燃烧合成过程中过渡金属碳化物、硼化物的生长行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属碳化物、硼化物由于具有许多优良的物理和化学性能,比如,高熔点、高硬度、高模量、高导电与导热性和高的化学稳定性等优点,在机械、化学和微电子领域被广泛应用,常用作高温陶瓷,高性能切削和耐磨工件,尤其是硬质合金中的增强相或复合材料中的增强体。众所周知,陶瓷颗粒的形貌和尺寸对陶瓷颗粒增强金属基复合材料的性能有着至关重要的影响。形状圆整的陶瓷颗粒增强金属基复合材料将比不规则形状的陶瓷颗粒增强金属基复合材料具有更好的综合性能。因此,研究陶瓷颗粒的生长形貌、生长机制及其控制因素,具有重要的理论和实际意义,将为实现陶瓷颗粒形貌的主动控制,发展先进的陶瓷颗粒增强金属基复合材料奠定必需的理论基础。此外,陶瓷晶体的非平衡生长动力学及其机制本身,就是晶体生长理论领域一个不断探索和深入研究的前沿与热点问题。事实上,由于燃烧合成陶瓷相是一个高温、快速、非线性、非稳态的传输过程(能量、质量和动量传输),同时,伴随着许多复杂的化学与物理现象,因此,影响陶瓷颗粒生长行为的因素是非常复杂的。目前,尽管国内外关于燃烧合成陶瓷颗粒的生长形貌开展了一些研究,也取得了一定进展,但是仅仅局限在燃烧动力学对陶瓷颗粒生长形貌影响规律的这个层面上,对陶瓷颗粒增强金属基复合材料制备过程中的关键基础理论问题,尤其是陶瓷颗粒的生长行为与机制缺乏系统、深入的研究。
    因此,本论文研究不同燃烧合成体系(Al–Ti/Zr/Nb/Ta–C/B)反应过程中,陶瓷颗粒(TiC_x、ZrC_x、NbC_x、TaC_x、TiB_2、ZrB_2、NbB_(2x)、TaB_(2x))的生长形貌及其演化过程;揭示不同陶瓷结构、不同动力学条件对燃烧合成陶瓷颗粒生长行为的影响规律;提出不同类型陶瓷的生长机制及其共性与个性规律。
    本文的主要研究结果如下:
    1)发现Al含量、碳源尺寸和原始反应物C/Ti摩尔比对Al–Ti–C体系SHS反应合成的TiC_x颗粒的生长形貌有着重要的影响;揭示出在SHS反应过程中,TiC_x颗粒的生长形貌随着计量比x值由低到高的演化规律为:从八面体→切角八面体→近球形→球形;建立了计量比与TiC_x颗粒生长形貌的关系,即当计量比x值较低时,TiC_x颗粒的生长形貌为八面体;当计量比x值较高时,TiC_x颗粒的生长形貌为切角八面体;当计量比x值进一步升高,TiC_x颗粒的生长形貌转变为近球形和球形。
    2)揭示出SHS反应过程中,TiC_x颗粒的生长方式主要为{111}面的二维层状生长。提出了TiC_x的计量比x值是TiC_x颗粒生长形貌演化的主要控制因素:当生成的TiC_x的计量比x值较低时,{111}面非常稳定,TiC_x以八面体状形核生长;随着计量比x值的升高,{111}面的稳定性下降,{100}面逐渐显露,TiC_x颗粒的生长形貌由八面体转变为切角八面体;当燃烧温度高于TR≈1800°C时,{100}面发生热力学粗糙化转变,变为圆滑曲面,从而形成了近球形的TiC_x颗粒;随着TiC_x计量比x值的进一步升高,{100}圆滑曲面逐渐长大、连结,使得TiC_x颗粒变的越来越圆。
    3)首次发现通过Al–Ti/Zr/Nb–B体系SHS反应合成的过渡金属硼化物的生长形貌存在形貌演化和生长成球形的必要条件是其计量比要存在一个较宽的区间:TiB_2和ZrB_2的计量比区间很窄,即使燃烧温度很高,它们的形貌没有发生明显的变化,均为六棱柱状。而NbB_(2x)的计量比区间很宽,因此,Al含量和原始反应物中的B/Nb摩尔比对合成的NbB_(2x)颗粒的生长形貌有着重要影响。揭示出在SHS反应过程中,NbB_(2x)颗粒的生长形貌随着计量比2x值由低到高的演化规律为:由六棱柱→多面体→近球形→球形;建立了计量比与NbB_(2x)颗粒生长形貌的关系,即在燃烧温度或B/Nb摩尔比较低时,反应生成的NbB_(2x)计量比较低,对应NbB_(2x)颗粒的生长形貌为规则的六棱柱;而在燃烧温度和B/Nb摩尔比较高时,反应生成的NbB_(2x)的计量比较高,对应NbB_(2x)颗粒的生长形貌多为近球形和球形。揭示出SHS反应过程中,TiB_2、ZrB_2和NbB_(2x)颗粒的生长方式均为{0001}和{1010}面的二维层状生长。
    4)揭示出计量比2x值是NbB_(2x)颗粒生长形貌演化的主要控制因素,首次提出NbB_(2x)的球形生长机制:当计量比较低时,{0001}和{1010}面非常稳定,NbB_(2x)颗粒生长为六棱柱状;随着计量比的升高,{0001}和{1010}面的稳定性逐渐下降,{1101}面逐渐显露,NbB_(2x)颗粒的生长形貌由六棱柱转变为多面体;当燃烧温度很高,且超过一定值后,{1101}面发生粗糙化转变,变为圆滑曲面,从而导致NbB_(2x)颗粒由多面体转变为近球形;随着计量比的进一步升高,{1101}曲面逐渐长大,NbB_(2x)颗粒变的越来越圆。
    5)提出了在燃烧合成过程中,过渡金属陶瓷TMCs(TiC_x、NbC_x、ZrC_x、TaC_x)、TMNs(TiNx)、TMDs(TiB_2、ZrB_2、NbB_(2x)、TaC2x)颗粒生长形貌演化的个性与共性规律。
    ⅰ)共性规律:
    提出了SHS反应合成TMCs、TMNs、TMDs生长形貌发生演化的必要条件是其计量比区间要宽;建立了SHS反应合成TMCs、TMNs、TMDs的计量比与生长形貌演化的关系;同时,揭示了燃烧温度对生长形貌球化动力学的影响规律,即随着化学计量比和燃烧温度由低到高,TMCs、TMNs、TMDs生长形貌的变化规律为:TMCs、TMNs:八面体→切角八面体→近球形→球形;TMDs:六棱柱→多面体→近球形→球形。
    ⅱ)个性规律:揭示出不具有较宽计量比区间的TiB_2和ZrB_2在燃烧合成过程中不存在生长形貌的演变过程。
    6)揭示出使用碳纳米管(CNTs)作为碳源,能够明显增加Me (Cu/Al/Fe)–Ti–CNTs体系的反应活性,使传统的Cu/Al/Fe–Ti–C(石墨、碳黑)体系完全反应的最高金属含量由67.12wt.%Cu、46.65wt.%Al、77.4wt.%Fe提高到80wt.%Cu、70wt.%Al、80wt.%Fe;发现使用CNTs作为碳源,在高含量Me (Cu/Al/Fe)–Ti–CNTs体系,合成具有不同形状、纳米尺寸的TiC_x颗粒。
    7)揭示出在Me (Cu/Al/Fe)–Ti–CNTs体系中,金属组元Me (Cu/Al/Fe)对TiC_x颗粒生长尺寸与形貌的影响规律与作用机制:在Fe–Ti–CNTs体系中,由于C在Fe熔体中溶解速度较快而扩散速度较慢,TiC_x颗粒在富[C]区域中快速形核、生长,因此,TiC_x具有较高的计量比,生长形貌多为立方体和近球状,且尺寸较大。反之,在Cu/Al–Ti–CNTs体系中,由于C在Cu/Al熔体中溶解速度较慢而扩散速度较快,TiC_x在十分贫[C]的环境下形核、生长,导致生成的TiC_x颗粒的计量比非常低,生长形貌多为八面体状,且尺寸较小。
    总之,本文通过对不同体系燃烧合成过程中,过渡金属陶瓷颗粒的生长行为的研究,揭示了不同陶瓷结构、不同动力学条件对过渡金属陶瓷颗粒生长行为的影响规律;提出了不同类型陶瓷的生长机制及其共性与个性规律;为实现陶瓷颗粒形貌的主动控制,发展先进的陶瓷颗粒增强金属基复合材料奠定必需的理论基础。
Due to many excellent physical and chemical properties, such as high melting point,high hardness, high modulus, high thermal conductivity and high chemical stability,transition metal carbides and borides are widely used in mechanical, chemical andmicroelectronics applications. They are generally used as high–temperature ceramics,high–performance cutting and wear–resistant workpiece, especially reinforcing particles inthe cemented carbide or composite materials. As known, the morphology of the reinforcingceramic particles in the ceramic reinforced metal matrix composites has a critical impact ontheir properties. The matrix composites with round reinforcing particles have betterproperties than those with irregular shaped reinforcing particles. Therefore, it is of greatpractical significance to study the growth morphology, growth mechanism and thecontrolling factors for the ceramic particles. Moreover, the non–equilibrium growth kinetics(and mechanism) of the ceramics is also an important exploration and research direction inthe theoretical field of crystal growth. In fact, the combustion synthesis of ceramics is a hightemperature, fast, non–linear, non–steady–state transfer process, accompanied by numerouschemical and physical phenomena. Therefore, the factors influencing the growth behavior ofthe ceramics are very complicated. So far, there have been some work on the growthmorphology of the ceramic particles formed during combustion synthesis. However, thesework are mainly focused on the influencing regularity of the combustion kinetics on thegrowth morphology of the ceramic particles. The study on the underlying key theoreticalquestions during the fabrication of the ceramic–metal composites, especially the growthbehavior and mechanism of the ceramic particles, is rather limited.
    Therefore, in this thesis, the growth behaviors of the ceramic particles (TiC_x, ZrC_x,NbC_x, TaC_x, TiB2, ZrB2, NbB2xand TaB2x) formed in the combustion systems ofAl–Ti/Zr/Nb/Ta–C/B were studied; the influencing regularity of the ceramic structures andthe kinetics conditions on the growth behavior of the ceramic particles were revealed; thegrowth mechanisms of different ceramic particles and their commonness and individuality were discussed.
    The main results are as follows:
    1) It was found that the Al content, carbon source and reactant C/Ti molar ratio haveimportant effects on the growth morphology of the TiC_xparticles formed in the Al–Ti–Csystem; The morphology evolution regularity of the TiC_xparticles with the increasingstoichiometry during the SHS was suggested as from octahedron→truncated–octahedron→sphere–like→sphere; The relationship between the growth morphology of the TiC_xand its stoichiometry was established, that is, in the case of quite low stoichiometry, theTiC_xparticles grow to octahedron, while in the case of relatively high stoichiometry, theTiC_xparticles grow to truncated–octahedron, and when the stoichiometry furtherincreases, the TiC_xparticles grow to sphere–like and sphere.
    2) The growth mode of the TiC_xparticles during the SHS was suggested as thetwo–dimensional layer growth on the {111} surfaces. The main controlling factor of thegrowth morphology of the TiC_xparticles was suggested as the stoichiometry: When thestoichiometry of the formed TiC_xis very low, the {111} surfaces are quite stable, and theTiC_xparticles nucleate and grow as octahedron. With the increase in the stoichiometry,the {111} surfaces become less–stable, and the {100} surfaces begain to be exposed.Then, the shapes of the TiC_xparticles change from octahedron to truncated–octahedron.If the combustion temperature is higher than TR≈1800°C, the {100} surfaces undergoa roughening transition and become round, which makes the TiC_xbecome thespherical–like particles. With the further increase in the stoichiometry or combustiontemperature, the {100} surface grow up gradually, and the TiC_xparticles become moreand more round.
    3) It was found firstly that necessary condition for the existence of the morphologyevolution and spherical growth shape for the transition metal diborides formed duringthe SHS in Al–Ti/Zr/Nb–B systems is there must exist a wide stoichiometric range. Forthe borides (TiB_2and ZrB_2) with no wide stoichiometric ranges, even the combustiontemperature becomes quite high, their shapes don’t change considerably and keep beingthe hexagonal–prisms, while for NbB_(2x)with a wide stoichiometric range, itsmorphology changes significantly with the Al content and the reactant B/Nb molar ratio;The morphology evolution regularity of the NbB_(2x)particles during the SHS with theincreasing stoichiometry was suggested as from hexagonal–prisms→polyhedron→sphere–like→sphere; The relationship between the growth morphology of the NbB_(2x)and its stoichiometry was established, that is, in the case of low stoichiometry, the NbB_(2x)particles grow to hexagonal–prisms, while in the case of high stoichiometry, the NbB_(2x)particles grow to sphere–like and sphere. The growth mode of the TiB_2, ZrB_2and NbB_(2x)particles during the SHS was suggested as the two–dimensional layer growth on the {0001}and {1010}surfaces.
    4) The main controlling factor of the growth morphology of the NbB_(2x)particles wassuggested as the stoichiometry, and the spherical growth mechanism of the NbB_(2x)particles was firstly proposed: When the stoichiometry is low, the {0001}and {1010}surfaces are very stable, and the NbB_(2x)particles grow to the hexagonal–prisms. With theincrease in the stoichiometry, and stability of the {0001}and {1010}surfaces isgradually decreased; while the {1101}surfaces gradually emerge. Then, the NbB_(2x)particles change their shapes from hexagonal–prism to polyhedron. When thecombustion temperature is high and exceeds a certain value, the {1101}surfacescomposed with the side–facets of the growth steps are rourhed and become round,inducing the formation of the spherical–like NbB_(2x)particles. With the further increase inthe stoichiometry, the NbB_(2x)particles become more and more round.
    5) The commonness and individuality of the morphology evolution of the transition metalcarbides (TiC_x, ZrC_x, NbC_xand TaC_x), nitrides (TiNx) and borides (TiB_2, ZrB_2, NbB_(2x)and TaC2x) during the SHS were summarized.
    ⅰ) Commonness:The necessary condition for the morphology evolution of the TMCs, TMNs andTMDs particles during the SHS was suggested as the wide stoichiometric ranges; Therelationship between the growth morphology and their stoichiometry was establishedand the effect of the combustion temperature on the spherical kinetics of the growthmorphology was revealed, that is, with the increase in the combustion temperature andstoichiometry, the morphology of the TMCs and TMNs evolves from octahedron→truncated–octahedron→sphere–like→sphere, and that of the TMDs evolves fromhexagonal–prisms→polyhedron→sphere–like→sphere.
    ⅱ) Individuality:For the borides (TiB_2and ZrB_2) with no wide stoichiometric ranges, there is nomorphology evolution for them during the SHS.
    6) It was disclosed that the reactive activity of the Me (Cu/Al/Fe)–Ti–CNTs systems can begreatly increased with using CNTs as carbon source, and the higheat metal contents forthe complete raction during the SHS were increased from67.12wt.%Cu,46.65wt.%Aland77.4wt.%Fe to80wt.%Cu,70wt.%Al and80wt.%Fe, respectively; With usingthe CNTs as carbon source, the nano TiC_xparticles with different shapes can besynthesized in the Me (Cu/Al/Fe)–Ti–CNTs systems with high metal contents.
    7) The influence regularity and affect mechanism of the metal component on the size andmorphology of the TiC_xparticles formed in the Me (Cu/Al/Fe)–Ti–CNTs systems weredisclosed: In the Fe–Ti–CNTs system, because of the fast dissolution rate but the low diffusion rate of carbon in Fe, the TiC_xparticles form in the [C]–rich regions and growrapidly to relatively larger sizes. Moreover, the stoichiometry of these formed TiC_xparticles in the Fe melt is relatively high and thus their growth shapes are cube andsphere–like. In the Cu–and Al–Ti–CNTs systems, the CNTs dissolve more slowlybecause of the poor chemical reactivity. In this case, the TiC_xforms and grows under acondition of [C] scarcity. Hence, the TiC_xparticles grown in these two melts are withrelatively small sizes, and the TiC_xstoichiometry formed at the combustion stage is low,and accordingly, the TiC_xgrowth shape is octahedron.
    In summary, in this thesis, the growth behaviors of the ceramic particles (TiC_x, ZrC_x,NbC_x, TaC_x, TiB_2, ZrB_2, NbB_(2x)and TaB_(2x)) formed in the combustion systems ofAl–Ti/Zr/Nb/Ta–C/B were studied; the influencing regularity of the ceramic structures andthe kinetics conditions on the growth behavior of the ceramic particles was revealed; thegrowth mechanisms of different ceramic particles and their commonness and individualitywere suggested, which lays the necessary theoretical basis for the active control of theceramic particle morphology and the development of advanced ceramic particles reinforcedmetal matrix composites.
引文
[1]周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995.
    [2] DANIEL B S S, MURTHY V S R, MURTY G S. Metal–ceramic composites viain–situ methods[J]. Journal of Materials Processing Technology,1997,68(2):132–155.
    [3] TJONG S C, MA Z Y. Microstructural and mechanical characteristics of in situ metalmatrix composites[J]. Materials Science and Engineering,2000, R29:49–113.
    [4]李荣久.陶瓷–金属复合材料[M].北京:冶金工业出版社,2004.
    [5] KENNEDY A R, WYATT S M. Characterising particle–matrix interfacial bonding inparticulate Al–TiC MMCs produced by different methods[J]. Composites Part A:Applied Science and Manufacturing,2001,32(3–4):555–559.
    [6] TONG X C, FANG H S. Al–TiC composites in situ–processed by ingot metallurgy andrapid solidification technology: Part II. Mechanical behavior[J]. Metallurgical andMaterials Transactions A,1998,29A(3):893–902.
    [7] VALLAURI D, ATíAS ADRIáN I C, CHRYSANTHOU A. TiC–TiB2composites: Areview of phase relationships, processing and properties[J]. Journal of the EuropeanCeramic Society,2008,28(8):1697–1713.
    [8] DONG S J, ZHOU Y, CHANG B H, et al. Formation of a TiB2–reinforcedcopper–based composite by mechanical alloying and hot pressing[J]. Metallurgicaland Materials Transactions A,2002,33(4):1275–1280.
    [9]袁润章.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社,1994.
    [10]殷声.自蔓延高温合成技术和材料[M].北京:冶金工业出版社,1995.
    [11]严新炎,孙国雄. SHS技术的发展及其应用[J].机械工程材料,1995,19(5):1–5.
    [12]严有为,魏伯康,林汉同,等. SHS基础研究的现状及展望[J].汽车工业与材料,1996,12:5–9.
    [13]殷声.燃烧合成[M].北京:冶金工业出版社,1999.
    [14]傅正义. SHS技术研究进展—纪念SHS技术诞生三十周年[J].复合材料学报,2000,1(17):5–10.
    [15]张廷安,赵亚平,杨欢,等.自蔓延高温合成的研究进展[J].材料导报,2001,9(15):5–8.
    [16]金云学,张二林,曾松岩.自蔓延合成技术及原位自生复合材料[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [17] MUNIR Z A, HOLT J B. Combustion and Plasma Synthesis of High–TemperatureMaterials[M]. New York: VCH,1990.
    [18] MOORE J J, FENG H J. Combustion synthesis of advanced materials: Part I. reactionparameters[J]. Progress in Materials Science,1995,39(4–5):243–273.
    [19] MOORE J J, FENG H J. Combustion synthesis of advanced materials: PartⅡ.Classification, application and modeling[J]. Progress in Materials Science,1995,39(4–5):275–316.
    [20] OYAMA S T. The Chemistry of Transition Metal Carbides and Nitrides[M]. NewYork: Springer,1996.
    [21] MUETTERTIES E L. The Chemistry of Boron and its Compounds[M], NewYork:Wiley,1967.
    [22] SAMSONOV G V, VINITSKII I M. Handbook of Refractory Compounds[M].NewYork: Plenum Press,1980.
    [23] KAMPE S L, CHRISTODOULOU J, FENG C R, et al. The effect of matrixmicrostructure and reinforcement shape on the creep deformation of near–γ titaniumaluminide composites[J]. Acta Materialia,1998,46(8):2881–2894.
    [24] QUESTED T E, GREER A L. The effect of the size distribution of inoculant particleson as–cast grain size in aluminium alloys[J]. Acta Materialia,2004,52(13):3859–3868.
    [25] CHEN C R, QIN S Y, LI S X, et al. Finite element analysis about effects of particlemorphology on mechanical response of composites[J]. Materials Science andEngineering A,2000,278(1–2):96–105.
    [26] TIRTOM, GüDEN M, YILDIZ H. Simulation of the strain rate sensitive flowbehavior of SiC–particulate reinforced aluminum metal matrix composites[J].Computational Materials Science,2008,48(4):570–578.
    [27] MA Z Y, TJONG S C, LI Y L, et al. High temperature creep behavior of nanometricSi3N4particulate reinforced aluminium composite[J]. Materials Science andEngineering A,1997,225:125–134.
    [28] ARTZT E. Size effects in materials due to microstructural and dimensional constraints:a comparative review[J]. Acta Materialia,1998,46:5611–5626.
    [29] YING D Y, ZHANG D L. Processing of Cu–Al2O3metal matrix nanocompositematerials by using high energy ball milling[J]. Materials Science and Engineering A,2000,286:152–156.
    [30] KANG Y C, CHAN S L. Tensile properties of nanometric Al2O3particulate reinforcedaluminum matrix composites[J]. Materials Chemistry and Physics,2004,85:438–443.
    [31] WOO K D, ZHANG D L. Fabrication of Al–7wt%Si–0.4wt.%Mg/SiC nanocompositepowders and bulk nanocomposites by high energy ball milling and powdermetallurgy[J]. Current Applied Physics,2004,4:175–178.
    [32] HASSAN S F, GUPTA M. Development of high performance magnesiumnano–composites using nano–Al2O3as reinforcement[J]. Materials Science andEngineering A,2005,392:163–168.
    [33]吴玉程,王涂根. AlN和Al2O3纳米颗粒增强铜基复合材料[J].合肥工业大学学报(自然科学版),2005,28(9):1031–1034.
    [34] LEE C J, HUANG J C, HSIEH P J. Mg based nano–composites fabricated by frictionstir processing[J]. Scripta Materialia,2006,54:1415–1420.
    [35] HESABI Z R, HAFIZPOUR H R, SIMCHI A. An investigation on the compressibilityof aluminum/nano–alumina composite powder prepared by blending and mechanicalmilling[J]. Materials Science and Engineering A,2007,454–455:89–98.
    [36] WONG W L E, GUPTA M. Improving overall mechanical performance of magnesiumusing nano–alumina reinforcement and energy efficient microwave assisted processingroute[J]. Advanced Engineering Materials,2007,9:902–909.
    [37]时新刚,冯柳,王英,等.纳米颗粒增强铜基复合材料的最新研究动态及发展趋势[J].冶金信息导刊,2007,1:26–29.
    [38] LIU Y Q, CONG H T, WANG W, et al. AlN nano particle reinforced nano crystallineAl matrix composites: fabrication and mechanical properties[J]. Materials Science andEngineering A,2009,505:151–156.
    [39] HEMANTH J. Development and property evaluation of aluminum alloy reinforcedwith nano–ZrO2metal matrix composites (NMMCs)[J]. Materials Science andEngineering A,2009,507:110–113.
    [40] MERZHANOV A G. The chemistry of self–propagating high–temperaturesynthesis[J]. Journal of Materials Chemistry,2004,14:1779–1786.
    [41] MERZHANOV A G, ROGACHEV A S. Structural macrokinetics of SHS processes[J].Pure and Applied Chemistry,1992,64(7):941–953.
    [42]焦元红,张前. SHS技术及应用研究综述[J].黄石理工学报,2006,22(4):72–75.
    [43]李强,于景媛,穆柏椿.自蔓延高温合成(SHS)技术简介[J].辽宁工学院学报,2001,21(5):61–64.
    [44] UNIR Z A, HOLT J B. Combustion and Plasma Synthesis of High–TemperatureMaterials[M]. Weinheim: VCH,1990.
    [45] HIRAO K, MIYAMOTO Y, KOLZUMI M. Combustion reaction characteristics in thenitridation of silicon[J]. Advance Ceramic Materials,1986,12(4):780–783.
    [46]王华彬,韩杰才,杜善义.自蔓延高温合成技术应用的进展[J].功能材料,1977,28(2):115–121.
    [47]殷声,赖和恰.自蔓延高温合成法(自蔓延高温合成)的发展[J].粉末冶金技术,1992,10(3):223–227.
    [48]柳牧,殷声,林涛,等.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社,1994.
    [49]王声宏,张荣声,任伟.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社,1994.
    [50]张树格.燃烧合成技术的起源及其在我国的发展[J].粉末冶金技术,1997,15(4):295–298.
    [51]李建保,周益春.新材料科学及其实用技术[M].北京:清华大学出版社,2004.
    [52]刘林,傅恒志,史正兴.高温合金中碳化物的初生形貌与晶体结构的关系[J].金属学报,1989,25(4):282–287.
    [53] STORMS E K. The Refractory Carbides[M]. New York: Academic Press,1967.
    [54] TOTH L E. Transition Metal Carbides and Nitrides[M]. New York: Academic Press,1971.
    [55] MASSALSKI T B, SUBRAMANIAN P R, OKAMOTO H. Binary alloys phasediagrams Materials Park (OH)[M]. ASM International,1990.
    [56] LIPATNIKOV V N, REMPEL A A, GUSEV A I. Atomic ordering and hardness ofnonstoichiometric titanium carbide[J]. International Journal of Refractory Metals andHard Materials,1997,15(1–3):61–64.
    [57] FERNANDES J C, ANJINHO C, AMARAL O M, et al. Characterisation ofsolar–synthesised TiCx(x=0.50,0.625,0.75,0.85,0.90and1.0) by X–ray diffraction,density and Vickers microhardness[J]. Materials Chemistry and Physics,2002,77(3):711–718.
    [58] FRUMIN N, FRAGE N, POLAK M, et al. Wettability and phase formation in theTiCx/Al system[J]. Scripta Materialia,1997,37(8):1263–1267.
    [59] DUDIY S V, LUNDQVIST B I. Wetting of TiC and TiN by metals[J]. PhysicalReview B,2004,69(12):125421.1–125421.16.
    [60] WILLENS R H, BUEHLER E, MATTHIAS B T. Superconductivity of theTransition–Metal Carbides[J]. Physical Review1967,159(2):327–330.
    [61] SCHWARZT K, ROSCH N J. Effects of carbon vacancies in NbC onsuperconductivity[J]. Journal of Physics C: Solid State Physics,1976,9: L433–L437.
    [62] SPENGLER W, KAISER R, CHRISTENSEN A N, et al. Raman scattering,superconductivity, and phonon density of states of stoichiometric andnonstoichiometric TiN[J]. Physical Review B,1978,17(3):1095–1101.
    [63] ADACHI S, WADA T, MIHARA T, et al. Fabrication of titanium carbide ceramics byhigh–pressure self–combustion sintering of titanium powder and carbon fiber[J].Journal of American Ceramic Society,1989,72(5):805–809.
    [64] KECSKES L J, NIILER A. Impurities in the combustion synthesis of titaniumcarbide[J]. Journal of American Ceramic Society,1989,72(4):655–661.
    [65] HOLT J B, MUNIR Z A. Combustion synthesis of titanium carbide: theory andexperiment[J]. Journal of Materials Science,1986,21(1):251–259.
    [66] KNYAZIK V A, MERZHANOV A G, SOLOMONOV V B, et al. Macrokinetics ofhigh–temperature titanium interaction with carbon under electrothermal explosionconditions[J]. Combustion Explosive and Shock Waves,1985,21(3):333–337.
    [67] CHOI Y, RHEE S W. Effect of carbon source on the combustion synthesis of TiC[J].Journal of Materials Science,1995,28(24):4637–4644.
    [68] CHOI Y, MULLINS M E, WIJAYATILLEKE K, et al. Fabrication of metal matrixcomposites of TiC–Al through self–propagating synthesis reaction[J]. Metallurgicaland Materials Transactions A,1992,23:2387–2392.
    [69] CHOI Y, RHEE S W. Effect of aluminium addition on the combustion reaction oftitanium and carbon to form TiC[J]. Journal of Materials Science,1993,28(24):6669–6675.
    [70] COCHEPIN B, HEIAN E, KARNATAK N, et al. TiC nucleation/growth processesduring SHS reactions[J]. Powder Technology,2005,157(1–3):92–99.
    [71] COCHEPIN B, GAUTHIER V, VREL D, et al. Crystal growth of TiC grains duringSHS reactions[J]. Journal of Crystal Growth,2007,304(2):481.
    [72] FAN Q C, CHAI H F, JIN Z H. Microstructural evolution in the combustion synthesisof titanium carbide[J]. Journal of Materials Science,1996,31(10):2573–2577.
    [73] FAN Q C, CHAI H F, JIN Z H. Role of iron addition in the combustion synthesis ofTiC–Fe cermet[J]. Journal of Materials Science,1997,32(16):4319–4323.
    [74] FAN Q C, CHAI H F, JIN Z H. Microstructural evolution during combustion synthesisof TiC–Fe cermet[J]. Transactions of Nonferrous Metals Society of China,1999,9(2):286–291.
    [75] FAN Q C, CHAI H F, JIN Z H. Mechanism of combustion synthesis of TiC–Fecermet[J]. Journal of Materials Science,1999,34(1):115–122.
    [76] FAN Q C, CHAI H F, JIN Z H. Effect of particle size of iron on reaction velocity ofcombustion synthesis of Ti–C–Fe system[J]. Transactions of Nonferrous MetalsSociety of China,2002,12(2):266–268.
    [77] FAN Q C, CHAI H F, JIN Z H. Formation of layer shaped pores in TiC–Fe cermet bycombustion synthesis[J]. Transactions of Nonferrous Metals Society of China,2001,11(5):760–763.
    [78] FAN Q C, CHAI H F, JIN Z H. Microstructural evolution of the titanium particles inthe in–situ composition of TiC–Fe by the combustion synthesis[J]. Journal ofMaterials Processing Technology,1999,96:102–107.
    [79]范群成,柴惠芬,方学华,等. TiC–Fe金属陶瓷的自蔓延高温合成[J].西安交通大学学报,1994,28(7):123–128.
    [80] LEE W C, CHUNG S L. Ignition phenomena and reaction mechanisms of theself–propagating high–temperature synthesis reaction in the Titanium–carbon–aluminum system[J]. Journal of the American Ceramic Society,1997,80(1):53–61.
    [81] XIAO G Q, FAN Q C, GU M Z, et al. Microstructural evolution during thecombustion synthesis of TiC–Al cermet with larger metallic particles[J]. MaterialsScience and Engineering A,2006,425:318–325.
    [82]肖国庆,范群成,顾美转,等. TiC–Al金属陶瓷自蔓延高温合成中的显微组织转变[J].中国有色金属学报,2004,14(12):2096–2101.
    [83]张二林,曾松岩,曾晓春,等. Al+Ti+C复合系热爆反应合成过程及相组成研究[J].材料工程,1996,4:27–31.
    [84]张二林,曾松岩,曾晓春,等. Al/TiC复合系热爆反应合成的研究[J].炭素,1995,3:24–27.
    [85]张二林,曾松岩,曾晓春,等. Al含量对热爆反应合成Al/TiC复合材料的影响[J].材料科学与工艺,1995,3(4):18–21.
    [86] ZHANG E L, ZENG S Y, YANG B, et al. A study on the kinetic process of reactionsynthesis of TiC: Part I. Experimental research and theoretical model[J]. Metallurgicaland Materials Transactions A,1999,30:1147–1151.
    [87] LI Y X, HU J D, WANG H Y, et al. Dissolution–precipitation mechanism of laserigniting self–propagating high–temperature synthesis of Al/TiC composite[J].Advanced Engineering Materials,2007,9(8):689–694.
    [88] SONG M S, HUANG B, ZHANG M X, et al. Study of formation behavior of TiCceramic obtained by self–propagating high–temperature synthesis from Al–Ti–Celemental powders[J]. International Journal of Refractory Metals and Hard Materials,2009,27(3):584–589.
    [89]王慧远.原位颗粒增强镁基复合材料的制备[D].长春:吉林大学,2004.
    [90]邹正光,傅正义,袁润章. Ti–C–xFe体系自蔓延高温合成及机理[J].材料研究学报,2000,14(5):531–537.
    [91]邹正光,傅正义,袁润章. Ti–C–Fe体系自蔓延高温合成的反应动力学过程和结构形成过程[J].复合材料学报,1999,16(3):78–82.
    [92]邹正光,傅正义,袁润章.原料组份、粒度对Ti–C–Fe体系自蔓延高温合成的影响[J].无机材料学报,1998,13(2):431–213.
    [93] CHOI Y, RHEE S W. Effect of iron and cobalt addition on TiC combustionsynthesis[J]. Journal of Materials Research,1993,8(12):3202–3209.
    [94]范群成.用燃烧波淬熄法对自蔓延高温合成机理的研究[D].西安:西安交通大学,2000.
    [95]范群成,柴惠芬,方学华,等. TiC–Fe金属陶瓷的自蔓延高温合成[J].西安交通大学学报,1994,28(7):123–128.
    [96] KWON Y J, KOBASHI M, CHOH T, et al. Fabrication of TiC/Cu Composites byCombustion Synthesis in Cu–Ti–C System[J]. Journal of Japan Institute of Metals,2001,65:273–278.
    [97]梁云虹. Cu–Ti–C/B4C体系燃烧合成行为及钢基复合材料的制备[D].长春:吉林大学,2008.
    [98] LIANG Y H, WANG H Y, YANG Y F, et al. Evolution process of the synthesis of TiCin the Cu–Ti–C system[J]. Journal of Alloys and Compounds,2008,452:298–303.
    [99] ZHANG M X, HU Q D, HUANG B, et al. Study of formation behavior of ZrC in theFe–Zr–C system during combustion synthesis[J]. International Journal of RefractoryMetals and Hard Materials,2011,29(5):596–600.
    [100] ZHANG M X, HU Q D, HUANG B, et al. Fabrication of ZrC particles and itsformation mechanism by self–propagating high–temperature synthesis from Fe–Zr–Celemental powders[J]. Journal of Alloys and Compounds,2011,509(31):8120–8125.
    [101] SONG M S, HUANG B, ZHANG M X, et al. Reaction synthesis of nano–scale ZrCparticulates by self–propagating high–temperature synthesis from Al–Zr–C powdermixtures[J]. ISIJ International,2008,48(7):1026–1029.
    [102] SONG M S, HUANG B, ZHANG M X, et al. Formation and growth mechanism ofZrC hexagonal platelets synthesized by self–propagating reaction[J]. Journal ofCrystal Growth,2008,310(18):4290–4294.
    [103]宋谋胜,黄斌,张梦贤,等.自蔓延高温合成ZrC陶瓷的反应行为及其形成机制
    [C].2008年10月,国际(上海)粉末冶金墍精细陶瓷会议.
    [104] SONG M S, HUANG B, ZHANG M X, et al. In situ synthesis of ZrC particles and itsformation mechanism by self–propagating reaction from Al–Zr–C elementalpowders[J]. Powder Technology,2009,191(1–2):34–38.
    [105] SONG M S, RAN M W, KONG Y Y. In situ fabrication of ZrC powder obtained byself–propagating synthesis from Al–Zr–C elemental powders[J]. International Journalof Refractory Metals and Hard Materials,2011,29(3):392–396.
    [106] CHEN Y, WANG H M. Growth morphologies and mechanism of TiC in the lasersurface alloyed coating on the substrate of TiAl intermetallics[J]. Journal of Alloysand Compounds,2003,351:304–308.
    [107] CHEN Y, WANG H M. Growth morphologies and mechanisms of non–equilibriumsolidified MC carbide[J]. Journal of Materials Research,2006,21(2):375–379.
    [108]金云学,曾松岩,王宏伟. Ti–15Al–7C合金热处理过程中碳化物形态变化研究[J].稀有金属材料与工程,2002,31(5):358–362.
    [109]金云学,张二林,曾松岩,等.热处理对Ti–6A1–2C合金中TiC枝晶形貌的影响[J].材料工程,2001,8:18–21.
    [110]金云学,张二林,曾松岩,等.自生TiCp/Ti复合材料中TiC的形貌及缺陷[J].中国有色金属学报,2001,11(5):871–874.
    [111]金云学,曾松岩,张二林,等. TiC/Ti合金中共晶TiC形态的形成机制研究[J].稀有金属材料与工程,2003,32(6):451–455.
    [112]金云学,李俊刚.钛合金中TiC晶体的形态及优先生长方向探讨[J].钛工业进展,2005,22(3):25–28.
    [113]金云学,李庆芬.钛合金中TiC晶体的配位多面体生长基元与生长习性[J].无机材料学报,2004,19(6):1249–1254.
    [114]金云学,刘夙伟.钛合金中TiC晶体的生长基元及平衡形态[J].稀有金属材料与工程,2005,34(10):1532–1536.
    [115]金云学,李俊刚.钛合金中碳化物组成及形态的演变机制[J].稀有金属材料与工程,2007,36(7):1157–1161.
    [116]金云学,张二林,曾松岩,等. TiCP/Ti复合材料的熔铸法制备及微观组织研究[J].铸造,2001,50(2):70–73.
    [117]金云学,李俊刚.原位自生TiC/Fe复合材料的制备及组织形态研究[J].复合材料,特种铸造及有色合金2008年年会专刊:317–321.
    [118] LUA W J, ZHANG D, ZHANG X N, et al. Microstructural characterization of TiC inin situ synthesized titanium matrix composites prepared by common castingtechnique[J]. Journal of Alloys and Compounds,2001,327:248–252.
    [119] LIANG C H, MENG G W, CHEN W, et al. Growth and characterization of TiCnanorods activated by nickel nanoparticles[J]. Journal of Crystal Growth,2000,220:296–300.
    [120] DAL H J, WONG E W, LU Y Z, et al. Synthesis and characterization of carbidenanorods[J]. Nature,1995,375:769–772.
    [121] WONG E W, MAYNOR B W, BURNS L D, et al. Growth of Metal Carbide Nanotubesand Nanorods[J]. Chemistry of Materials,1996,8:2041–2046.
    [122] YUAN Y, PAN J. The effect of vapor phase on the growth of TiC whiskers prepared bychemical vapor deposition[J]. Journal of Crystal Growth,1998,193:585–591.
    [123] CHEN Y, PAN J, HUANG X. The effect of deposition temperature on the growth ofTiC whiskers by the vapor–liquid–solid mechanism[J]. Journal of Crystal Growth,1997,172:171–174.
    [124] MOTOJIMA S, IWANAGA H. Preparation of micro–coiled TiC fibers by mealimpurity–activated chemical vapor deposition[J]. Materials Science and EngineeringB,1995,34:159–163.
    [125]俞进. TiC晶须的形貌[J].南昌大学学报,2003,27(2):174–177.
    [126] GU Y, CHEN L, LI Z, et al. A simple protocol for bulk synthesis of TiC hollow spheresfrom carbon nanotubes[J]. Carbon,2004,42:235–238.
    [127] LI S B, XIANG W H, ZHAI H X, et al. Formation of TiC hexagonal platelets and theirgrowth mechanism[J]. Powder Technology,2008,185(1):49–53.
    [128] SHIMADA S, WATANABE J, KODAIRA K, et al. Flux growth and characterizationof TiC crystals[J]. Journal of Materials Science,1989,4(7):2513–2515.
    [129] ZARRINFAR N, SHIPWAY P H, KENNEDY A R, et al. Carbide Stoichiometry inTiCxand Cu–TiCxProduced by Self–propagating High–temperature Synthesis[J].Scripta Materialia,2002,46(2):121–126.
    [130] SONG M S, HUANG B, HUO Y Q, et al. Growth of TiC octahedron obtained byself–propagating reaction[J]. Journal of Crystal Growth,2009,311(2):378–382.
    [131] SONG M S, ZHANG M X, ZHANG S G, et al. In situ fabrication of TiC particulateslocally reinforced aluminum matrix composites by self–propagating reaction duringcasting[J]. Materials Science and Engineering A,2008,473:166–171.
    [132]李新林. TiC颗粒增强镁基复合材料的制备[D].长春:吉林大学,2005.
    [133] LICHERI R, ORRù R, CAO G, et al. Self–propagating combustion synthesis andplasma spraying deposition of TiC–Fe powders[J]. Ceramics International,2003,29:519–526.
    [134]冯可芹,杨屹,沈保罗,等.电场作用下Fe含量对Fe–Ti–C体系低温燃烧合成的影响[J].稀有金属材料与工程,2004,33(2):161–165.
    [135] BROWN I W M, OWERS W R. Fabrication, microstructure and properties of Fe–TiCceramic–metal composites[J]. Current Applied Physics,2004,4:171–174.
    [136] RATHOD S, MODI O P, PRASAD B K, et al. Cast in situ Cu–TiC composites:Synthesis by SHS route and characterization[J]. Materials Science and Engineering A,2009,502:91–98.
    [137] SHON I J, MUNIR Z A. Synthesis of TiC, TiC–Cu Composites, and TiC–CuFunctionally Graded Materials by Electrothermal Combustion[J]. Journal of AmericanCeramic Society,1998,81(12)3243–3248.
    [138]宋谋胜.燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究[D].上海:上海交通大学,2009.
    [139] LI J, FU Z Y, WANG W M, et al. Preparation of ZrC by self–propagatinghigh–temperature synthesis[J]. Ceramics International,2010,36(5):1681.
    [140] KUMASHIRO S, TANAKA H, KAWAMATA Y, et al. Electronic States ofNbB2(0001), TaB2(0001) and ZrB2(0001) Surfaces Studied by Angle–resolvedUltraviolet Photoelectron Spectroscopy[J]. e–Journal of Surface Science andNanotechnology,2006,4:100–104.
    [141] HAN Y F, DAI Y B, SHU D, et al. First–principles study of TiB2(0001) surfaces[J].Journal of Physics: Condensed Matter,2006,18:4197–4205.
    [142] AIZAWA T, HAYAMI W, OTANI S. Surface phonon dispersion of ZrB2(0001) andNbB2(0001)[J]. Physical Review B,2002,65:024303.1–024303.9.
    [143] KAWANOWA H, SOUDA R, OTANI S, et al. Structure Analysis of a Graphitic BoronLayer at the TaB2{0001} Surface[J]. Physical Review Letters,1998,81(11):2264–2267.
    [144] BREWER L, SAWYER D L, TEMPLETON D H, et al. A Study of the RefractoryBorides[J]. Journal of the American Ceramic Society,1951,34(6):173–179.
    [145] VAJEESTON P, RAVINDRAN P, RAVI C, et al. Electronic structure, bonding, andground–state properties of AlB2–type transition–metal Diborides[J]. Physical ReviewB,2001,63:045115.1–045115.12.
    [146] SPEAR K E. Chemical Bonding in AlB2–type Borides[J]. Journal of theLess–Common Metals,1976,47:195–201.
    [147] KAUR N, MOHAN R, GAUR N K, et al. Cohesive and thermal properties oftransition metal Diborides[J]. Physica B,2009,404:1607–1610.
    [148] BURDETT J K, CANADELL E, MILLER G J. Electronic Structure ofTransition–Metal Borides with the AlB2Structure[J]. Journal of the AmericanChemical Society,1986,108:6561–6568.
    [149] CHEN X L, TU Q Y, HE M, et al. The bond ionicity of MB2(M=Mg, Ti, V, Cr, Mn,Zr, Hf, Ta, Al and Y)[J]. Journal of Physics: Condensed Matter,2001,13(29):L723–L727.
    [150] ESCAMILLA R, LOVERAL O, AKACHI T, et al. Crystalline structure and thesuperconducting properties of NbB2+x[J]. Journal of Physics: Condensed Matter,2004,16(32):5979.
    [151] MUDGEL M, AWANAA V P S, BHALLA G L, et al. Superconductivity ofnon–stoichiometric intermetallic compound NbB2[J]. Solid State Communications,2008,147(11–12):439.
    [152] NUNES C A, KACZOROWSKI D, ROGL P, et al. The NbB2–phase revisited:Homogeneity range, defect structure, superconductivity[J]. Acta Materialia,2005,53(13):3679.
    [153] RADEV D D, MARINOV M. Properties of titanium and zirconium diborides obtainedby self–propagated high–temperature synthesis[J]. Journal of Alloys and Compounds,1996,244:48–51.
    [154] BOROVINSKAYA I P, MERZHANOV A G, NOVIKOV N P, et al. Gaslesscombustion of mixtures of powdered transition metals with boron[J]. Combustion,Explosion, and Shock Waves,1974,10:2–10.
    [155] MERZHANOV A G, BOROVINSKAYA I P. Self–Propagating High–TemperatureSynthesis of Refractory Inorganic Compounds[J]. Doklady Akademii nauk SSSR,1972,204(2):366–369.
    [156] AZATYAN T S, MAL'TSEV V M, MERZHANOV A G, et al. Combustion wavepropagation mechanism in titanium–boron mixtures[J]. Combustion, Explosion, andShock Waves,1980,16:163–167.
    [157] DUNMEAD S D, MUNIR Z A, HOLT J B. Temperature profile analysis in combus–tion synthesis: II. Experimental observations[J]. Journal of American Ceramic Society,1992,75(1):180–188.
    [158] VARMA A, LEBRAT J P. Combustion synthesis of advanced materials[J]. ChemicalEngineering Science,1992,47(9–11):2179–2194.
    [159] ZENIN A A, MERZHANOV A G, NERSISYAN G A. Thermal wave structure in SHSprocesses[J]. Combustion, Explosion, and Shock Waves,1981,17:63–71.
    [160] EINARSRUD M A, HAGEN E, PETTERSEN G, et al. Pressureless sintering oftitanium diboride with nickel, nickel boride and iron additives[J]. Journal of AmericanCeramic Society,1997,80:3013–3120.
    [161] KELLER A R, ZHOU M. Effect of microstructure on dynamic failure resistance oftitanium diboride/alumina ceramics[J]. Journal of American Ceramic Society,2003,86(3):449–457.
    [162] TANEOKA Y, KAIEDA Y, ODAWARA O. Combustion synthesis of thetitanium–aluminum–boron system[J]. Journal of American Ceramic Society,1989,72:1047–1049.
    [163]傅正义,王为民,王浩,等. TiB2–xAl复合材料的结构形成分析[J].金属学报,1994,30(8):373–378.
    [164]傅正义,袁润章, Munir Z A.原料粒度及组成对TiB2–xAl复合体系的SHS过程影响[J].复合材料学报,1994,11(2):91–96.
    [165] WANG Y, WANG H Y, MA B X, et al. Effect of Ti/B on fabrication TiB2p/AZ91composites by employing a TiB2p/Al master alloy[J]. Journal of Alloys andCompounds,2006,422:178–183.
    [166] WANG H Y, JIANG Q C, ZHAO Y G, et al. In situ synthesis of TiB2/Mg composite byself–propagating high–temperature synthesis reaction of the Al–Ti–B system in moltenmagnesium[J]. Journal of Alloys and Compounds,2004,379: L4–L7.
    [167]孙晓冬,袁润章. Al含量对Ti–B体系自蔓燃高温合成过程的影响[J].稀有金属与硬质合金,1998,133:27–31.
    [168] BRINKMAN H J, DUSZCZYK J, KATGERMAN L. In–situ formation of TiB2in aP/M aluminum matrix[J]. Scripta Materialia,1997,37:293–297.
    [169] DEGNAN C C, SHIPWAY P H. A comparison of the reciprocationg sliding wearbehavior of steel based metal matrix composites processed from self–propagatinghigh–temperature synthesized Fe–TiC and Fe–TiB2master alloys[J]. Wear,2002,252:832–841.
    [170] DEGNAN C C, SHIPWAY P H. The incorporation of self–propagatinghigh–temperature synthesis–formed Fe–TiB2into ferrous melts[J]. Metallurgical andMaterials Transactions A,2002,33:2973–2983.
    [171]王皓,傅正义,袁润章. TiB2–Fe体系SHS合成的热力学计算与实验[J].武汉工业大学学报,1997,19(1):4–7.
    [172]刘建平,傅正义,王皓,等.自蔓延高温合成/快速加压法制备(TiB2+Fe)/Fe梯度材料[J].硅酸盐学报,2002,30(4):438–442.
    [173] WANG Y, ZHANG Z Q, WANG H Y, et al. Effect of Fe content in Fe–Ti–B system onfabricating TiB2particulate locally reinforced steel matrix composites[J]. MaterialsScience and Engineering A,2006,422:339–345.
    [174] MISHRA S K, DAS S K, RAY A K, et al. Effect of Fe and Cr Addition on theSintering Behavior of ZrB2Produced by Self–Propagating High–TemperatureSynthesis[J]. Journal of American Ceramic Society,2002,85(11):2846–48.
    [175] TJONG S C, LAU K C. Abrasive wear behavior of TiB2particle–reinforced coppermatrix composites[J]. Materials Science and Engineering A,2000,282:183–186.
    [176] ZHANG X H, HAN J C, HE X D. Ablation–resistance of combustion synthesizedTiB2–Cu cermet[J]. Journal of American Ceramic Society,2005,88:88–94.
    [177]徐强,张幸红,曲伟,等. TiB2–Cu基复合材料的燃烧合成研究[J].材料工程,2002,9:14–17.
    [178]董仕节,雷永平,史耀武.原位生成TiB2/Cu复合材料的研究[J].西安交通大学学报,2000.34(5):69–74.
    [179] XU Q, ZHANG X H, HAN J C, et al. Combustion synthesis and densification oftitanium diboride–copper matrix composite[J]. Materials Letters,2003,57:4439–4444.
    [180]刘利,张金咏,傅正义. TiB2–Cu体系的自蔓延高温合成及致密化[J].复合材料学报,2005,22:98–102.
    [181] KIM J S, KWON Y S, LOMOVSKY O I, et al. Cold spraying of in situ producedTiB2–Cu nanocomposite powders[J]. Composites Science and Technology,2007,67(11–12):2292–2296.
    [182] VAJEESTON P, RAVINDRAN P, RAVI C, et al. Electronic structure, bonding, andground–state properties of AlB2–type transition–metal Diborides[J]. Physical ReviewB,2001,63(4):045115.1–045115.12.
    [183] TAKASHI A, WATARU H, SHIGEKI O. Surface phonon dispersion of ZrB2(0001)and NbB2(0001)[J]. Physical Review B,2001,65(2):024303.1–024303.9.
    [184] ABDEL–HAMID A A, HAMAR–THIBAULT S, HAMAR R. Crystal Morphology ofthe Compound TiB2[J]. Journal of Crystal Growth,1985,71(3):744–750.
    [185] HIGASHI I, TAKAHASHI Y, ATODA T. Crystal growth of borides and carbides oftransition metals from molten aluminum solutions[J]. Journal of Crystal Growth,1976,33(2):207–211.
    [186] HIGASHI I, ATODA T. Growth of titanium diboride single crystals in moltenaluminum[J]. Journal of Crystal Growth,1970,7:251–253.
    [187] NAKANO K, HAYASHI H, IMURA T. Single crystal growth of IVa–diborides frommetal solutions[J]. Journal of Crystal Growth,1974,24–25:679–682.
    [188] GURIN V N, DERKACHENKO L I. Growth habit of crystals of refractory compoundsprepared from high temperature solutions[J]. Progress in Crystal Growth andCharacterization of Materials,1993,27(3–4):163–199.
    [189] HUANG L, WANG H Y, LI Q, et al. Effect of Ni content on the products of Ni–Ti–Bsystem via self–propagating high–temperature synthesis reaction[J]. Journal of Alloysand Compounds,2008,457(1–2):286–291.
    [190] LIANG Y H, WANG H Y, YANG Y F, et al. Effect of Cu content on the reactionbehaviors of self–propagating high–temperature synthesis in Cu–Ti–B4C system[J].Journal of Alloys and Compounds,2008,462(1–2):113–118.
    [191]郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展[J].无机材料学报,1999,14(3):321–332.
    [192] JACKSON K A. Liquid Metals and Solidification[M]. Cleveland: ASM,1958.
    [193] SUNAGAWA I. Crystals Growth, Morphology, and Perfection[M]. New York:Cambridge University Press,2005.
    [194] TEMKIN O E. Phenomenological kinetics of the motion of a phase boundary[J].Soviet Physics–Crystallography,1971,15:767–772.
    [195] TEMKIN O E. Kinetic phase transition during a phase conversion in a binary alloy[J].Soviet Physics–Crystallography,1971,15:773–780.
    [196]刘林,傅恒志. Ni基高温合金中MC碳化物生长的理论形貌[J].材料科学进展,1989,3(5):396–400.
    [197]刘林,傅恒志,史正兴.凝固参数对定向镍基铸造高温合金中MC碳化物生长特性的影响[J].航空学报,1986,7(2):181–186.
    [198]高文理. Ti–Al–B合金中硼化物组成及其形貌变化规律[D].哈尔滨:哈尔滨工业大学,2003.
    [199]邹兵林. Al–Ti–B4C体系燃烧合成行为及钢基复合材料的制备[D].长春:吉林大学,2009.
    [200] CHARLIER J C. Defects in Carbon Nanotubes[J]. Accounts of Chemical Research,2002,35:1063–1069.
    [201] MINTMIRE J W, WHITE C T. Electronic and structural properties of carbonnanotubes[J]. Carbon,1995,33:893–902.
    [202] SATO K, FURUKAWA Y, NAKAJIMA K. Advances in Crystal Growth Research [M].Amsterdam: Elsevier,2001:361.
    [203] SWAMINATNAN R, WILARD M A, MCHENRY M E. Experimental observationsand nucleation and growth theory of polyhedral magnetic ferrite nanoparticlessynthesized using an RF plasma torch[J]. Acta Materialia,2006,54:807–816.
    [204] ZHANG J M, MA F, XU K W. Calculation of the surface energy of FCC metals withmodified embedded–atom method[J]. Applied Surface Science,2004,229(1–4):34–42.
    [205] DUDIY S V, LUNDQVIST B I. Wetting of TiC and TiN by metals[J]. PhysicalReview B,2004,69(12):125421(1–16).
    [206] HOLLOX G E. Microstructure and mechanical behavior of carbides[J]. MaterialsScience and Engineering,1968,3(3):121–137.
    [207] ZAIMA S, SHIBATA Y, ADACHI H, et al. Atomic chemical composition andreactivity of the TiC(111) surface[J]. Surface Science,1985,157(2–3):380–392.
    [208] GUNSTER J, HEINRICH J G, DIECKHOFF S, et al. Well–defined nanostructurenucleation sites provided by the faceted TiC(111) surface[J]. Applied Physics Letters,2000,77(20):3173–3174.
    [209] ARYA A, CARTER E A. Structure, bonding, and adhesion at the TiC(100)/Fe(110)interface from first principles[J]. The Journal of Chemical Physics,2003,118(19):8982–8994.
    [210] RUBERTO C, LUNDQVIST B I. Nature of adsorption on TiC(111) investigated withdensity–functional calculations[J]. Physical Review B,2007,75(23):235438(1–31).
    [211] DJELLOULI B, AOURAG H. Theoretical Studies of Stoichiometric TiC[J]. Physica.Status Solidi B,2001,225(2):265–270.
    [212] TASKER P W. The stability of ionic crystal surfaces[J]. Journal of Physics: SolidState Physics,1979,12(22):4977–4983.
    [213] SIEGEL D J, HECTOR L G, ADAMS J B. Ab initio study of Al–ceramic interfacialadhesion[J]. Physical Review B,2003,67(9):092105(1–4).
    [214] COCHEPIN B, GAUTHIER V, VREL D, et al. Crystal growth of TiC grains duringSHS reactions[J]. Journal of Crystal Growth,2007,304(2):481–486.
    [215] REDINGER J, EIBLER R, HERZIG P, et al. Vacancy induced changes in theelectronic structure of titanium carbide—II. Electron densities and chemicalbonding[J]. Journal of Physics and Chemistry of Solids,1986,47(4):387–393.
    [216] MARKOV I V. Crystal growth for beginners: fundamentals of nucleation, crystalgrowth, and epitaxy[M]. New York: World Scientific,1995.
    [217]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.
    [218] BRANDES H. Zur theorie des kristall wachstum[J]. Zeitschrift für PhysikalischeChemie,1927,126:196–200.
    [219] JOHANSSON L I. Electronic and structural properties of transition–metal carbide andnitride surfaces[J]. Surface Science Reports.1995,21(5–6):177–250.
    [220] TAN K E, FINNIS M W, HORSFIELD A P, et al. Why TiC(111) is observed to be Titerminated[J]. Surface Science,1996,348(1–2):49–54.
    [221] WULFF G. Velocity of growth and dissolution of crystal faces[J]. Zeitschrift furKristallographie,1901,34:449–530.
    [222] ERRING C. Some Theorems on the Free Energies of Crystal Surfaces[J]. PhysicalReview,1951,81(1):87–93.
    [223] BURTON W K, CABERERA N, FRANK F C. The Growth of Crystals and theEquilibrium Structure of their Surfaces[J]. Philosophical Transactions A,1951,243(866):299–358.
    [224] BEIJERN H V. Exactly solvable model for the roughening transition of a crystalsurface[J]. Physical Review Letters,1977,38(18):993–996.
    [225] JAYAPRAKASH C, SAAM W F, TEITAL S. Roughening and Facet Formation inCrystals[J]. Physical Review Letters,1983,50(25):2017–2020.
    [226] WARREN R. Microstructural development during the liquid–phase sintering oftwo–phase alloys, with special reference to the NbC/Co system[J]. Journal ofMaterials. Science,1968,3(5):471–485.
    [227] MOON H S, KIM B K, KANG S J L. Growth mechanism of round–edged NbC grainsin Co liquid[J]. Acta Materialia,2001,49(7):1293–1299.
    [228] YOON D Y, CHO Y K. Roughening transition of grain boundaries in metals andoxides[J]. Journal of Materials Science,2005,40(4):861–870.
    [229] PARK C W, YOON D Y. Effects of SiO2, CaO2, and MgO additions on the graingrowth of alumina[J]. Journal of the American Ceramic Society,2000,83(10):2605–2609.
    [230] WALKO D A, ROBINSON I K. Energetics of oxygen–induced faceting onCu(115)[J]. Physical Review B,2001,64:045412.1–045412.12.
    [231] CHEN Y, WANG H M. Growth morphologies and mechanisms of non–equilibriumsolidified MC carbide[J]. Journal of Materials Research,2006,21(2):375–379.
    [232] BRAVAIS A, POLYTECH J E C. Memoire sur les systemes formes par des pointsregulierement distribubs sur un plan ou dam I'Espace[J].1850,19:1–128.
    [233] NUNES C A, KACZOROWSKIC D, ROGL P, et al. The NbB2–phase revisited:Homogeneity range, defect structure, superconductivity[J], Acta Materialia,2005,53(13):3679–3687.
    [234] MUZZY L E, AVDEEV M, LAWES G, et al. Structure and superconductivity inZr–stabilized, nonstoichiometric molybdenum diboride[J]. The Smithsonian/NASAAstrophysics Data System,2002,382(2–3):153–165.
    [235] ESCAMILLA R, LOVERA O, AKACHI T, et al. Crystalline structure and thesuperconducting properties of NbB2+x[J]. Journal of Physics: Condensed Matter,2004,16(32):5979–5990.
    [236] SHEIN I R, MEDVEDEVA N I, IVANOVSKII A L. Effect of metal vacancies on theband structure of Nb, Zr, and Y diborides[J]. Physics of the Solid State,2003,45(9):1617–1621.
    [237] WANG L L, MUNIR Z A, MAXIMOV Y M. Thermite reactions: their utilization inthe synthesis and processing of materials[J]. Journal of Materials Science,1993,28(14):3693–3708.
    [238] LIU G H, CHEN K X, ZHOU H P, et al. Fast shape evolution of TiN microcrystals incombustion synthesis[J]. Crystal Growth and Design,2003,6(10):2404–2411.
    [239] DUNAND A, FLACK H D, YVON K. Bonding study of TiC and TiN. I.High–precision x–ray–diffraction determination of the valence–electron densitydistribution, Debye–Waller temperature factors, and atomic static displacements inTiC0.94and TiN0.99[J]. Physical Review B,1985,31(4):2299–2315.
    [240] BLAHA P, REDINGER J, SCHWARZ K. Bonding study of TiC and TiN. II.Theory[J]. Physical Review B,1985,31(4):2316–2325.
    [241] WANG Z L. Transmission electron microscopy of shape–controlled nanocrystals andtheir assemblies[J]. Journal of Physical Chemistry B,2000,104(6):1153–1175.
    [242] SAITO Y, KAITO C, FUJITA K, et al. Electron Microscopic Studies on Growth andMorphology of NaCl–Type Crystals[J]. Journal of Electron Microscopy,1990,39:11–17.
    [243] MULHERAN P A. Surface free–energy calculations and the equilibrium shape ofNaCl crystals[J]. Modelling and Simulation in Materials Science and Engineering,1994,2:1123–1129.
    [244] AQUILANO D, PASTERO L, BRUNO M, et al.{100} and {111} forms of the NaClcrystals coexisting in growth from pure aqueous solution[J]. Journal of CrystalGrowth,2009,311:399–403.
    [245] BRUNO M, AQUILANO D, PASTERO L, et al. Structures and Surface Energies of(100) and Octopolar (111) Faces of Halite (NaCl): an Ab initio Quantum–Mechanicaland Thermodynamical Study[J]. Crystal Growth&Design,2008,8(7):2163–2170.
    [246] BRUNO M, AQUILANO D, PRENCIPE M. Quantum–Mechanical andThermodynamical Study on the (110) and Reconstructed (111) Faces of NaClCrystals[J]. Crystal Growth&Design,2009,9(4):1912–1916.
    [247] SHI A C, WORTIS M. Equilibrium shape of NaCl crystals: A first–principlescalculation[J]. Physical Review B,1988,37(13):7793–7805.
    [248] KHANRA A K, PATHAK L C, MISHRA S K, et al. Effect of NaCl on the synthesis ofTiB2powder by a self–propagating high–temperature synthesis technique[J].Materials Letters,2004,58:733–738.
    [249] KHANRA A K, PATHAK L C, MISHRA S K, et al. Self–propagatinghigh–temperature synthesis (SHS) of ultrafine ZrB2powder[J]. Journal of MaterialsScience Letters,2003,22:1189–1191.
    [250] CAMURLU H E, MAGLIA F. Preparation of nano–size ZrB2powder byself–propagating high–temperature synthesis[J]. Journal of the European CeramicSociety,2009,29:1501–1506.
    [251] NERSISYAN H H, LEE J H, WON C W. Self–propagating high–temperature synthesisof nano–sized titanium carbide powder[J]. Journal of Materials Research,2002,17:2859–2864.
    [252] STRZECIWILK D, WOKULSKI Z, TKACZ P. Microstructure of TiC crystalsobtained from high temperature nickel solution[J]. Journal of Alloys and Compounds,2003,350(1–2):256–263.
    [253] STRZECIWILK D, WOKULSKI Z. Preparation of TiC crystals from high temperaturesolutions and their characterisation[J]. Crystal Research and Technology,1999,34(5–6):777–784.
    [254] STRZECIWILK D, TKACZ P, WOKULSKI Z. Transmission electron microscopestudies of TiC crystals[J]. Crystal Research and Technology,2000,35(11–12):1295–1303.
    [255] STRZECIWILK D, WOKULSKI Z, TKACZ P. Growth and TEM and HREMcharacterisation of TiC crystals grown from high–temperature solutions[J]. CrystalResearch and Technology,2003,38(3–5):283–287.
    [256] KO S H, HANADA S. In–situ production and microstructures of iron aluminide/TiCcomposites[J]. Intermetallics,1999,7(8),947–955.
    [257] PARASHIVAMURTHY K I, CHANDRASEKHARAIAH M N,SAMPATHKUMARAN P, et al. Casting of TiC–Reinforced steel matrix composite[J].Materials and Manufacturing Processes,2006,21(5):473–478.
    [258] HIGASHI I, TAKAHASHI Y, ATODA T. Crystal growth of borides and carbides oftransition metals from molten aluminum solutions[J]. Journal of Crystal Growth,1976,33(2):207–211.
    [259] SHIMADA S, WATANABE J, KODAIRA K, et al. Flux growth and characterizationof TiC crystals[J]. Journal of Materials Science,1989,24(7):2513–2515.
    [260] SAIDI A, CHRYSANTHOU A, WOOD J V, et al. Characteristics of the combustionsynthesis of TiC and Fe–TiC composites[J]. Journal of Materials Science,1994,29:4993–4998.
    [261] OLSSON R G, KOUMP V, PERZAK T F. Rate of dissolution of carbon in moltenFe–C alloys[J]. Transactions of the Metallurgical Society of the American Institute ofMechanical Engineers,1966,236:426–429.
    [262] KOSAKA M, MINOWA S. Rate of dissolution of carbon in a molten Fe–C alloy[J].Transactions of the Iron and Steel Institute of Japan,1968,8:392–400.
    [263] ERICSSON S O, MELBERG P O. Influence of sulfur on the rate of carbon dissolutionin liquid iron[J], Scandinavian Journal of Metallurgy,1981,10:15–18.
    [264] CHHABRA R P, ROY A K. Diffusivity of Oxygen and Nitrogen in Liquid Metals: anExplicit Formulation[J]. Zeitschrift für Metallkunde,1988,79:64–67.
    [265] YANG J G, WANG H B, LIU Y, et al. Diffusion coefficient of C in Co binder phase[J].Materials Science and Engineering of Powder Metallurgy,2007,12:82–86.
    [266] IIDA T, GUTHRIE R I L. The physical properties of liquid metals[M]. New York:Clarendon Press,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700