超高温条件下陶瓷致密化探索性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al2O3/YAG氧化物共晶陶瓷由于其优异热力学稳定性,被认为可能成为在超高温强氧化性环境中长期工作的候选材料之一。本文以Al2O3/YAG氧化物共晶陶瓷为研究对象,结合自蔓延高温合成反应升温速率快、温度高及冷却速率快等特点,研究了在高于陶瓷反应熔点的情况下制备陶瓷材料的可能性,探索性的研究了超高温条件下陶瓷的致密化,并比较分析了不同工艺下材料的微观结构。
     采用自蔓延高温合成反应作为热源,将在共晶点混合的粉末压制成素坯置于其中反应得到块体。通过对不同‘化学炉’反应体系温度曲线的测试分析,通过对所得产物的比较,选择了合理的化学炉体系;分析了化学炉体系质量对材料显微结构的影响;分析了不同原料粒径对于材料微观结构的影响。结果表明:自蔓延高温合成反应可以在高于陶瓷反应熔点的情况下制备出共晶陶瓷;采用Ti/C体系作为化学炉最为适合,且炉料为160g时得到反应完全且均匀的共晶陶瓷块体;原料粉的粒径匹配性越好时得到的材料越均匀。进行块体材料的物相和微观结构分析得出:采用化学炉法制备的共晶陶瓷材料只存在Al2O3和YAG两相,且两相耦合生长;微观组织除具有典型的‘象形’文字结构外,还得到特殊的形貌。通过HRTEM分析两相界面,得到:两相界面匹配良好,且无非晶相存在于界面之间。
     另外,本文研究了另外两种制备方法:热压法和电弧熔炼法。通过比较分析不同制备方法所得样品的物相及微观结构;通过测定不同方法制得样品的密度,硬度以及计算其断裂韧性;得出以下结论:传统热压法制得的材料密度和硬度均较低,且微观形貌与采用化学炉法和电弧熔炼法制得的样品有很大差别;电弧熔炼法虽然能够制得微观组织细小且性能良好的材料,但其设备复杂耗时长,且制得的样品细小。相较于以上两种方法,化学炉法能够得到微观结构细小性能好的材料,且较前两者节约成本。
Al2O3/YAG oxide eutectic was considered as one of candidates always exists in the heat and oxidizing environments, due to the excellent heat-resistant properties. In this paper, Al2O3/YAG oxide eutectic was studied combine with the self-propagating high-temperature synthesis (SHS) which have some advantages as the reaction can reach to very ultra temperature and finished in few seconds, and we researched the possibility of fabricating densification ceramics on ultra high temperature, then compared the microstructure of this ceramic making in different methods.
     The SHS reaction was used as a heat resource and the raw powder which mixed in the eutectic point was pressed into a cylindrical and bodied in the center of it. The most applicable systems was chosen after tested and analyzed the different SHS systems temperature curves, and compared the bulks which was obtained from different SHS systems; the effects of microstructure relative with adding weigh of SHS reaction and changing size of raw powders was analyzed. The result declared that the Al2O3/YAG eutectic ceramics was obtained by using self-propagating high-temperature synthesis (SHS) method; the perfect bulk was produced when 160g Ti-C reaction was used in this research; and the uniform sample was obtained when the raw powder size was almost in the same scale. The phase and microstructure researches illustrated that there were only two phase Al2O3 and YAG was existed and this two phase was coupling growth. The component phases form an interpenetrating and interconnecting complex three-dimensional network known as Chinese script (CS) structure and some kinds of new microstructures with regular growth morphology are surveyed in the eutectics prepared by this technique which are never found in the Al2O3/YAG binary eutectic in previous reports. No amorphous phases are observed at the interfaces the Al2O3 and YAG phases and relatively compatible interfaces are formed throw the HRTEM testing.
     In this study, we also used other two methods like Hot Press (HP) and Electric Beam Melting (EBM) to fabricate the Al2O3/YAG eutectic ceramic. The phase and microstructure was analysis to compare different method. The density and hardness was measured, and the fracture toughness was accounted from hardness testing. The density and hardness of HP sample was less, and the microstructure was not form like the other two samples which was interconnecting complex three-dimensional network. The EBM sample had fine texture and higher density, but it was too small and hardly to measured mechanical properties like hardness and fracture. Contrast with HP and EBM method, the SHS method not only could produce a bulk with fine microstructure and good properties, but also was a cheaper way to fabricate Al2O3/YAG eutectic ceramic.
引文
[1]周玉.陶瓷材料学[M].北京:科学出版社,2004
    [2]关长斌,郭英奎,赵玉成.陶瓷材料导论[M].哈尔滨:哈尔滨工程大学,2005
    [3]王峰,李慧琪,李敏等.氧化铝陶瓷制备研究[J].材料导报,2008,12(22):332-335
    [4]曾令可,李秀艳.纳米陶瓷技术[M].广州:华南理工大学出版社,2006.187
    [5]康丽丹,穆博春,余景媛等.氧化硼陶瓷低温烧结技术的研究现状[J].辽宁工学院学报,2004,24(4):49
    [6]张九兴,岳明,宋晓艳等.放电等离子烧结与新材料研究[J].功能材料,2004(35):94-105
    [7]徐强,张幸红,韩杰才等.先进高温材料的研究现状和展望[J].固体火箭技术,2002,25(3):51-55
    [8]张军,苏海军,刘林等.Al2O3/YAG共晶自生复合陶瓷的激光熔凝试验研究[J].航空材料学报,2003,23:171-174
    [9]胡汉起.金属凝固.北京:机械工业出版社,1983
    [10]师昌绪,等.材料科学技术百科全书.北京:中国大百科全书出版社,1995
    [11]Jackson K A, Hunt J D. Lamellar and rod eutectic growth[J].Transition of Metal Society AIME,1966,236:1129-1142
    [12]Cadirli E, Kaya H, Gunduz M. Directional solidification and characterization of the Cd-Sn Eutectic alloy[J].Journal of Alloy Compound,2007,431 (1-2):812-819.
    [13]Series R W, Hunt J D, Jackson K A. The use of an electric analogue to solve the lamellar eutectic diffusion problem [J]. Journal of Crystal Growth,1977,40(2):221-233.
    [14]Mafnin P, Trivedi R. Eutectic growth:A modification of the Jackson and Hunt theory [J].Acta Metall Material,1991,39(4):453-467.
    [15]Sato T, Sayama Y. Completely and partially cooperative growth of eutectics[J].Journal of Crystal Growth,1974,22(4):259-271.
    [16]Fisher D J, Kurz W. A theory of branching limited growth of irregular eutecties [J].Acta Metall,1980,28(6):777-794.
    [17]Magnin P, Kurz W. An analytical model of irregular eutectic growth and its application to Fe-C[J].Acta Metall,1987,35(5):1119-1128.
    [18]Viechnicki D, Schmid F. Investigation of the eutectic Point in the system Al2O3/Y3Al5O12 [J]. Materials Research Bulletin,1969,4(2):129-135
    [19]Yoshikawa A, Hasegawa K, Lee J H, et al. Phase identification of Al2O3/RE3Al5O12 and Al2O3/REAlO3 (RE=Sm-Lu,Y) eutectics [J]. Journal of Crystal Growth,2000,218:67-73
    [20]Yoshiharu Waku. A New Ceramic Eutectic Composite with High Strength at 1873 K [J].Adv. Mater.1998,10, No.8.
    [21]Y Waku, N Nakagawa, T Wakamoto,et al. High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite[J].JOURNAL OF MATERIALS SCIENCE 33 (1998) 1217 ± 1225.
    [22]Lee J H, Yoshikawa A, Fukuda T, et al. Growth and characterization of Al2O3/Y3Al5O12/ZrO2 ternary eutectic fibers [J]. J Crystal Growth,2001,231:115-120
    [23]Lee J H, Yoshikawa A, Durbin S D,et al. Microstructure of Al2O3/ZrO2 eutectic fibers grown by the micro-pulling down method [J]. Journal of Crystal Growth,2001,222:791-796
    [24]Calderon-Moreno J M, Yoshimura M. Effect of melt quenching on the subsolidus equilibria in the ternary system Al2O3-Y3Al5O12-ZrO2[J].Solid State Ionics,2001,141-142:343-349
    [25]Calderon-Moreno J M, Yoshimura M. Stabilization of zirconia lamellae in rapidly solidified alumin-zireonia eutectic composites [J]. Journal of the European Ceramic Society,2005,25: 1369-1372
    [26]Larrea A, de la Fuente G F, Merino R I, et al. ZrO2-Al2O3 eutectic plates produced by laser zone melting[J]. Journal of the European Ceramics Society,2002,22:191-198
    [27]Sayir A,Farmer S C. The effect of the microstructure on mechanical properties of directionally solidified Al2O3/ZrO2(Y203) eutectic [J]. Acta Material,2000,48:4691-4697
    [28]苏海军,张军,刘林,等.激光快速熔凝Al2O3/YAG共晶陶瓷的制备与组织[J].北京航空航天大学学报,2007,33(7):846-550.
    [29]朱浩,赵忠民,张龙,等.超重力下燃烧合成Al2O3/ZrO2的成分、结构和性能[J].特种铸造及有色合金,2009,29(5):455-455
    [30]赵忠民,张龙,杨润泽,等.机械振动对燃烧合成Al2O3/ZrO2(3Y)自增韧复合陶瓷的影响[J].稀有金属材料与工程,2007,36(增1):724-726.
    [31]Pastor J Y, Lorca J L, Martin A, et al. Fracture toughness and strength of Al2O3-Y3Al5O12 and Al23-Y3Al5O12-ZrO2 directionally solidified eutectic oxides up to1900K [J]. Journal of the European Ceramic Society,2008,28:2345-351
    [32]Ramirez-Rico J, de Arellano-Lopez, Martinez-Fernandez J, et al.Crystallographic texture in Al2O3-ZrO2(Y2O3) directionally solidified eutectics [J]. Journal of the European Ceramic Society,2008,28:2681-2686
    [33]Lin M, Peilin M, Jiangtao L, et al. Fabrication of nanostructure Al2O3/ZrO2(Y2O3) eutectic by combustion synthesis melt-casting under ultra-high gravity [J]. Materials Letters,2010,64: 68-70.
    [34]Haijun S, Jun Z, Lin L, et al.Microstructure and mechanical Properties of a directionally Solidified Al3O3/Y3Al5O12/ZrO2 Hypoeutectic in situ composite[J].Composites Science and Technology,2009,69L:2657-667
    [35]吴江,张龙,赵忠民等.微拉法制备氧化物共晶复合陶瓷的研究进展[J].科学技术与工程,2007,7(4):559-592
    [36]Fritsch M, Klemn H. The water vapor hot gas corrosion of MGC materials with Al2O3 as a phase constituent in a combustion atmosphere[J].Journal of the European Ceramic Society,2008, 28:2353-2358
    [37]Lee J H, Yoshikawa A, Durbin S D, et al. Microstructure of Y2O3 doped Al2O3/ZrO2 eutectic fibers grown by the micro-pulling down method [J]. Journal of Crystal Growth,2001,231:179-185
    [38]Javier L L, Victor M O. Directionally solidified eutectic ceramic oxides [J]. Progress in Materials Science,2006,51(6):711-809
    [39]孙海滨,刘俊成,白佳海等.氧化物共晶自生复合陶瓷的研究进展[J].陶瓷导报,2009,30(2):243-250
    [40]Courtright E J, Haggerty J S, Sigalovsky J. Controlling Microstructures in ZrO2(Y2O3)-Al2O3 Eutectic Fibers[J]. Ceramic Engineering Science,1993,14(7-8):671-681
    [41]杨森,黄卫东,刘文今等.激光超高温梯度快速定向凝固研究[J].中国激光,2002,29(5):475-479
    [42]郭喜平,高丽梅.电弧区熔定向凝固Nb基高温合金的组织和性能[J].航空材料学报,2006,26(3):47-50
    [43]Haijun S, Jun Z, Yangfeng D, et al.A modified Preparation technique and characterization of directionally solidified Al2O3/Y3Al5O12 eutectic in-situ composites [J]. Scripta Materialia.2009, 60:362-365
    [44]Zhongmin Z, Long Z, Yigang S, et al.Microstructure and Properties of rapidly solidified Y2O3 doped Al2O3/ZrO2 composites prepared by combustion synthesis[J].Scripta Materialia, 2006,55:819-822
    [45]潘传增,张龙,赵忠民,等.Al2O3/ZrO2(Y2O3)共晶复合陶瓷晶体生长机理[J].粉末冶金材料科学与工程,2007,12(5):290-295.
    [46]CARRARD M, GREMAND M, ZIMMERMANN, et al. About the banded structure in rapidly solidified dendritic and eutectic [J]. Acta Metall Materials,1992,40(5):983-996.
    [47]Merzhanov A G, Borovinskaya I P. Self-propagating high-temperature synthesis of refractory inorganic compounds [J]. Dokl Akad Nauk SSSR(Engl Transl),1972,204(2):429.
    [48]Z. A. Muzir. Reaction Synthesis Process:Mechanisms and Characteristics[J]. Metall. Trans. A,1992,23A(1):7-13.
    [49]朱小琴.SHS/QP快速制备六硼化钙陶瓷[D].2010,05.
    [50]L. J. Kecskes. Microstructural Properties of Combustion-Synthesized and Dynamically Consolidated Titanium Boride and Titanium Carbide[J]. J. Am. Ceram. Soc.,1990,73(5): 1274-82.
    [51]殷声.燃烧合成[M].北京:冶金工业出版社,1999:194.
    [52]E. A. Olevsky, E. R. Strutt, M. A. Meyers. Combustion Synthesis and Quasis-isostatic Densification of Powder Cermets[J]. J. Mater. Process.Tech.,2002,121:157-166.
    [53]傅正义,王为民,王皓.TiB2系金属陶瓷的SHS/QP制备[J].硅酸盐学报,1996,24(6):654-659.
    [54]R. Z. Yuan, Z. Y. Fu. SHS TiB2-Based Multiphase Ceramics and Composites[J]. Int. J. SHS., 2001,10:435-450.
    [55]Z. Y. Fu, H. Wang, W. M. Wang, et al. Composites Fabricated by Self-propagating High-temperature Synthesis[J]. J. Mater. Process Tech.,2003,137:30-34.
    [56]傅正义,王为民,王皓,袁润章.采用SHS/QP技术制备TiC-xNi金属陶瓷——Ⅱ.加压工艺与材料性能[J].复合材料学报,1997,14(3):61-65.
    [57]傅正义,王为民,王皓,袁润章.采用SHS/QP技术制备TiC-xNi金属陶瓷——1.燃烧合成过程研究[J].复合材料学报,1997,14(2):56-60.
    [58]孟范成,傅正义,张金咏等.“化学炉”加机械压力法超快制备超细晶氧化铝陶瓷[J].硅酸盐学报,2007,35(3):285-288.
    [59]Fangcheng Meng, Zhengyi Fu, Jinyong Zhang, et al. Rapid Densification of Nano-Grained Alumina by High Temperature and Pressure with a Very High Heating Rate[J]. J. Am. Ceram. Soc.,2007,90 (4):1262-64.
    [60]傅正义.陶瓷材料的SHS超快速致密化技术[J].硅酸盐学报,2007,35(8):948-954.
    [61]孟范成,傅正义,张金咏等.自蔓延高温合成/快速加压法制备二硼化钛陶瓷的致密化机理[J].硅酸盐学报,2007,35(4):430-434.
    [62]唐清,殷声等.Ti-C-Ni-Mo系的自蔓燃-加压致密化[J].北京科技大学学报,1993,15(6):572-575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700