化学前驱体法制备TiB_2-SiC纳米复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二硼化钛陶瓷(Titanium diboride,TiB2)是一种新型的工程陶瓷材料,它具有优良的耐高温性、高硬度、高模量和低比重,同时还具有优良的抗冲击能力,二硼化钛以其优异的综合性能成为国防建设关键新材料之一。但TiB_2陶瓷材料脆性大、不易加工、抗热震性差等问题限制了其进一步应用,因此如何进一步提高二硼化钛陶瓷的强韧性是目前研究的关键问题之一。而目前采取的技术手段主要是细化材料晶粒和第二相弥散强化技术,但是由于TiB2纳米粉末的制备十分困难,同时烧结条件相当苛刻,因此,TiB_2超细晶粒陶瓷的制备研究进展不大,目前的研究主要集中在第二相弥散强化上。
     本论文采用前驱体原位合成法制备TiB2/SiC纳米复合粉体,并详细研究了前驱体热解法制备纳米SiC。采用热压烧结技术和SPS烧结技术对制备得到的复合粉体进行烧结,对其进行分析表征,研究其结构性能之间的关系。
     首先研究了前驱体热解法制备纳米SiC。通过控制前驱体热解时的升温速率来控制纳米SiC的形貌,并对纳米SiC的热稳定性进行了研究。利用MICROS细化设备对前驱体进行细化处理以得到分散较好的纳米SiC。通过研究发现:利用前驱体热解法能够制备得到分散良好的纳米SiC粉体。
     采用前驱体原位合成的方法制备得到了TiB2/SiC纳米复合粉体,发现前驱体热解产物在复合粉体中起到一种类似粘结剂的作用,将TiB_2颗粒粘结在-起。复合粉体在高温条件下,体系内的各成分及热解产物之间是相互稳定的,并不会发生化学反应,也不会破坏复合粉体各组分之间的相互结构;随着温度的升高,SiC的结晶越来越好。利用热压烧结对制备得到的复合粉体进行烧结,得到的烧结体结构均匀致密,颗粒无异常长大,各物相之间相对稳定,没有引入其他杂质,结晶后的SiC存在于TiB_2晶粒之间,形成纳米复相结构。
     分别用细化后的TiB2和前驱体制备TiB2/SiC纳米复合粉体,细化后的粉体粒径较小,比表面积较大,表面活性变大,更利于复合粉体之间的结合。复合粉体在热解后用行星球磨细化处理以破坏粉体之间的团聚,更利于烧结。采用SPS烧结技术对细化后的复合粉体进行烧结。研究表明:TiB2/SiC复合粉体SPS烧结后,块体的显微结构均匀,致密,颗粒细小。
Titanium diboride (TiB2) is a new engineering ceramic material, with excellent temperature resistance, high hardness, high modulus and low specific gravity, also has an excellent thermal shock resistance, so it becomes a new key material of national defense as its excellent performance. But the brittle, difficult process, and poor thermal shock resistance of TiB2 limits its application in future, so how to improve the strength and toughness of TiB2 is one of the key issues at present. And now, most of people take the techniques that refine the grain and the second-phase dispersion strengthening to improve the strength and toughness of TiB2, but it is difficult to refine the grain of TiB2, while the sintering conditions can be quite harsh, so refine the grain of TiB2 is in little progress, and most study focused on the technique of second-phase dispersion strengthening.
     In this thesis, TiB2/SiC nano-composite were prepared by the in situ synthesis of precursor, and the nano SiC that prepared from precursor were studied detailed. The TiB2/SiC composite were sintered by hot press sintering (HP) and spark plasma sintering (SPS), its characterization were studied to research the relationship between structure and properties.
     First, the nano SiC that prepared from precursor were studied. The morphology of nano-SiC were controlled by control the heating rate during pyrolysis, and the thermal stability of nano-SiC was studied. Well dispersed nano-SiC were obtained by refine the precursor using the equipment of MICROS. It could be found that:well dispersed nano SiC could be prepared by using the pyrolysis of precursor.
     TiB2/SiC composite could be get by using the in situ synthesis of precursors, it could be found that the pyrolysis products of precursor played a binder role in the composite to bond the TiB2 particles together. The components within the system and the pyrolysis products were mutually stable, they didn't react with each other, and they also didn't undermine the structure between each other when the composite were in high temperature. For the SiC, the higher the temperature the better crystallization. The prepared composite was sintered by HP sintering, the structure of sintered body was uniform and compact, there was no grain growth abnormal and no impurities in sintered body after sintering. The phases in composite were stability with each other, and the crystallized SiC grains existed between TiB2 to formed the structure of nanocomposite.
     TiB2/SiC composite were prepared by using the refined TiB2 and precursor. Refined powder had smaller particle size, large specific surface area, and their surface activity became better which it is conducive to the binding between the components of composite. The composite after pyrolysis was refined by the planetary ball mill to disrupt the reunite of composite which was conducive to sintering. The refined composite was sintered by SPS. It could be found that:the structure of the sintered TiB2/SiC composite by SPS was uniform and compact, the grain were small.
引文
[1]Toshiko Tani, S. Wade. SiC matrix composites reinforced with internally synthesized TiB2[J]. J. Mate. Sci,1990,25:157.
    [2]李枫.硼化物助烧剂对TiB2陶瓷结构与性能的影响[D].硕士学位论文,武汉:武汉理工大学,2008.
    [3]K. B. Finch, V. J. Tennery. J. Am. Ceram. Soc.,1982,65(7):C100-C101.
    [4]逢婷婷,等.放电等离子(SPS)快速烧结TiB2陶瓷[J].陶瓷学报,2001,22(3):129.
    [5]J. B. Holt, Z. A. Munir. The Fabrication of SiC, Si3N4 and AlN combustion synthesis[J]. Ceramic Components-forengines,1983,3(2):721-728.
    [6]P. C. Cobb. Titanium Carbide as a sintering agent for Titanium Boride[J]. Material and Design 1998,11(3):378.
    [7]田明原,施尔畏,仲维卓等.纳米陶瓷与纳米陶瓷粉末[J].无机材料学报.1998,13(21):129-137.
    [8]曾照强,胡晓清,林旭平等.添加Cr2O3对Al2O3-TiC陶瓷烧结及纳米结构形成的影响[J].硅酸盐学报.1998,26(2):178-181.
    [9]刘建平,傅正义,王皓,等.(TiB2+Fe)/Fe梯度材料的自蔓延高温合成/快速加压制备[J].硅酸盐学报.2002,30(14):437-441.
    [10]徐强,等.SHS/PHIP法合成TiB2陶瓷的研究[J].高技术通讯,2002,8:71.
    [11]L. J. Kecskes, R. F. Benck, P. H. Netberworel. Dynamic compaction of combustion synthesized hafnium carbide[J]. J. Am. Ceram. Soc.1990,73(2):383.
    [12]王为民,傅正义,袁润章.自蔓延高温合成TiB2/NiAl复合材料的显微结构分析[J].硅酸盐学报,1996,24(4):470-475.
    [13]徐强,张幸红,曲伟,韩杰才.金属陶瓷的研究进展[J].硬质合金,2002,19(4):221-225.
    [14]黄银松,诸培南.金属陶瓷复合材料的主要制备方法.粉末冶金技术[J].1996,14(4):11-12.
    [15]郑立允,熊惟皓,赵立新.功能梯度金属陶瓷的制备与性能[J].稀有金属材料与工程,2005.34(9):1389-1393.
    [16]郑立允,熊惟皓.金属陶瓷表面处理的研究进展[J].机械工程材料,2004,28(9):9-13.
    [17]王海龙,黎寿山,张锐,辛玲,胡行.热等静压在金属陶瓷制备中的应用研究进展[J].陶瓷学报.2005,26(3):197-201.
    [18]熊焰,傅正义.二硼化钛基金属陶瓷研究进展[J].硅酸盐通报.2005,1:60-64.
    [19]V. I. Matkovich. Boron and Refractory Borides[M]. NewYork:Springer-Verlag,1977.
    [20]B. Yuriditsky, Y. Funk. TiB2-Based Cermets[J]. Refractory Metals and Hard Materials.1990, 9(1):32-35.
    [21]K. B. Finch, V. J. Tennery. Crack formation and swelling of TiB2-Ni ceramics in liquid Aluminum[J]. J. Am. Ceram. Soc.,1982,65(7):C100-C101.
    [22]C. A. Caracostas, A. Chiou, M. E. Fine, H. S. Cheng. Wear mechanisms during lubricated sliding of XD-TM 2024-Al/TiB2 metal matrix composites against steel[J]. Scripta Metall. Mater.,1992,27(2):167-172.
    [23]C. Biselli, D. Q. Morris, N. Randall. Mechanical alloying of high-strength copper alloys containing TiB2 and Al2O3 dispersoid particles[J]. Scripta Metall. Mater.,1994,30(10): 1327-1332.
    [24]J. M. Sanchez, M. G. Barandika, J. Gil-Sevillano, F. Castro. Scrip. Metal. Mat.,1992,26:957.
    [25]T. Watanable, I. C. Shoubll. Mechanical properties of hot-pressed TiB2-ZrO2 composites[J]. Journal of American Ceramic Society,1985,68(2):c34-c36.
    [26]S. K. Bhaumik, C. Divakar, A. K. Singh. Synthesis and sintering of TiB2 and TiB2-TiC composite under high pressure[J]. Materials Science and Engineering,2000, A279:275-281.
    [27]菖蒲一久.窑业协会志[M],1985,93:P252.
    [28]T. Watanabe, et al. Journal of American Ceramic Society,1988,71:PC202.
    [29]M. A. Meyers, E. A. Olevsky, J. Ma, et al. Combustion synthesis/densification of an Al2O3-TiB2 composite[J]. Mater. Sci. Eng.,2001,311(12):83-99.
    [30]F. Monteverde, A. Bellosi, S. Guicciardi. Processing and properties of zirconium diboride-based composites[J]. Journal of the European Ceramic Society,2002,22:279-288.
    [31]Jianxin Deng, Vongkun Cao, Lili Liu. Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel[J]. Journal of the European Ceramic Society, 2005,25:1073-1079.
    [32]G. Roewer, U. Herzog, K. Trommer, E. Miiller, S. Friihauf, Silicon Carbide-A Survey of Synthetic Approaches, Properties and Applications[M].
    [33]G. D. Soraru, F. Babonneau, J. D. Mackenzie, Structural evolutions from polycarbosilane to SiC ceramic[J]. Journal of Materials Science,25 (1990):3886-3893.
    [34]E. Bouillon et al, Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material[J]. Materials Letters. Journal of Materials Science,26 (1991):1333-1345.
    [35]A. Tazi Hemida, R. Pailler, R. Naslain, Continuous SiC-based model monofilaments with a low free carbon content[J]. Journal of Materials Science,32 (1997):2359-2366.
    [36]H. Q. Ly, R. Taylor, R. J. Day, F. Heatley, Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products[J]. Journal of Materials Science.36 (2001):4037-4043.
    [37]H. Q. Ly, R. Taylor, R. J. Day, F. Heatley, Conversion of polycarbosilane (PCS) to SiC-based ceramic Part Ⅱ. Pyrolysis and characterisation[J]. Journal of Materials Science,36 (2001):4045-4057.
    [38]Rongqian Yao, Zude Feng, Yuxi Yu, Siwei Li, Lifu Chena, Ying Zhang, Synthesis and characterization of continuous freestanding silicon carbide films with polycarbosilane (PCS) [J]. Journal of the European Ceramic Society 29 (2009):2079-2085.
    [39]Kai Du, Haibin Yang, Ronghui Wei, Minghui Li, Qingjiang Yu, Wuyou Fu,Nan Yang. Hongyang Zhu, Yi Zeng, Electric-pulse discharge as a novel technique to synthesize β-SiC nano-crystallites from liquid-phase organic precursors[J]. Materials Research Bulletin 43 (2008):120-126.
    [40]Eric J. Henderson, Jonathan G. C. Veinot, From Phenylsiloxane Polymer Composition to Size-Controlled Silicon Carbide Nanocrystals[M]. JACS articles published on Web 12/18/2008.
    [41]Wei-Ming Guo, Guo-Jun Zhang, Pei-Ling Wang, Microstructural Evolution and Grain Growth Kinetics in ZrB2-SiC Composites During Heat Treatment[J]. J. Am. Ceram. Soc., (2009):1-4.
    [42]Wei-Ming Guo, Xiao-Jun Zhou, Guo-Jun Zhang, Yan-Mei Kan, Yao-Gang Li, Pei-Ling Wang, Effect of Si addition on hot-pressed ZrB2-SiC composite with polycarbosilane as a precursor[J]. Materials Letters 62 (2008):3724-3726.
    [43]Wei-Ming Guo, Xiao-Jun Zhou, Guo-Jun Zhang, Yan-Mei Kan, Yao-Gang Li, Pei-Ling Wang, Effect of Si and Zr additions on oxidation resistance of hot-pressed ZrB2-SiC composites with polycarbosilane as a precursor at 1500℃[J]. Journal of Alloys and Compounds 471 (2009):153-156.
    [44]Sumin Zhu, William G. Fahrenholtz, Gregory E. Hilmas, Enhanced densification and mechanical properties of ZrB2-SiC processed by a preceramic polymer coating route[J]. Scripta Materialia 59 (2008):123-126.
    [45]Xiao-Jun Zhou, Guo-Jun Zhang, Yan-Mei Kan, Yao-Gang Li, Pei-Ling Wang, Hot pressed ZrB2-SiC-C ultra high temperature ceramics with polycarbosilane as a precursor[J]. Materials Letters 61 (2007):960-963.
    [46]钟仁志,张长瑞,周新贵,周安郴,陈远志.用聚碳硅烷为先驱体制备Si3N4\SiC纳米复相陶瓷[J].复合材料学报,16(1999)4:13-16.
    [47]何新波,张长瑞,周新贵,张新明,周安郴.先驱体转化-热压烧结碳纤维增韧碳化硅复合材料的显微结构[J].航空材料学报,19(1999)3:26-31.
    [48]何新波,杨辉,张长瑞,周新贵.先驱体转化热压烧结Cf/SiC复合材料的致密化机理[J].材料科学与工程,20(2002)3:358-360.
    [49]Dusan Galusek, Jaroslav Sed(?)acek, Ralf Riedel, Al2O3-SiC composites prepared by warm pressing and sintering of an organosilicon polymer-coated alumina powder[J]. Journal of the European Ceramic Society 27 (2007):2385-2392.
    [50]陈朝辉,张长瑞,冯春祥,张凌,刘成民.聚碳硅烷先驱体制备SiC基复合材料的性能研究[J].国防科技大学学报,14(1992)4:111-115.
    [51]Dong-Hau Kuot, Waltraud M. Kriven, Mechanical Behavior and Microstructure of SiC and SiC/TiB2 Ceramics[J]. Journal of the European Ceramic Society 18 (1998):51-57.
    [52]Y. Hasegawa, K. Okamura, ibid.18(1983):3633.
    [53]Sumin Zhu, Shuqiang Ding, Hong'an Xi, Ruoding Wang, Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding[J]. Materials Letters 59 (2005): 595-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700