SHS/QP快速制备六硼化钙陶瓷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六硼化钙由于其独特的电子结构和晶体结构,在结构陶瓷、复合材料、高温耐火材料、冶金工业、国防工业、半导体电磁工业领域有广阔的应用前景。低成本的高纯度、粒径小的六硼化钙粉末和高致密度六硼化钙块体是其应用的基础。本文采用自蔓延高温合成法和球磨法制备细晶六硼化钙粉末,以及采用两种快速烧结方法制备致密的六硼化钙陶瓷,并比较分析了不同工艺下材料显微结构。
     在粉末合成上,基于Mg-B2O3-CaO原料体系,采用自蔓延高温合成(self-propagating high-temperature synthesis, SHS)和后期酸处理工艺,制备出高纯度、均匀分布、小粒径的立方晶型细晶六硼化钙粉末。分析了Mg-B2O3-CaO自蔓延高温反应体系的燃烧产物成份及反应机理;测量了不同SHS反应物原始坯体成型压力的燃烧温度曲线;探讨了不同镁掺量和不同气氛对燃烧产物成分和形貌的影响;研究了原始坯体成型压力与最终CaB6产物粒径的关系。结果表明:采用氩气保护能抑制镁挥发;合适的原始坯体压力有利于合成分布均匀的细晶CaB6粉末。另外采用行星球磨制备细晶六硼化钙粉末,并研究了球磨后粉末的显微结构与球磨机理。对比分析,自蔓延高温合成方法更适合制备高纯度、粒径小的六硼化钙粉末。
     在块体制备上,本文主要采用自蔓延高温合成快速加压(SHS/QP)技术。该技术将SHS过程与动态快速加压过程结合起来,一次完成材料合成与密实化过程,是制备陶瓷的一种简单快速的方法。分析了化学炉体系及其质量对材料显微结构的影响,探讨了加压制度对材料致密度的影响。结果表明:合适的自蔓延化学炉体系包裹下,晶粒尺寸无异常长大;不同的加压点对同一化学炉质量体系的致密度有显著影响,而晶粒尺寸基本无变化。采用300g化学炉体系,机械压力120MPa的条件下可获得相对密度达97%以上的致密块体。另外,本文研究了另一种快速制备方法SPS(Spark Plasma Sintering)技术条件下六硼化钙块体的显微结构和烧结机理。通过微观形貌观察和拉曼测试对比分析了SHS/QP与SPS的烧结机理和显微结构。两种快速制备方法的烧结机理均为液相烧结。SHS/QP制备技术在晶粒塑性变形和流动中致密,晶粒无异常长大现象,存在更大的残余应力和晶体缺陷。而SPS技术在高温下存在晶粒异常长大成柱状的现象。
Calcium hexaboride(CaB6), due to its particular lattice and electronic structure, has a wild and promising application in structural ceramics, composite, high-temperature materials, metallury, national defense industry, semiconductor and magnetic industry and so on. High purity and small size powders and dense bulk with low cost are the foundament of extensive application. This paper has adopted self-propagating high-temperature synthesis(SHS) and ball-milling methods to synthesize fine powders as well as two quilk sintering methods to fabricate dense bulk ceramics. The comparision of microstructure between different methods was also analysed in this paper.
     High-purity and homogeneous powders of calcium hexaboride (CaB6) with the small particle size were prepared by self-propagating high-temperature synthesis (SHS) and subsequent acid-cleaning. The phase of the SHS product and the reaction mechanism in Mg-B2O3-CaO system were analyzed; The combustion temperature curves under different molding pressures of the original SHS reaction body were measured; The effects of Mg content and atmosphere on the phase and morphology of the SHS product were discussed; The effect of molding pressure of the original SHS reaction body on the grain size of the final product was investigated. The results show that the argon gas atmosphere restricts the Mg volatilization, and a proper molding pressure favors the synthesis of the homogeneous fine powder. Furthermore, ball-milling method was another method to prepare fine CaB6 powders. And the microstructure and milling mechanism were investigated in this paper. In comparision, SHS is more suitable to prepare high purity and small size calcium hexaboride powders.
     As to bulk fabrication, Self-propagating High-temperature Synthesis/Quick Pressing (SHS/QP) is mainly used, which is an easy and quick way for ceramic preparation combing SHS and dynamic consolidation to fabricate full-density composites in a single processing operation. The influence of SHS system and weight on microstructure and pressure system on the relative density were discussed in this paper. It's demostrated that proper SHS system favors the maintainance of grain size; different pressure system of the same SHS system has pronounced effect on the relative density but the grain size. The dense bulk with >97% relative density was obtained in 300g SHS system at the pressure of 120 MPa. In addition, the microstructure and sintering mechanism of SPS technology were also investigated.
     The sintering mechanism and microstructure between SHS/QP and SPS were compared by SEM and Raman analytical method. Both of the above quick methods are liquid sintering mechanism. Compared with the SPS method, owning to instantaneous high temperature, the grain in the SHS/QP method quickly plastic flow and deform to achieve densification and has no extraordinary growth. Moreover the bulk has more residual stress and lattice distortion. But the grain in the SPS method can extraordinarily grow to colomnar under high temperature.
引文
[1]TAKAHASHI K, KUNII S. Single crystal growth and properties of incongruently melting TbB6, DyB6, HoB6, YB6[J]. J Solid State Chem,1997,133:198-200.
    [2]TAKAHO T, EISUKE B, SHICHIO K, et al. Preparation of EuB6 single crystal[J]. J Cryst Growth,1977,40:125-128.
    [3]BAT'KO I, BAT'KOVA M, FLACHBART K, et al. Electricalresistivity and superconductivity of LaB6 and LuB6[J]. J Alloys Compound,1995,217:L1-L3.
    [4]S. Hanagiri, Effects of the Addition of Metal and CaB6 to Magnesia Carbon Bricks for Converter[J]. Refractories(Tokyo),1991,43(11):627.
    [5]THOMSA KH G, MEISEL H, DORN H J, et al. Effect of calcium hexaboride deoxidation on the electric properties of copper[J]. Metall,1975,29(12):1198-1204.
    [6]苏晓军,李树贵,李伟.用硼化钙脱氯生产纯钢铸件的试验研究[J].铸造,1998(2):29-30.
    [7]LOHMUELLER, ANDREAS, RAUBER, et al.Particle-reinforced magnesium alloy or aluminum alloy. Germany, DE102006023041[P].2006-05-17.
    [8]L. F. Ochkas, T. I. Shaposhnikova. Influence of Addition of Calcium Hexaboride on the Structure and Properties of Hot-pressed Titanium Boride Ceramic[J]. Powder Metallurgy and Metal Ceramics,1999,37 (9-10):507.
    [9]Yoji Imaia, Masakazu Mukaidaa, Minoru Uedaa, et al. Screening of the possible boron-based n-type thermoelectric conversion materials on the basis of the calculated densities of states of metal borides and doped P-boron[J]. Intermetallics,2001,9:721-734.
    [10]OTT HR, GAVILANO J L, AMBROSINI B, et al. Unusual magnetism of hexaborides[J]. Physica B,2000(281-282):423-427.
    [11]LIU SHAN-KE, DONG QUAN-FENG, ZHENG MING-SEN, et al. A novel additive to improve the performance of LiFeP04 in Li-ion battery[J]. ECS Transactions,2007,2(27):17-22.
    [12]NOGUCHI T, MUROMACHI T. Inexpensive laminated glass with heat-shielding interlayer. Japan, JP2004091219[P],2004-03-25.
    [13]FUKUZAWA Y. Porous copper electrodes for electric discharge machining and process for manufacturing porous copper electrodes thereof. Japan, W02007129749[P],2007-11-15.
    [14]OKAHARA M, ISHIJIMA Z. Manufacturing method of electrode material used in cold cathode fluorescent lamp. Japan, JP2007026801[P],2007-02-01.
    [15]IGARASHI K. Resistor paste and fabrication of thick-film resistor using the paste. Japan, JP2002367806[P],2002-12-20.
    [16]WIBUKIK, TAKEDA H. Solar radiation-shielding adhesives and solar radiation shields using them. Japan, JP2004115593[P],2004-04-15.
    [17]FUJITA K, YABUKI K, TAKEDA H, et al. Sunlight—hielding interlayers for laminatedglass. Japan, JP2001089202[P],2001-04-03.
    [18]R. W. Johnson, A. H. Daane, Journal of Chemical Physics,1963,38:425.
    [19]Tromp HJ, van Gelderen P, Kelly PJ, et al.Condensed Matter,2000:0011109.
    [20]陈昌明,张立同,周万诚等.硼化物陶瓷及其应用[J].兵器材料科学与工程,1997,20(2):68-71.
    [21]G. A. Samara, H. L. Tardy, E. L. Venturini, et al. ac hopping conductivities, dielectric constants and reflectivities of boron carbides[J]. Physical Review B,1993,3(48):1468-1477.
    [22]曹明贺,蒋军,刘韩星等.多晶Ca1+xB6陶瓷制备及其弱磁性能分析[J].武汉理工大学学报,2006,11(28):38-40.
    [23]D. P. Young, D. Hall, et al, High-temperature Weak Ferromagnetism in a Low-density Free-electron Gas[J], Nature,1999,397:412.
    [24]FUTAMOTO M, Toshiyuki A, KAWABE U. Microhardness of hexaboride single crystal[J]. Mater Res Bull,1979,14(10):1329-1334.
    [25]MATSUSHITA J, KOMARNENI S. High temperature oxidation behavior of CaB6 sintered body[J]. Journal of Materials Science,1999,34(13):3043-3046.
    [26]MATSUSHITA J, MORI K, NISHI Y, et al. Oxidation of Calcium Boride at High Temperature[J]. Journal of Materials Synthesis and Processing,1998,6(6):407-410.
    [27]TAKASHIMA N, KAWANO J, MIYAZAWA Y, et al. Influence of sintering temperature on hardness of CaB6 sintered body [J]. Journal of Advanced Science,1998,10(2-3):179-181.
    [28]HASEGAWA A, YANASE A. Electronic structure of CaB6[J]. J Phys C:Solid State Phys, 1979,12(24):5430-5440.
    [29]Masatoshi Takeda, Manabu Terui, Norihito Takahashi, et al. Improvement of thermoelectric properties of alkaline-earth hexaborides[J]. Journal of Solid State Chemistry,2006,179: 2823-2826.
    [30]Masatoshi Takeda, Tadahiro Fukuda, Ferrer Domingo, et al. Thermoelectric properties of some metal borides[J]. Journal of Solid State Chemistry,2004,177:471-75.
    [31]CHO B K, PHYEE J S, OH B H, et al. Formation of midgap states and ferromagnetism in semiconducting CaB6[J]. PHYSICAL REVIEW B,2004,69(11):113202/1-113202/4.
    [32]SAKURABA Y, KATO H, SATO F, et al. Structure and magnetism in nanocrystalline Ca(La)B6 films[J]. Journal of Magnetism and Magnetic Materials,2004,272-276 (2):1145-1146.
    [33]YAGASAKI K, NOTSU S, SHIMOJI Y Resistivity and thermopower of CaB6 single crystal[J]. Physica B,2003,329-333(2):1259-1260.
    [34]CHEN C H, TAKASHI A, NOBUO I, et al. Structural refinement and thermalexpansion hexaborides[J]. Journal of Alloys and Compounds,2004,366(1-2):L6-L8.
    [35]MURAKAMI S, SHINDOU R, NAGAOSA N, et al. Lattice distortion and ferromagnetism in CaB6[J]. Journal of Physical Chemistry Solids,2002,63(6-8):1285-1287.
    [36]KINO H, ARYASETIAWAN F, SCHILFGAARDE M V, et al. GW quasiparticle band structure of CaB6[J]. Journal of Physical Chemistry Solids,2002,63(6-8):1595-1597.
    [37]THOMSA KH G, MEISEL H, TEHRANI S. Behavior of boron-microalloyed copper during thermomechanical treatment[J]. Metall,1978,32(11):1103-1108.
    [38]K. Hunold. Boron Compouds in MgO-C Bricks[J]. Ceramics International,1998,1:41.
    [39]YILDIZ O, TELLE R, SCHMA1ZRIED C, et al. Phase transformation of transient B4C to CaB6 during production of CaB6 from colemanite[J]. Journal of the European Ceramic Society, 2005,25(14):3375-3381.
    [40]OKROSTVARIDZE O, TAVADZE G, KHVADAGIANI A, et al. Syntheses of new composite ceramic and metal-ceramic materials in combustion mode[C]. Science for Materials in the Frontier of Centuries:Advantages and Challenges International Conference, Kyiviev,2002: 345-346.
    [41]V. N. Paderno, V. M. Volkogon. Effect of High Pressure on the Microstructure of Sintered Polycrystalline Calcium Hexaboride Cakes[J], Soviet Powder Metallurgy and Metal Ceramics, 1985,24 (7):543.
    [42]V. N. Paderno, Y. B. Paderno. Effect of Production Procedure on Structure Formation and Fracture of CaB6-TiB2 Pseudo-alloy Sintering Under High-pressure hot compaction[J], Poroshkovaya Metallurgiya,1992,10:52.
    [43]E.1. Golovko, T. L. Serebryakova. Oxidation of Composite TiB2-CaB6[J], Poroshkovaya Metallurgiya,1992,12:64.
    [44]L.F. Ochkas, T. L. Shaposhnikova. Influence of Addition of Calcium Hexaboride on the Structure and Properties of Hot-pressed Titanium Boride Ceramic[J], Powder Metallurgy and Metal Ceramics,1999,37(9-10):507.
    [45]GRECHNEV G E, BARANOVSKIY A E, FIL V D, et al. Electronic structure and bulk properties of MB6 and MB12 borides[J]. Low Temperature Physics,2008,34(11):921-929.
    [46]S. K. Duta, Hot Pressing and Mechanical Properties of Calcium Hexaboride[J], Army Materials and Mechanics Research Center Watertown Mass,1973.
    [47]DUQUE JGS, URBANO R R, PAGLIUSO P G, et al. Electron spin resonance study of the local environment for the Gd3+and Eu2+ions in Cal1-xRxB6(R=Gd, Eu)(0.0001≦χ≦0.30)[J]. Journal of Magnetism and Magnetic Materials,2007,310(2):864-866.
    [48]K. Gianno, A. V. Sologubenko. Low-temperature Thermoelectric Power of CaB6[J], Journal of Physics:Condensed matter,2002,14:1035.
    [49]J. L. Gavilano, S. H. Mushkolaj. 11B-NMR in CaB6[J]. Physica B:Condensed Matter,2002, 312-313:813.
    [50]M. Song, In-Sang Yang, J.Y. Kim. Raman scattering study of calcium hexaboride[J]. Vibrational Spectroscopy,2006,42:288-291.
    [51]RHYEE J S, CHO B K. The effect of boron purity on electric and magnetic properties of CaB6[J]. Journal of Applied Physics,2004,95(11):6675-6677.
    [52]Lixia Yang, Guanghui Min, Huashun Yu, et al. Densification and mechanical properties of CaB6 with nickel as a sintering aid[J]. Ceramics International,2005,31:271-276.
    [53]叶方保,钟焰.含炭耐火材料用硼化物添加剂[J].耐火材料,1997,31,(5):29.
    [54]姜骏,卞江,黎乐民.掺杂六硼化钙(Ca1-xLaxB6)的电子结构和磁性的研究[C].中国化学会第九届全国量子化学学术会议,桂林,2005:115.
    [55]蒋军,袁俊,曹明贺.电子能量损失谱测量CaB6化学剂量比[J].电子显微学报,2004,23(4): 421-421.
    [56]SEREBRYAKOV T I, MAREK E V. Conditions of preparation of calcium and barium hexaboride powders[J]. Poroshk Metall,1969,8(80):4-9.
    [57]HARIHARAN M, GUNASEKAR M P. Preparation of calcium boride in electric arc furnace[J]. Transactions of the SAEST,1995,30(3):87-92.
    [58]Shuqi Zheng, Guanghui Min. Synthesis of Calcium Hexaboride Powder via the Reaction of Calcium Carbonate with Boron Carbide and Carbon[J]. J. Am. Ceram. Soc,2001,84 (11): 2725-2727.
    [59]Liang Shi, Yunle Gu, Luyang Chen, et al. Low Temperature Synthesis and Characterization of Cubic CaB6 Ultrafine Powders[J]. Chemistry Letters,2003,10 (32):958-959.
    [60]Terry T. Xu, Jian-Guo Zheng, Alan W. Nicholls, et al. Single-Crystal Calcium Hexaboride Nanowires:Synthesis arid Characterization[JJ. Nano Letters,2004,4(10):2051-2055.
    [61]S. K. Duta. Hot pressing of reaction sintered CaB6. United States,4017577[P],1977-04-12.
    [62]Longuet-Higgins HC, Robert MV. The Electronic Structure of the Borides MB6[J]. Proc Royal Soc,1954,224 (1158):336-347.
    [63]Massida S, Continenza A, Posternak M, et al. Self-energy corrections in transition metal oxides[J]. Physica B:Condensed Matter,1997,237-238:324-327.
    [64]K Gianno, A V Sologubenko, H R Ott, et al. Low-temperature thermoelectric power of CaB6[J]. J. Phys.:Condens. Matter,2002,14:1035-1043.
    [65]Masatoshi Takeda, Manabu Terui, Norihito Takahashi, et al. Improvement of thermoelectric properties of alkaline-earth hexaborides[J]. Journal of Solid State Chemistry,2006,179: 2823-2826.
    [66]Merzhanov A G, Borovinskaya I P. Self-propagating high-temperature synthesis of refractory inorganic compounds[J]. Dokl Akad Nauk SSSR(Engl Transl),1972,204(2):429.
    [67]袁润章.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社,1994:序.YUAN Runzhang. Progress on Self-Propagating High-Temperature Synthesis(in Chinese). Wuhan: Wuhan University of Technology Press,1994:Preface.
    [68]Z. A. Muzir. Reaction Synthesis Process:Mechanisms and Characteristics[J]. Metall. Trans. A,1992,23A(1):7-13.
    [69]Miyamoto Y, Nakamoto T, Koizumi M, et al. Ceramic-to-metal welding by a pressurized combustion reaction[J]. J. Mat. Res.,1986:1(1):7.
    [70]Novikov N P, Borovinskaya IP, Merzhanov A G Combustion in Chemical Engineering and Metallurgy(in Russian)[J].1975:174.
    [71]Merzhavov AG Combustion Progress in Chemical Technology and Metallurgy,1975:1.
    [72]傅正义,袁润章.自蔓延高温合成材料新技术[J].武汉理工大学学报.1991,3(13):26-33.
    [73]L. J. Kecskes. Microstructural Properties of Combustion-Synthesized and Dynamically Consolidated Titanium Boride and Titanium Carbide[J]. J. Am. Ceram. Soc,1990,73(5): 1274-82.
    [74]殷声.燃烧合成[M].北京:冶金工业出版社,1999:194.
    [75]E. A. Olevsky, E. R. Strutt, M. A. Meyers. Combustion Synthesis and Quasis-isostatic Densification of Powder Cermets[J]. J. Mater. Process.Tech.,2002,121:157-166.
    [76]傅正义,王为民,王皓.TiB2系金属陶瓷的SHS/QP制备[J].硅酸盐学报,1996,24(6):654-659.
    [77]R. Z. Yuan, Z. Y. Fu. SHS TiB2-Based Multiphase Ceramics and Composites[J]. Int. J. SHS., 2001,10:435-450.
    [78]Z. Y. Fu, H. Wang, W. M. Wang, et al. Composites Fabricated by Self-propagating High-temperature Synthesis[J]. J. Mater. Process.Tech.,2003,137:30-34.
    [79]傅正义,王为民,王皓,袁润章.采用SHS/QP技术制备TiC-xNi金属陶瓷——Ⅱ.加压工艺与材料性能[J].复合材料学报,1997,14(3):61-65.
    [80]傅正义,王为民,王皓,袁润章.采用SHS/QP技术制备TiC-xNi金属陶瓷——Ⅰ.燃烧合成过程研究[J].复合材料学报,1997,14(2):56-60.
    [81]孟范成,傅正义,张金咏等.“化学炉”加机械压力法超快制备超细晶氧化铝陶瓷[J].硅酸盐学报,2007,35(3):285-288.
    [82]Fangcheng Meng, Zhengyi Fu, Jinyong Zhang, et al. Rapid Densification of Nano-Grained Alumina by High Temperature and Pressure with a Very High Heating Rate[J]. J. Am. Ceram. Soc,2007,90 (4):1262-64.
    [83]傅正义.陶瓷材料的SHS超快速致密化技术[J].硅酸盐学报,2007,35(8):948-954.
    [84]孟范成,傅正义,张金咏等.自蔓延高温合成/快速加压法制备二硼化钛陶瓷的致密化机理[J].硅酸盐学报,2007,35(4):430-434.
    [85]唐清,殷声等.Ti-C-Ni-Mo系的自蔓燃-加压致密化[J].北京科技大学学报,1993,15(6):572-575.
    [86]豆志河,张廷安,侯闯等.自蔓延高温合成CaB6的基础研究[J].中国有色金属学报, 2004,14(2):322-326.
    [87]Jiangang Xu, Houan Zhang. Effect of argon atomosphere on the formation of MoSi2 by self-propagating combustion method[J]. International Journal of Refractory Metals and Hard Materials,2007,25:318-321.
    [88]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,1981.
    [89]D. Hauck, Franz Muller. Thermochemie des Systems MgO-B2O3[J]. Zertschrift fur Physikalische Chemie (in German),1979,118(1):79-87.
    [90]Shunli Shang, Tao Wang, Zi-Kui Liu. Thermodynamic modelling of the B-Ca, B-Sr and B-Ba system[J]. Computer Coupling of Phase Diagrams and Thermochemistry,2007,31: 286-291.
    [91]C. L. Yeh, W. H. Chen. A comparative study on combustion synthesis of Nb-B compounds[J]. Journal of Alloys and Compounds,2006,422:78-85.
    [92]Jun-ichi Matsushita, Kiyotaka Mori, Yoshitke Nishi, et. al. Oxidation of Calcium Boride at High Temperature[J]. Journal of Materials Synthesis and Processing,1998,6(6):407-410.
    [93]钱效林,球磨介质和助磨剂对超细粉碎的影响[J]. FOSHAN CERAMICS,2003,4(73): 16-18.
    [94]Norio Ogita, Shinji Nagai, Naoki Okamoto, et al. Raman scattering study of CaB6 and YbB6[J]. Journal of Solid State Chemistry,2004,177:461-465.
    [95]M Song, In-Sang Yang, J Y Kim, et al. Raman scattering study of calcium hexaboride[J]. Vibrational Spectroscopy,2006,42:288-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700