8(1989): 1217
    4. Z. A. Muzir, Reaction Synthesis Process: Mechanisms and Characteristics, Metall. Trans. A, 1992, 23A(1), 7-13
    5. L. J. Kecskes, Microstructural properties of combustion-synthesized and dynamically consolidated titanium boride and titanium carbide, J. Am. Ceram. Sco., 1990, 73(5), 1274-82
    6. D.A. Hoke et al, Reaction synthesis/dynamic compaction of titanium diboride, Metall. Trans. A, 1992, 23A(1), 77-85
    7. D. A. Hoke, et al, Consolidation of combustion-synthesized titanium diboride-based materials, J. Am. Ceram. Sco., 1995, 78(2), 275-84
    8.金正中,傅正义等,SHS结合密实化技术制备材料进展,硅酸盐通报,2001(4),37-40
    9. Yamada U, Miyamoto. SHS and dynamic compaction of multiphase ceramics. Inter. J. SHS. 1992, 1(2):275
    10. Lasalva. J. C., Meyer L W, Meyer M A. Forged densification after SHS for ermets. J. Am. Ceram. Soc., 1990, 73(7): 2156 L
    11. Stata N, Ikeuchi J. Combustion synthesis and dynamic compaction by liquid isostatic pressing. J. Ceram. Soc., 1987, 95:2
    12.傅正义等,TiB2系金属陶瓷的SHS/QP制备,硅酸盐学报,1996,24(6),654-659
    13.果世驹,粉末烧结理论,冶金工业出版社,1998
    14. Hirschhorn J S. Introduction to Powder Metallurgy. American Powder
    
    Metallurgy Institute, 1996:158
    15.杨波等,SHS/QC法制备TiC/Al_2O_3复合陶瓷的显微组织研究,材料工程,1999,4,43-46
    16.采用SHS/QP技术制备TiC-xNi金属陶瓷——Ⅱ.加压工艺与材料性能,复合材料学报,傅正义等,1997,14(3),61-64
    17.高技术新材料要览,《高技术新材料要览》编辑委员会编,中国科技出版社,1993
    18. Matkocich, V. I. Economy, Boron and Refractory Borides, Edited by V. I. Matkovich。 Springer-Verlag, New York, 1977.
    19.向军辉等,ZiB_2材料的研究现状及其应用,陶瓷工程,1996,30(4),40-44
    20. Y. Taneoka and O. Odanaras, J. Am. Ceram.Soc, Vol.72 (1989), P1047
    21. J. R. Payne and R. C. Dorward, DOE Annccal Reort, SAN-1275-TI, 1979
    22. Hoke D.A, J.Am. ceram, soc, Vol78 (2), 1995, P275
    23. L. G Boxall, A.V. cooke and H. W. Hayden, J.of METALS, November (1984), P35
    24. K. Grjotheim, J. Thonstad, Aluminium, Vol49 (1973), P803
    25.渡边修三,金属,Vol47(1978),P1327
    26.沈鸿才编,结构陶瓷及应用,国防工业出版社,北京,1988
    27. CHI-TINGHO, AI-KANGLI, J.MATER, SCI, Vol27(1992),P6213
    28.陈昌明,张立同等,兵器材料科学与工程,Vol.20,NO.2,P18
    29.向新,秦岩,TiB_2及其复合材料的研究进展,陶瓷学报,1999,20(2),112-117
    30. Nelson. D. F. P. G. Commbs. Advanced Ceramics, 1983,17:1301
    31. Yuriditsky. B. Y. Fun K Y. Refractory Mate. Hard. Mate, 1990,3:32
    32. Weon Hu Kim. Do-Hyeong Kim. J. Mater. Sci, 1996,31:5805
    33.熊拥军等,TiB_2颗粒增强铜基复合材料的研究,中南工业大学学报,2001,3(23),294-297
    34.全宏声,TiB_2增强的钛金属间化合物复合材料,材料工程,2001,7,24
    35.采用SHS/QP技术制备TiC-xNi金属陶瓷——Ⅰ.燃烧合成过程研究,复合
    
    材料学报,傅正义等,1997,14(2),56-60
    36. Eugene A. Olevsky, Scripta mater. 2001, 1139:1146
    37.张定铨,何家文著.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社,1999年
    38.刘联宝,杨钰平,柯春和等编著,陶瓷.金属封接技术指南,北京,国防工业出版社,1990.
    39.黄云,粉末冶金原理,冶金工业出版社,1990
    40.何代华,自蔓延高温合成方法焊接TiB_2陶瓷与金属的研究,硕士学位论文,武汉理工大学,2002
    41. WASAKIH, MORIT, Shear deformation behavior of Al-5% Mg in a semi-solid state [J]. Acta Mater, 1998,46(18):6351 6360.
    42. ZIMASF, ZAVALIANGOSA, Mechanical behavior of alloys with the quiaxed microstructure in the semi-solid state at high solid content [J]. Acta Mater, 1999,47(2):517 528.
    43. REINT De Boer, JAN Kowalski. A plasticity theory for fluid saturated porous solids [J]. Int J Eng Sci, 1983,20:1343 1357.
    44. Selsing J. Internal stresses in ceramics. J Am Ceram Soc, 1961, 44(8): 419
    45.殷声主编,燃烧合成,殷声主编,冶金工业出版社,1999年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700