(TiC+Al_2O_3)/Ti6A14V复合材料的组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用熔铸法制备了(TiC+Al2O3)/Ti6Al4V复合材料,利用X射线衍射仪、扫描电镜、能谱仪、拉伸试验机、磨损试验机等分析测试手段,研究了复合材料的相组成和TiC组织形态转变机制,分析了Al2O3对自生TiC形态的影响规律与机理;考察了增强相含量变化对复合材料的力学性能和耐磨损性能的影响规律,并进一步探讨了该复合材料的强化机理和磨损机制。
     研究结果表明,随着C含量从0.6%、0.8%增加到1%,(TiC+Al2O3)/Ti6Al4V复合材料中自生的TiC增强相主要有4种形态:共晶的颗粒状、棒状、羽毛状以及初生树枝状。随着Al2O3含量的增加,TiC增强相尺寸逐渐变得细小,分布更加均匀,同时粗大的树枝晶逐渐减少、消失。外加的Al2O3对TiC生长界面前沿的传质、传热过程造成影响,从而阻碍TiC的充分生长,起到细化作用。
     随着增强相TiC、Al2O3含量的增加,复合材料的硬度、抗压强度逐渐提高,塑性变形量逐渐减小,断裂方式由韧窝韧性断裂和沿晶脆性断裂的混合断裂方式逐渐转变为脆性断裂。含1%C、2% Al2O3的(TiC+Al2O3)/Ti6Al4V复合材料的强度最高,达2070MPa。增强相在基体合金的滑移变形中起到钉扎位错、阻碍位错运动的作用,使基体合金变形抗力增大,从而起到强化作用。
     随着TiC、Al2O3增强相含量的增加,复合材料的耐磨性能逐渐提高,磨损表面由连续的深刻犁沟分布转变为有少量的轻微擦伤的光滑涂抹痕迹,磨损机制逐渐由严重的磨粒磨损转变为轻微的黏着磨损。在模拟体液环境下,由于体液的润滑效果和流动性带走了部分磨损颗粒,使复合材料的耐磨性比干磨损时更好。高硬耐磨的TiC、Al2O3增强相阻止掉落的硬质颗粒压入材料表面形成犁沟等严重磨损,减少了磨损量,提高了复合材料的耐磨性。
In situ TiC particles and Al2O3 particles reinforced Ti6Al4V matrix composites has been successfully fabricated using melting-casting process. The phase constituent and evolution of TiC in the composites and the effect of Al2O3 on morphology of TiC were investigated. The compression properties and wear performance were also tested. These experiments were carried out on X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscope(TEM), wear testing machine, universal material testing machine.
     It is resulted that there are four morphologies of reinforced phase in the (TiC+Al2O3)/Ti6Al4V composites: granules, bar, featheriness and dendrite morphology along with C content growing from 0.6%,0.8% to 1%. With the increasing of Al2O3 volume fraction, the exiguous dendrite TiC were replaced with short-bar shaped particles, The average grain size of TiC dendrite was decreased gradually and has been fairly well-distributed. Sur-Al2O3 has an effect on mass and heat transfer in the front of TiC growth interface, thus the full growth of TiC has been prevented, then the primary TiC becomes finer.
     The hardness and the compressive properties of (TiC+Al2O3)/Ti6Al4V composites increases, and the plastic strain reduces gradually with an increase of TiC and Al2O3 particulate content. The compressive properties of the composites with 1%C,2% Al2O3 was highest, about 2070MPa. The fracture of the composites was diverted from the manner of intergranular brittle fracture with dimple gliding fracture to the manner of intergranular brittle fracture with the increase of the reinforcements TiC and Al2O3. The reinforcement can enhance the deformational resistance of the substrate alloys through locking mechanism and hindering the movement of the dislocation in the sliding deformation.
     The wear resistance of the composites has gradually improved with the increase of the reinforcements TiC and Al2O3. It is found that the wear surface of the composites changes from the continual profound grinding groove to the small amount of slight chafing morphology, and the abrasion mechanism varies from serious abrasive grain abrasion to slight adhesive wear. The results indicate that the wear resistance of the composites in the simulated body fluid is better than in dry-slidy could reduce liding wear because of some abrasive debris being carried off by the lubricant performance and the floating fluid of the simulated body fluid. The reinforcements of high hardness and abrasion resistant TiC, Al2O3 could reduce the abrasion and improve the abrasion resistance of the composites by preventing the falling flinty debris from being pressed into the surface of composites to cause the serious attrition as grinding groove.
引文
[1]Thomas M.P, Winsone M.R. Longitudinal yielding behaviour of SiC-fiber-reinforced titanium matrix composites. Comp Sci Techn.1999,59:297P
    [2]钱九红.航空航天用新型钛合金的研究发展及其应用.稀有金属.2000,24(3):218-222页
    [3]Boyer R.R, Cotton J.D, Chellmman D.J. Titanium for airframe applications:present status and future trends. Wiley-Vch:DGM,2004:2615-2619P
    [4]Rugg D. The current status of titanium alloy use in aero-engines. Wiley-Vch:DGM. 2004:2727-2729P
    [5]林哲.钛合金和钛基复合材料的氧化行为及力学性能.大连理工大学硕士论文.2007:1-5页
    [6]李世普.生物医用材料导论.武汉工业大学出版社,2000:35页
    [7]郑玉峰等.生物医用材料.哈尔滨工程大学出版社,2005:89页
    [8]张力.高科技时代的钛合金材料技术发展战略及对策剖析.金属学报.1997,33(1):85-87页
    [9]Vaccari J.A. The Challenges of Orient Express. Am Mach.1990,134(1):55-58P
    [10]Chesnutt J.C, William C. Titanium Aluminides for Advanced Aircraft Engines. Defence & Aeropsace.1990, (8):509-513P
    [11]宁聪琴,周玉.医用钛合金的发展和研究现状.材料科学与工艺.2002,3:100-106页
    [12]曾立英,邓炬,白保良,赵永庆.连续纤维增强钛基复合材料研究概况.稀有金属材料与工程.2000,6:211-215页
    [13]丘惠中,吴志红.国外航天材料的新发展.宇航材料工艺.1997,(4):5-13页
    [14]Stewart J, Veeck. Selective Reinforcement of Titanium Investment Carting.Advanced Materaisl processes.1994, (4):37-41P
    [15]Hunt M. MMCs for exotic meeds, composite. Mater. Sci.1989,104(4):53-57P
    [16]于兰兰,毛小南,赵永庆等.颗粒增强钛基复合材料研究新进展.稀有金属快报.2006,4:1-5页
    [17]曾泉浦等.TP-650钛基复合材料的界面.稀有金属材料与工程.1997,26:4-18页
    [18]肖代红,黄伯云.原位合成钛基复合材料的最新进展.粉末冶金技术.2008,3: 217-229页
    [19]杨霓虹.原位生成增强体金属基复合材料及其应用前景.材料导报.1993,1:53-55页
    [20]吴人杰.复合材料.天津:天津大学出版社,2002:300-350页
    [21]魏尊节,范长增等.颗粒增强Ti-6A1-4V基复合材料的研究进展.2002年黑龙江省机械工程学会年会论文集.2002:39-43页
    [22]杨涛林,陈跃.颗粒增强金属基复合材料的研究进展.铸造技术.2006,8:871-873页
    [23]夏明星,胡锐等.自生TiC颗粒增强钛基复合材料的研究进展.材料导报.2007,5:424-427页
    [24]Liu H, Wang L, Wang A.M, et al. Preparation of nanometer size TiC particulate reinforcements in Ti matrix composites under high pressure. Nanostructured Mater. 1997,9:177-190P.
    [25]温鸣.粉末冶金原位自生陶瓷(TiC、Al2O3)/金属合金功能梯度材料制备研究.西安理工大学硕士论文.2000:50-70页
    [26]肖代红,陈康华等.原位合成钛基复合材料的研究现状与展望.材料导报.2007,4:65-68页
    [27]程秀兰,潘复生.金属基复合材料的反应合成技术.材料导报.1995,6:61-66页
    [28]金云学,张二林,曾松岩等.TiCp/Ti复合材料的熔铸法制备及微观组织研究.铸造.2001,2:70-73页
    [29]Lu W. J. Microstructure and tensile properties of in situ(TiB+TiC)/Ti6242 (TiB:TiC=1:1) composites prepared by common casting technique. Materials Science and Engineering, 2001,A311:142-150P
    [30]Merzhanov A.G, Borovinskaya I.P. New class of combustion processes.Combustion Science and Technology.1975,10(5/6):195-201P
    [31]谭娟,马南钢.镁基复合材料的制备方法研究.材料导报.2006,11:261-264页
    [32]Shingu P.H. In situ fracture observation of a TiC/Ti MMC produced by combustion synthesis. Scripta Materialia.1996,35(8):1007-1012P
    [33]杨波,张二林等.SHS-快速加压合成TiC、Al2O3/Al复合材料的工艺研究.材料科学与工艺.材料科学与工艺.1999,3:56-59页
    [34]赵玉谦.TiC颗粒局部增强铸造钢基复合材料的制备.吉林大学博士论文.2005:33-36页
    [35]Ma Z.Y, Tjong S.C, Meng X.M. Creep behavior of in situ dualscale particles TiB whiskers and TiC-particulate-reinforced titanium composites. Journal of Materials Research.2002,17:2307-2313P
    [36]吕维洁,张小农等.颗粒增强钛基复合材料研究进展.材料导报.1999,12(6):15-18页
    [37]Ranganath S, Roy T, Nishra R.S. Microstructure and tensile properties of in situ synthesized (TiB+TiC)/Ti composites at elevated temperature. Materials Science and Technology.1996,12(3):219-226P
    [38]耿林,倪丁瑞,郑镇洙.原位自生非连续增强钛基复合材料的研究现状与展望.复合材料学报.2006,2:1-10页
    [39]Ranganath S. A review on particulate-reinforced titanium matrix composites. J Mater Sci.1997,32(1):1-16P
    [40]Blenhinsop P.A. Advanced alloy and processes In Titanium Science and Technology. The Minerals Metals & M aterials Society.1992,15-26P
    [41]白芳等TiAl基合金应用研究概况.稀有金属.1997,21:481-484页
    [42]张二林,朱兆军,曾松岩.自生颗粒增强钛基复合材料的研究进展.稀有金属.1999,23(6):436-442页
    [43]张淑英,孟繁琴,陈玉勇等.颗粒增强金属基复合材料的研究进展.材料导报.1996,2:66-71页
    [44]T.S.Srivasan, I.A.Ibrahim, F.A. Mohamed and E.J.Lavernia. Processing Techeniques for particulate Metal Aluminum Materx Composites. Mater.Sci.1991,26:5965-5978P
    [45]陈瑶,王华明.MC碳化物非平衡凝固油固界面结构及生长机制.金属学报.2003,39(3):254-258页
    [46]金云学,张二林,王宏伟.自生TiCp/Ti6Al复合材料中TiC铸态形貌的形成机制.佳木斯大学学报(自然科学版).2000,18(3):209-213页
    [47]金云学,张二林,曾松岩.自生TiCp/Ti复合材料中TiC的形貌及缺陷.中国有色金属学报.2001,11(5):871-874页
    [48]吕维洁,张荻,张小农等.原位合成TiC/Ti复合材料的微结构和力学性能.上海交通大学学报.2001,35(5):643-646页
    [49]张二林,金云学,曾松岩.自生TiC增强钛基复合材料的微观组织.材料研究学报.2000,34(5):524-530页
    [50]王朋波,杨冠军,毛小南.放电等离子原位烧结制备TiC+TiB/Ti复合材料.稀有金属材料与工程.2007,36(3):484-488页
    [51]吕维洁,杨志峰,张荻等.原位合成钛基复合材料增强体TiC的微结构特征.中国有色金属学报.2002,12(3):511-514页
    [52]肖国庆,范群成,顾美转等TiC-Ti复合材料自蔓延高温合成中的组织转变.稀有金属材料与工程.2005,34(10):1592-1596页
    [53]李长青,武万良,王树成等Ti-TiC激光熔覆层的形成及其表征.黑龙江科技学院学报.2010,20(4):272-276页
    [54]金云学,李俊刚.钛合金中碳化物组成及形态的演变机制.稀有金属材料与工程.2007,7:12-16页
    [55]吕维洁,徐栋,覃继宁,张荻.原位合成多元增强钛基复合材料(TiB+TiC+Y2O3)/Ti.中国有色金属学报.2005,11:24-28页
    [56]谌广昌.反应烧结TiB增强Ti基复合材料组织结构表征及性能研究.哈尔滨工业大学硕士论文.2007:7-10页
    [57]周鹏,覃继宁,吕维洁,张荻.粉末冶金制备原位自生钛基复合材料的显微组织和力学性能研究.粉末冶金工业.2009,19(3):11-15页
    [58]刘钊,吕维洁等.原位合成(TiB+TiC)/Ti-8Al-1Mo-1V复合材料的显微组织和室温力学性能.机械工程材料.2009,05:3034页
    [59]吕维洁,张小农,张荻等.铸态(TiB+TiC)/Ti复合材料组织和性能的研究.复合材料学报.2001,18(3):60-66页
    [60]Zhifeng Yang, Weijie Lu, Lin Zhao. Microstructure and mechanical property of in situ synthesized multiple-reinforced(TiB+TiC+La2O3)/Ti composites. Journal of Alloys and Compounds.2008(455):210-214P
    [61]刘夙伟,金云学.含碳量对TiCp/Ti合金摩擦磨损行为的影响.江苏科技大学学报(自然科学版).2006,02:22-24页
    [62]尚俊玲,李邦盛,任明星等.原位TiB/Ti复合材料的磨损性能及磨损机制.铸造.2008,57(5):465-469页
    [63]严有为,魏伯康,傅正义等.TiC颗粒含量及尺寸对原位TiCp/Fe复合材料耐磨性的影响.1999,19(3):193-197页
    [64]张丽华,金云学,郭宇航.钛基复合材料的耐腐蚀性能研究.全面腐蚀与控制.2007,8:12-14页
    [65]曾泉浦.颗粒强化钛基复合材料研究取得新进展.钛工业进展.1994,(4):8-10页
    [66]李棣泉,梁振锋.颗粒增强钛基复合材料复合方法的研究.钛工业进展.1997,(2):16-18页
    [67]汤慧萍,刘咏,韦伟峰.添加稀土元素对粉末冶金钛合金显微组织和力学性能的影响.中国有色金属学报.2004,14(2):244-249页
    [68]金云学.TiCp/Ti复合材料TiC生长形态及其控制.哈尔滨工业大学博士论文.2002:38页
    [69]G.Cam, H.M.Flower and D.R.F.west. Constitution of Ti-Al-C alloys in tempweature range 1250-750℃. Materials Science and Technology.1991,7:505-511P
    [70]盖鹏涛.TiC/Ti6Al4V复合材料中TiC的形态演变与控制机理.哈尔滨工程大学硕士论文.2008:20-28页
    [71]Nukami T, Flemings M.C. Metall Mater Trans.1995,26A:1877P
    [72]Tong X.C, Fang H.S. Metall Mater Trans.1998,29A:875P
    [73]张二林.Al/TiCp复合材料反应生成热力学和动力学过程的研究.哈尔滨工程大学博士论文.1996:1-19页
    [74]马明臻.TiCp/2024复合材料的制备组织和性能研究.哈尔滨工程大学博士论文.1999:1-24页
    [75]刘林,傅恒志,史正兴.高温合金中碳化物的初生形态和晶体结构关系.金属学报.1989,25(4):A282-A287页
    [76]金云学,张虎,曾松岩等.自生TiCp/Ti复合材料中TiC的生长习性.金属学报.2002,38(11):1223-1227页
    [77]王吉会.材料力学性能.天津:天津大学出版社.2006:68-69页
    [78]曹明盛.物理冶金基础.北京冶金工业出版社.1984:258页
    [79]何奖爱,王玉玮.材料磨损与耐磨材料.东北大学.2001:25-80页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700