耐磨耐蚀层状复合管的制备及其冲蚀模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分两部分。第一部分主要讨论了耐磨复合管的制备、表征及有限元分析,在这一部分中,采用自蔓延高温合成和离心铸造相结合的工艺,制备了高耐磨陶瓷内衬复合管,对其反应原料和陶瓷内衬层制品的物相组成、物理性能等方面做了表征,并采用有限元方法对其制备过程中的管材残余应力进行了模拟分析;在此基础上,通过反应浸渍拼混树脂制备了三元复合管,对服役工况下不同组元材料所引起的界面应力进行了数值模拟。此外,设计并制造了冲蚀磨损试验机,对陶瓷内衬管和三元复合管的耐冲蚀性能进行了测试和评估。第二部分侧重于材料冲蚀磨损行为的数值模拟分析,主要讨论了冲蚀磨损的影响因素和韧性、脆性材料冲蚀失效的主要机制,提出了一个全新的通用有限元冲蚀模型,分别以钛合金和陶瓷材料为例进行了仿真模拟,总结了数值模拟技术在材料磨损失效领域的应用,并且,首次将无网格算法与有限元法相耦合的方法应用于磨损失效领域,建立了高速冲蚀磨损的耦合模型,改善了大变形带来网格畸变的情况,并使用该模型对工程材料及带有有机涂层的材料的沖蚀行为进行了讨论。本文具体研究内容及结果如下:
     1.高耐磨陶瓷内衬复合管的制备
     采用自蔓延高温合成与离心铸造相结合的工艺,研制了夹具式SHS-离心机,成功地在钢管内壁烧结出冶金结合的陶瓷内衬层,并对其反应原料及陶瓷制品采用DSC、XRD、EDS、SEM和TEM等方法进行了表征分析,表明新研制的陶瓷内衬复合管具有优异的耐磨耐蚀性能。
     2.陶瓷内衬复合管的残余应力模拟分析
     模拟分析了陶瓷内衬复合管在冷却凝固过程中的温度分布和变化,从而为工艺参数的选择和管道界面结构分析提供了基础。利用ANSYS软件的瞬态热分析功能和热-结构耦合功能,数值上模拟了复合管的温度场分布及残余热应力,分析了SHS反应层厚度对陶瓷内衬复合管性能的影响。数值分析结果表明,合理调整SHS反应层的厚度,可使界面残余热应力变小,从而提高陶瓷内衬复合管的安全可靠性。
     3.三元复合管的制备及组元材料的选择
     在陶瓷内衬复合管的基础上开发了内壁具有树脂层的三元复合管。该管道具有一定的耐磨性以及很高的防腐蚀效果,可用于腐蚀和磨损交互作用下的复杂工况。采用有限元法模拟了其在服役工况下受均匀内压时的应力分布情况,并研究了不同弹性模量和泊松比的陶瓷材料对三元复合管界面应力的影响,合理调整中间层陶瓷材料的弹性模量和泊松比,会减少界面处的环向应力,从而提高三元复合管的安全可靠性。
     4.层状复合管的冲蚀磨损试验
     针对管道服役工况下一种常见的冲蚀磨损失效形式,设计并制造了冲蚀试验机,并在此试验机上对陶瓷内衬管及三元复合管进行了冲蚀试验。结果表明:衬里层刚玉材料和拼混树脂的冲蚀行为均表现出典型的脆性冲蚀行为,在冲蚀角为90°左右受损最严重;经过改性纳米粒子的填充后,拼混树脂表现出优良的耐冲蚀磨损性能。
     5.冲蚀磨损的影响因素和机理研究
     从影响冲蚀磨损行为的因素入手,对材料的冲蚀磨损规律进行了深入研究。着重讨论了冲蚀角、冲蚀物速度、冲蚀物颗粒尺寸对冲蚀行为的影响,并从冲蚀磨损的韧性模式和脆性模式角度深入探讨了材料的摩擦磨损机理。同时对数值模拟方法在材料磨损领域的趋势进行了技术展望。
     6.冲蚀磨损的有限元模型
     建立了冲蚀磨损的显式动力学模型,分别使用不同的材料本构方程讨论了韧性材料和脆性材料在冲蚀磨损作用下的行为。与试验研究相似,采用有限元模型对冲蚀速度、冲蚀角、冲蚀物尺寸等因素对冲蚀率的影响分别给出了模拟结果。并通过计算得出了冲蚀过程中的能量转化情况与材料表面层的残余应力,有限元模拟的结果验证了已有的冲蚀机理。
     7.冲蚀磨损的耦合计算模型
     采用光滑质点流体动力学和有限单元相耦合的数值模型,解决了高速冲击带来的有限单元网格扭曲问题,并模拟分析了韧性材料,以及带有有机涂层的金属的高速冲蚀磨损行为,讨论了垂直冲击和斜角冲击时的能量转化和界面剪切应力情况,同时给出了在两种情况下涂层的分层机理。这对于高速冲蚀磨损机理的研究以及涂层分层脱落机理的研究具有一定的指导意义。
The dissertation could be divided into two sections. The first section is mainly about the preparation, characterization and finite element (FE) analysis of the wear-resistant laminated composite pipe. The centrifugal-SHS process to prepare ceramic-lined composite pipe was introduced. The phase compositions and physical properties for the raw materials powders and the products have been characterized. The FE method has been adapted to simulate the residual thermal stresses in composite pipes. The ternary composite pipes were prepared by reactive impregnating blended resin onto the internal surface of ceramic-lined pipes. The interfacial stresses of the ternary composite pipe in service have been investigated through FE analysis. Furthermore, the erosion testing machine has been designed to test the erosion performance of two composite pipes. The second section of the dissertation is about the mechanism of the erosive wear and the erosion models. The impact factors of erosive wear on the materials and products have been discussed in details. The erosion mechanisms of ductile materials and brittle materials have been emphatically analyzed. And the application prospects for numerical simulation analysis techniques in the field of material wear were given as well. A brand new universal FE model of erosive wear was built. Utilizing the FE model, two examples of ductile materials and brittle materials were employed to simulate the effect of the impact angle, impact velocity and particles penetration on the targets. Moreover, a coupled model of erosive wear with meshfree simulation technique and FE method was established, which was the first time to use meshfree simulation technique in studying a wear process. The detailed research contents and results are summarized as follows:
     1. The preparation of the wear-resistant ceramic-lined composite pipe
     The jig-type SHS-centrifugal machine has been designed using centrifugal-SHS process, with which the metallurgical bonding ceramic-lined has been successfully sintered into the internal surface of the steel pipe. The powders of raw materials and the products of ceramics-lined layer have been systemically characterized by DSC, XRD, EDS, SEM and TEM. The results display that the ceramic-lined pipe has outstanding erosion resistance and good thermal fatigue resistance and high surface hardness. It could be widely used in many fields such as electricity, petrochemical industry, metallurgy, chemical industries, etc.
     2. FE analysis of residual thermal stress in ceramic-lined composite pipe
     The temperature distribution and transformation during the cooling process of the ceramic-lined composite pipe preparation were emphatically analyzed with FE method. With the function of transient thermal analysis and thermal-structure coupling of ANSYS, the residual thermal stress of the composite pipe was numerically simulated. The effect of the thickness of SHS-layer on the performance of the ceramic-lined composite pipe was investigated as well. The results of numerical analysis indicate that reasonable adjustment of the thickness of SHS-layer could reduce the interfacial stress between any two layers so that the service life, safety and reliability of the ceramic-lined composite pipe would be improved.
     3. The preparation of the ternary composite pipe and the effect of different component materials on pipe
     A kind of anti-corrosion ternary composite pipe was developed by reactive impregnating blended resin onto the internal surface of the ceramic-lined pipe. The ternary composite pipe could be used in the working conduction with the interaction of corrosion and wear. Utilized FE method, the characteristic for the interfaces of the composite pipe was numerically modeled and the effect of variation of their physical parameter on the mechanical property of the composite piping was analyzed as well. The numerical analysis results show that the reasonable adjustment of Young's modulus and Poisson's ratio of ceramic intermediate layer formed in the ternary composite pipe could reduce the interfacial stress between layers so that the service life and safety reliability of the pipe would be enhanced.
     4. The erosion test for the laminated composite pipe
     For a common failure mode of erosive wear under pipe service conditions, according to the relevant standards, the erosion testing machine has been designed and manufactured. The erosion performances for the internal layer materials of the laminated composite pipe, Al_2O_3 ceramics of ceramic-lined pipe and blended resin sample of the ternary pipe, were examined on the erosion testing machine. The results indicate that the two linings show typical brittle erosive behavior, which has most serious damage at 90°impact angle. The blended resin which filled with modified nano-particles Al_2O_3 demonstrated excellent erosive wear resistance properties
     5. The impact factors of erosive wear and the erosion mechanism study.
     The materials erosive behavior was further studied from the impact factors of erosion. The effects of impact angle, erodent velocity and erodent particle size on weight loss of target materials were focused. The erosion failure mechanisms were particularly distinguished from ductile mode to brittle mode. At the same time, the application prospects for numerical simulation in the field of material wear failure were explained.
     6. FE model of erosive wear on ductile and brittle materials
     A brand new universal FE model of erosive wear was established. The Johnson-Cook and Johnson-Holmquist materials model and the corresponding equation of state used in the FE model were described in more details. Utilizing the FE model, two examples of ductile materials and brittle materials were employed to simulate the effect of the impact angle, erodent velocity and particle size as well as particle penetration on the targets. The energy transfer and surface residual were calculated as well. It is shown that the predicted results are in agreement with published results obtained experimentally and from analytical erosion models. The present study could be useful and efficient in studying erosive wear.
     7. Coupled FE and meshfree model for erosive wear
     A coupled finite element and meshfree model was established for the simulation and prediction of erosive wear. The error due to mesh distortion and tangling at impacted area in the FE analysis could be avoided utilizing the meshfree technique. The computer simulations of high velocity erosive wear on a ductile target Ti-6Al-4V against steel particles' impacting and on an aluminum substrate with organic coating have been performed. The fundamental mechanisms of erosion by solid particle impact and the coating debonding behavior were investigated through the coupled numerical model. The coupled model has instructive significance for researching the mechanisms of high velocity erosive wear and the coating debonding mechanisms.
引文
[1]沃丁柱.复合材料大全[M].北京:化学工业出版社,2000:871.
    [2]ASTM G40-05.Standard terminology related to erosion and wear[S].Philadelphia:American Society of Testing Materials,2005.
    [3]BARWELL F T.Wear of metals[J].Wear,1957-1958,1:317-332.
    [4]EYRE T S.Wear characteristics of metals[J].Tribology International,1976,9(5):203-212.
    [5]BLAU P J.Fifty years of research on the wear of metals[J].Tribology International,1997,30(5):321-331.
    [6]KATOK.Tribologyofcerarnics[J].Wear,1990,136:117-133.
    [7]ROBERTS A D.Theories of dry rubber friction[J].Tribology International,1976,9(2):75-81.
    [8]FRIEDRICH K.Friction and wear of polymer composites[M].Dusseldorf:VDI-Verlag,1984:24-25.
    [9]SEIREG A A.Friction and lubrication in mechanical design[M].New York:Marcel Dekker,1998:332-333.
    [10]LANCASTER J K.Material-specific wear mechanisms:relevance to wear modelling[J].Wear,1990,141:159-183.
    [11]朱肇春,谭永絮.陶瓷涂层技术及其应用[J].陶瓷导刊.1993,9(4):16-19.
    [12]陈亮,李克厚.低压等离子喷涂硬质涂层的应用[J].钢铁研究,1991,62(5):58-61.
    [13]PEI Y T,OUYANG J H,LEI T C,et al.Laser clad ZrO_2-Y2O_3 ceramic/Ni-base alloy composite coatings[J].Ceramics International,1995,21(2):131-136.
    [14]马岳,段祝平,杨治星,等.表面等离子喷涂材料研究的现状及发展[J].表面技术,1999,28(4):1-4.
    [15]殷声.燃烧合成[M].北京:冶金化工出版社,1999.
    [16]江国健,庄汉锐,李文兰,等.自蔓延高温合成-材料制备新方法[J].化学进展,1998,(3):327-332.
    [17]HLARACCK V.Combustion Synthesis:a historical perspective[J].American Ceramic Society of Bulletin,1991,70(2):240-242.
    [18]MERZHANOV A G,ABRAMOV V G.Thermal explosion and ignition as a method for formal kinetic studies of exothermic reactions in the condensed phase [J].Combustion and Flame,1967,11(3):201-204.
    [19]MERZHANOV A G,SHKIRO V M,BOROVINSKAYA I P.Methord of producing refractory carbides,borides,silicides,and nitrides of groups Ⅳ,Ⅴ,and Ⅵ of Periodic Systems[P].United States Patent:3726643,1973-4-10:1-10.
    [20]JUGANSON E J,CHERNYAVSKY I Y,IVANTSOV V Y,et al.Method for the fabrication of tube products[P].United States Patent:4005741,1977-02-01:1-8.
    [21]HOLT J B,ZUHAIR Z A,DUNMEAD S D.Gas-solid reactions under a self-propagating combustion mode[J].Solid State Ionics.1988,26(2):167-181.
    [22]MUNIR Z A.The synthesis of high-temperature materials by self-propagting combustion methods[J].American Ceramic Society of Bulletin,1988,67(2):342-349.
    [23]MANLEY B.Comparative sinterability of combustion synthesized and commercial Titanium carbides[D].Davis:University of California.1984.
    [24]ODAWARA O.Method for providing ceramic lining to a hollow body by thermit reaction[P].United States Patent:4363832,1982-12-14:1-6.
    [25]MIYAMOTO Y,KOIZUMI M.Synthesis of silicon nitride by a combustion reaction under high nitrogen pressure[J].Journal of the American Ceramic Society,1996,69(4):90-91.
    [26]MIYAMOTO Y,KOIZUMI M.Ceramic-to-metal welding by a pressurized combustion reaction[J].Journal of Materials Research,1986,1(1):7-9.
    [27]ODAWARA O,SHIRAISHI M,IKEUCH J,et al.Characteristics of thermit reaction in a centrifugal-thermit process[J].Transactions of the Japan Institute of Metals,1985,49(9):806-810.
    [28]MUNIR Z A,HOLT J B,KOIZNNI M,et al.Combustion and plasma synthesis of high-temperature materials[M].New York:VCH,1990:54-60.
    [29]BOROVINSKAYA I P.Chemical classes of the SHS processes and materials[J].Pure and Applied Chemistry,1992,64(1):64-73.
    [30]YUKHVID V I,SANIN V N,SILYAKOV S L.Propagation of a combustion front along a long channel[J].Pure and Applied Chemistry,1992,64(7):977-988.
    [31]杨振国,吴连生,金忠告,等.高耐磨金属陶瓷复合管在煤粉管和狄渣管中的应用[J].华东电力,2000,(2):9-12.
    [32]李淑华,王建江,王双喜,等.小口径内衬陶瓷复合钢管涂层厚度控制[J].材料保护,2000,33(3):38-39.
    [33]袁晓敏,程广萍,何宜柱.SHS离心复合钢管陶瓷内衬的组织结构[J].理化 检测-物理分册,2002,38(2):93-95.
    [34]符寒光,魏盛远,黄超,等.SHS陶瓷内衬复合钢管制造技术及其在矿山应用的展望[J].金属矿山,2001,301(7):32-36.
    [35]张曙光,王克智,吴龙翔.离心SHS陶瓷衬管温度场数值模拟[J].铸造,1997,(2):9-14.
    [36]LEHRKE W D,NONNEN F A.Internal protection of pipes against abrasion and corrosion by a bresistfused-cast-basalt[C].Durham:lst International Conference on the internal and external protection of pipes,1975:G2,21-28.
    [37]RAASK E.Tube erosion by ash impaction[J].Wear,1969,4-5:301-315.
    [38]李诗卓,董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社,1987:1-2.
    [39]FOLEY T,LEVYA.The erosion of heat-treated steels[J].Wear,1983,91:45-64.
    [40]LEVY A V.The abrasion/erosion and erosion-corrosion characteristics of steels [J].Wear,1990,138:111-123.
    [41]SUNDARARAJAN G,ROY M.Solid particle erosion behaviour of metallic materials at room and elevated temperatures[J].Tribology International,1997,30(5):339-359.
    [42]王吉会,姜晓霞,李诗卓.新型耐冲蚀黄铜的组织与性能[J].腐蚀科学与防护技术,1998,10(1):11-16.
    [43]董仕节,吴丰顺,史耀武.氧化铝粒子的冲蚀速度对高锰钢磨损特性影响的研究[J].西安交通大学学报,1998,32(6):36-40.
    [44]何大雄,姜晓霞,李诗卓.不锈钢在液固双相流中的冲蚀腐蚀行为[J].腐蚀科学与防护技术,2000,12(5):264-268.
    [45]CHEN K C,HE J L,HUANG W H,et al.Study on the solid-liquid erosion resistance of ion-nitrided metal[J].Wear,2002,252:580-585.
    [46]魏秀鹏,陈家福.20g钢的冲蚀磨损性能的研究[J].辽宁石油化工大学学报,2004.24(2):82-84.
    [47]SHELDON G L.Erosion of brittle materials[D].Berkeley:University of California,1965.
    [48]WEIDERHORN S M,HOCKEY B J.Effect of material parameters on the erosion resistance of brittle materials[J].Journal of Materials Science,1983,18:766-780.
    [49]KRAL M V,DAVIDSON J L,WERT J J.Erosion resistance of diamond coatings [J].Wear,1993,166:7-16.
    [50]郭大展,王良建,李汾兰.氮化硅陶瓷冲蚀磨损特性研究[J].硅酸盐通报,1995,(2):22-26.
    [51]SHIPWAY P H,HUTCHINGS I M.Measurement of coating durability by solid particle erosion[J].Surface and Coatings Technology,1995,71:1-8.
    [52]SCHWETZ K A,SIGL L S,GREIM J,et al.Wear of boron carbide ceramics by abrasive waterj ets[J].Wear,1995,181 - 183:148 - 155.
    [53]王军,李缨.结构陶瓷材料冲蚀磨损特性的研究[J].武汉工业大学学报,1996,18(1):47-49.
    [54]NESS E,ZIBBELL R.Abrasion and erosion of hard materials related to wear in the abrasive waterjet[J].Wear,1996,196:120-125.
    [55]WANG D F,MAO Z Y.A study for erosion of Si_3N_4 ceramics by impact of solid particles[J].Wear,1996,199:283-286.
    [56]茅东升,郭绍义,郦剑,等.SiC陶瓷的冲蚀磨损耐磨性[J].材料研究学报,1998,12(4):411-414.
    [57]FANG Q,XU H,SIDKY P S,et al.Erosion of ceramic materials by a sandrwater slurry jet[J].Wear,1999,224:183-193.
    [58]孙继龙,凌国平,许森虎,等.Sialon陶瓷的冲蚀磨损及磨粒磨损行为[J].无机材料学报,2000,15(5):889-896.
    [59]冯益华,邓建新,史佩伟.陶瓷材料冲蚀磨损的研究[J].陶瓷学报,2002,23(3):169-173.
    [60]BOSE K,WOOD R J K.High velocity solid particle erosion behaviour of CVD boron carbide on tungsten carbide[J].Wear,2005,258:366-376.
    [61]ZAHAVI J,SCHMITT G F,Jr.Solid particle erosion of polymeric coatings[J].Wear,1981,71:191-210.
    [62]FRIEDRICH K.Erosive wear of polymer surfaces by steel ball blasting[J].Journal of Materials Science,1986,21:3317-3332.
    [63]LI J,HUTCHINGS I M.Resistance of cast polyurethane elastomers to solid particle erosion[J].Wear,1990,135:293-303.
    [64]ARNOLD J C,HUTCHINGS I M.The mechanisms of erosion of unfilled elastomers by solid particle impact[J].Wear,1990,138:33-46.
    [65]RUTHERFORD K L,TREZONA R I,RAMAMURTHY,et al.The abrasive and erosive wear of polymeric paint films[J].Wear,1997,203-024:325-334.
    [66]ARJULA S,HARSHA A P.Study of erosion efficiency of polymers and polymer composites[J].Polymer Testing,2006,25:188-196.
    [67]CIZMAS P G,SLATTERY J C.Dimensionless correlation for sand erosion of families of polymers[J].Wear,2007,262:316-319.
    [68]BARKOULA N -M,KARGER-KOCSIS J.Review processes and influencing parameters of the solid particle erosion of polymers and their composites[J].Journal of Materials Science,2002,37:3807-3820.
    [69]ZAHAVI J,SCHMITT G F,Jr.Solid particle erosion of reinforced composite materials[J].Wear,1981,71:179-190.
    [70]RAMULU M,RAJU S P.Hydro-abrasive erosion characteristics of 30vol.%SiC_p/6160-T6 Al composite at shallow impact angles[J].Wear,1993,166:55-63.
    [71]BRISCOE B J,PICKLES M J,JULIAN K S,et al.Erosion of polymer-particle composite coatings by liquid water jets[J].Wear,1997,203-204:88-97.
    [72]孟庆森,刘俊玲,赵利平,等.环氧树脂基复合材料抗冲蚀磨损特性研究[J].材料科学与工艺,1999,7(2):82-86.
    [73]梁作俭,邢建东,鲍崇高,等.碳化钨/铁基铸造复合材料的抗冲蚀磨损性能[J].铸造,2000,49(5):265-267.
    [74]高义民,张凤华,邢建东,等.颗粒增强不锈钢基复合材料冲蚀磨损性能研究[J].西安交通大学学报,2001,35(7):727-730.
    [75]HUANG Z,LI Z Z,YUAN X.The effect of reinforcing particles on the erosive wear behavior of particles reinforced silicone matrix composite coating[J].Wear,2001,249:1046-1050.
    [76]栾道成,丁武成,李茂华.聚氨酯陶瓷复合材料的抗冲蚀磨损性能研究[J].机械工程材料,2003,27(12):32-24.-
    [77]栾道成,丁武成,李茂华。聚氨酯-Si_3N_4 陶瓷复合材料浆体冲蚀磨损性能研究[J].摩擦学学报,2004,24(3):268-271.
    [78]JIANG W H,KOVACEVIC R.Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance[J].Journal of Materials Processing Technology,2007,186:331-338.
    [79]MENG H C.Wear modeling:evaluation and categorization of wear models[D].Ann Arbor:University of Michigan,1994.
    [80]MENG H C,LUDEMA K C.Wear models and predictive equations:their form and content[J].Wear,1995,181-183:443-457.
    [81]FINNIE I.The mechanism of erosion of ductile metals[C].New York:Proceedings of the Third National Congress on Applied Mechanics,1958: 527-532.
    [82] FINNIE I. Erosion of surfaces by solid particles [J] . Wear, 1960, 3: 87-103.
    [83] HASHISH M. Modified model for erosion [C] . Cambridge: 7th International Conference on Erosion by Liquid and Solid Impact, 1987: 461-480.
    [84] BITTER J G A. A study of erosion phenomena, part I [J] . Wear, 1963, 6: 5-21.
    [85] BITTER J G A. A study of erosion phenomena. Part II [J] . Wear, 1963, 6: 169-190.
    [86] HUTCHINGS I M. Ductile-brittle transitions and wear maps for the erosion and abrasion of brittle materials [J] . Journal of Physics D: Apply Physics, 1992, 25: A212-A221.
    [87] HUTCHINGS I M. Mechanism of the erosion of metals by solid particles [A] //ADLER W F. Erosion: Prevention and useful applications [M] . Philadelphia:American Society of Testing Materials, Special Technical Publications 664, 1979: 59-76.
    [88] JAHAMNIR S. The mechanics of subsurface damage in solid particle erosion[J]. Wear, 1981,61:309-324.
    [89] TILLY G P. A two stage mechanism of ductile erosion [J]. Wear, 1973, 23: 87-96.
    [90] TILLY G P. Erosion caused by airborne particles [J] . Wear, 1969, 14: 63-79.
    [91] ADLER W F. Waterdrop impact modeling [J] . Wear, 1995, 186-187: 341-351.
    [92] SHIMIZU K, NOGUCHI T, SEITOH H, et al. FEM analysis of the dependency on impact angle during erosive wear [J] .Wear, 1999,233-235: 157-159.
    [93] SHIMIZU K, NOGUCHI T, SEITOH H, et al. FEM analysis of erosive wear [J] . Wear, 2001, 250: 779-784.
    [94] CHEN Q, LI D Y. Computer simulation of solid particle erosion [J] . Wear, 2003, 254: 203-210.
    [95] CHEN Q, LI D Y. Computer simulation of erosion-corrosion of a non-passive alloy using a micro-scale dynamic model [J] . Materials Science and Engineering A, 2004, 369: 284-293.
    [96] LI W -Y, LIAO H, LI C -J, et al. Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying [J] . Applied Surface Science, 2007, 253: 5084-5091.
    [97] WOYTOWITZ P J, RICHMAN R H. Modeling of damage from multiple impacts by spherical particles [J] . Wear, 1999, 233-235: 120-133.
    [98] AQUARO D, FONTANI E. Erosion of ductile and brittle materials [J] . Meccanica, 2001, 36: 651-661.
    [99] AQUARO D. Erosion due to the impact of solid particles of materials resistant at high temperature [J] . Meccanica, 2006, 41: 539-551.
    [100] MOLINARI J F, ORTIZ M. A study of solid-particle erosion of metallic targets [J] . International Journal of Impact Engineering, 2002, 27: 347-358.
    [101] MABROUKI T, RAISSI K, CORNIER A. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: contribution to investigate the decoating process [J] . Wear, 2000, 239: 260-273.
    [102] ZOUARI B, TOURATIER M. Simulation of organic coating removal by particle impact [J] .Wear, 2002, 253: 488-497.
    [103] BIELAWSKI M, BERES W. FE modelling of surface stresses in erosion-resistant coatings under single particle impact [J] . Wear, 2007, 262, 167-175.
    [104] GRIFFIN D, DAADBIN A, DATTA S. The development of a three-dimensional finite element model for solid particle erosion on an alumina scale/MA956 substrate [J] . Wear, 2004, 256: 900-906.
    [105] ELTOBGY M S, NG E, ELBESTAWI M A. Finite element modeling of erosive wear [J] . International Journal of Machine Tools & Manufacture, 2005, 45: 1337-1346.
    [106] ZHANG Z, BARKOULA N -M, KARGER-KOCSIS J, et al. Artificial neural network predictions on erosive wear of polymers [J] . Wear, 2003, 255: 708-713.
    [107] FAN J, ZHOU D, ZENG K, et al, Numerical and experimental study of finned tube erosion protection methods [J] .Wear, 1992, 152: 1-19.
    [108] HAUGEN H, KVERNVOLD O, RONOLD A, et al. Sand erosion of wear-resistant materials: Erosion in choke valves [J] . Wear, 1995, 186-187: 179-188.
    [109] SATO S, SHIMIZU A, YOKOMINE T. Numerical prediction of erosion for suspension flow duct [J] .Wear, 1995, 186-187: 203-209.
    [110] FORDER A, THEW M, HARRISON D. A numerical investigation of solid particle erosion experienced within oilfield control valves [J] . Wear, 1998, 216: 184-193.
    [111] FAN J. SUN P, CHEN L, et al. Numerical investigation of a new protection method of the tube erosion by particles impingement [J]. Wear, 1998, 223: 50-57.
    [112]MACK R,DRTINA P,LANG E.Numerical prediction of erosion on guide vanes and in labyrinth seals in hydraulic turbines[J].Wear,1999,233-235:685-691.
    [113]FAN J,YAO J,ZHANG X,et al.Experimental and numerical investigation of a new method for protecting bends from erosion in gas-particle flows[J].Wear,2001,251:853-860.
    [114]BROWN G J.Erosion prediction in slurry pipeline tee-junctions[J].Applied Mathematical Modelling,2002,26:155-170.
    [115]JIANXIN D,ZELIANG D,DONGLING Y.Erosion wear mechanisms of coal-water-slurry(CWS) ceramic nozzles in industry boilers[J].Materials Science and Engineering A,2006,417:1-7.
    [116]JIANXIN D,LILI L,MINGWEI D.Erosion wear behaviours of SiC/(W,Ti)C laminated ceramic nozzles in dry sand blasting processes[J].Materials Science and Engineering A,2007,444:120-129.
    [117]MIYAMOTO Y.High-pressure self-combustion sintering for ceramics[J].Journal of the American Ceramic Society,1984,61(11):224-226.
    [118]MERZHANOV A G,KHAIKIN B I.Theory of combustion waves in homogeneous media[J].Progress in Energy and Combustion Science,1988,14(1):1-98.
    [119]PIGNOCCO J,KACHIK R H.Method of producing a refractory lining in a cylinder or tube[P].United States Patent:4048352,1977-9-13:1-5.
    [120]PIGNOCCO J,KACHIK R H.Refractory lined cylindrical article[P].United States Patent:4117868,1978-10-3:1-5.
    [121]MERZHANOV A G,KACHIN A R,JUKHVID V I,et al.Method for production of two-layer pipe casting[P].United States Patent:4217948,1980-8-19:1-7.
    [122]YIN S,LIU M,GUO Z M.Additives in Ceramic Composite Pipes Made by a Centrifugal-SHS Process[J].International Journal of SHS,1993,2(1):69-74.
    [123]殷声,叶宏煜,郭志猛,等.陶瓷内衬复合钢管的研究[J].北京科技大学学报,1994,16(4):335-339.
    [124]ODAWARA O.Microgravitational combustion synthesis[J].Transactions of the Japan Institute of Metals,1985,26(8):586-587.
    [125]ODAWARA O.Long ceramic-lined pipes produced by a centrifugal-thermit process[J].Journal of the American Ceramic Society,1990,73(3):629-633.
    [126]王克智,李俊,周美玲.SHS法陶瓷衬管的研究现状及应用前景[J].钢铁研究学报,1994,4:80-84.
    [127]林涛,果世驹,郭志猛,等.铝热.重力分离法制备陶瓷复合钢管[J].北京科技大学学报,2000,22(4):358-360.
    [128]王建江,赵忠民,张龙,等.制备陶瓷内衬钢管的SHS离心机[J].粉末冶金技术,1997,15(4):269-274.
    [129]夏天东,李冬黎,赵文军,等.SHS离心机改进设计[J].特种铸造及有色合金,2000,2:28-30.
    [130]李平,韩存仓.制备复合钢管的卡盘夹持式SHS离心机设计[J].洛阳工业高等专科学校学报.2003,13(4):3-4.
    [131]YB/T 176-2000.陶瓷内衬复合钢管[S].北京:中国标准出版社,2000:386-393.
    [132]席文君,殷声,周和平,等.铝热-离心法制备不锈钢内衬复合钢管残余应力有限元分析[J].粉末冶金技术,2000,35(2):212-217.
    [133]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999.
    [134]KOHNKE P.ANSYS,Inc.theory reference[M].Canonsburg:Swanson Analysis Systems,Inc.,2004.
    [135]CHAE S W,SON C H,KIM Y S.Finite element analysis on the effect of Si phase melting in combustion synthesis of MoSi_2[J].Materials Science and Engineering A,2000,279:111-117.
    [136]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1994.
    [137]马庆芳.实用热物理性质手册[M].北京:中国农业机械出版社,1986.
    [138]工程材料使用手册编写组.工程材料实用手册[M].北京:中国标准出版社,2002.
    [139]BJORDAL M,BARDAL E,ROGNE T,et al.Erosion and corrosion properties of WC coatings and duplex stainless steel in sand-containing synthetic sea water[J].Wear,1995,186-187:508-514.
    [140]王吉会,姜晓霞,李曙,等.腐蚀磨损过程中材料的环境脆性[J].材料研究学报,2003,17(5):449-459.
    [141]杨院生,曲敬信,邵荷生.两种金属材料腐蚀磨损的交互作用[J].摩擦学学报,1996,16(1):47-53.
    [142]翁永基.含沙多相流对金属管道腐蚀磨损及其监测[J].管道技术与设备,2002.4:26-30.
    [143]熊金平,管从胜,杨玉国,等.酚醛环氧复合涂层的腐蚀磨损行为研究[J].煤矿机械,1995,6:13-15.
    [144]陈华辉,刑建东,李卫.耐磨材料应用手册[M].北京:机械工业出版社, 2006:95.
    [145]BHUSHAN B,GUPTA B K.Handbook of tribology:materials,coatings,and surface treatments[M].New York:McGraw-Hill,1991.
    [146]STACHOWIAK G W,BATCHELOR A W,STACHOWIAK G B.Experimental methods in tribology[M].Amsterdam:Elsevier,2004.
    [147]OKA Y I,OHNOGI H,HOSOKAWA T,et al.The impact angle dependence of erosion damage caused by solid particle impact[J].Wear,1997,203-204:573-579.
    [148]YILDIZLI A,EROGLU M,KARAMIS M B.Microstructure and erosive wear behavior of weld deposits of high manganese electrode[J].Surface & Coatings Technology,2007,201:7166-7173.
    [149]WOOD R J K.The sand erosion performance of coatings[J].Materials and Design,1999,20:179-191.
    [150]GACHON Y,VANNES A B,FARGES G,et al.Study of sand particle erosion of magnetron sputtered multilayer coatings[J].Wear,1999,233-235:263-274.
    [151]董刚,白万金,张九渊,等.几种工程材料的冲蚀行为的研究[J].材料科学与工程学报,2004,22(6):909-913.
    [152]ASTM G76-04.Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets[S].Philadelphia:American Society of Testing Materials,2004:1-6.
    [153]NINHAM A J,HUTCHINGS I M.A computer model for particle velocity calculation in erosion testing[C]//FIELD J E,CORNEY N S.Proceedings of the 6th International Conference on Erosion by Liquid and Solid Impact,University of Cambridge:Cavendish Laboratory,1983:50-51.
    [154]刘荣华.粉料输送管道用材的冲蚀行为及优选研究[D].沈阳:中国科学院金属研究所,2005:22.
    [155]STACHOWIAK G W,BATCHOLOR A W.Engineering Tribology[M].2nd ed.Woburn:Butterworth-Heinemann,2000:510.
    [156]SHELDON G L,FINNIE I.On the ductile behavior of nominally brittle materials during erosive cutting[J].Transactions of the American Society of Mechanical Engineers,1966,88B:387-392.
    [157]FINNIE I,STEVICK G R,RIDGELY J R.The influence of impingement angle on the erosion of ductile metals by angular abrasive particles[J].Wear,1992,152:91-98.
    [158]FINNIE I.Some reflections on the past and future of erosion[J].Wear,1995,186-187:1-10.
    [159]NEILSON J H,GILCHRIST A.Erosion by a stream of solid particles[J].1968,11:111-122.
    [160]张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社,1991.
    [161]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993.
    [162]许洪元,罗先武.磨料固液泵[M].北京:清华大学出版社,2000.
    [163]康进兴,赵文轸,朱金华.材料抗冲蚀性的研究进展[J].材料保护,2001,34(10):22-23.
    [164]SHELDON G L,KANHERE A.An investigation of impingement erosion using single particles[J].Wear,1972,21:195-209.
    [165]GARTON A,STEVENSON W T.MCLEAN P D.The stability of polymers in low earth orbit[J].Materials and design,1986,7:319-323.
    [166]SCHULTZ P H,GAULT D E.Atmospheric effects on Martian ejecta emplacement[J].Journal of Geophysical Research,1979,84:7669-7687.
    [167]SCOTT D.Treatise on Materials Science and Technology,Vol.13 Wear[M].New York:Academic Press,1979.
    [168]DHAR S,KRAJAC T,CIAMP1NI D,et al.Erosion mechanisms due to impact of single angular particles[J].Wear,2005,258:567-579.
    [169]PAPINI M,DHAR S.Experimental verification of a model of erosion due to the impact of rigid single angular particles on fully plastic targets[J].International Journal of Mechanical Sciences,2006,48:469-482.
    [170]OKA Y I,NAGAHASHI K.Measurements of plastic strain around indentations caused by the impact of round and angular particles,and the origin of erosion[J].Wear,2003,254:1267-1275.
    [171]OKA Y I,OKAMURA K,YOSHIDA T.Practical estimation of erosion damage caused by solid particle impact Part 1:Effects of impact parameters on a predictive equation[J].Wear,2005,259:95-101.
    [172]WENSINK H,ELWENSPOEK M C.A closer look at the ductile-brittle transition in solid particle erosion[J].Wear,2002,253:1035-1043.
    [173]GODA T,VARADIK,FRIEDRICH K.FE micro-models to study contact states,stresses and failure mechanisms in a polymer composite subjected to a sliding steel asperity[J].Wear,2001,251:1584-1590.
    [174]MCCOLL I R,DING J,LEEN S B.Finite element simulation and experimental validation of fretting wear[J].Wear,2004,256:1114-1127.
    [175]ZHOU Y,FUNKENBUSCH P D,QUESNEL D J.Stree distributions at the abrasive-matrix interface during tool wear in bound abrasive grinding - a finite element analysis[J].Wear,1997,209:247-254.
    [176]BARGE M,KERMOUCHE G,GILLES P,et al.Experimental and numerical study of the ploughing part of abrasive wear[J].Wear,2003,255:30-37.
    [177]岑启宏,孙琨,方亮,等.二体磨料磨损犁沟及脊的三维有限元动态模拟[J].摩擦学学报,2004,24(3):249-253.
    [178]FANG L,CEN Q,SUN K,et al.FEM computation of groove ridge and Monte Carlo simulation in two-body abrasive wear[J].Wear,2005,258:265-274.
    [179]JOHNSON G R,COOK W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.Netherlands:The Hague,1983:541-547.
    [180]JOHNSON G R,COOK W H.Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J].Engineering Fracture Mechanics,1985,21(1):31-48.
    [181]JOHNSON G R,HOLMQUIST T J.Response of boron carbide subjected to large strains,high strain rates,and high pressures[J].Journal of Applied Physics,1999,85(12):8060-8073.
    [182]LESEUR D R.Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum,DOT/FAA/AR-00/25[R].Springfield:U.S.Department of Transportation,Federal Aviation Administration,2000.
    [183]KAY G.Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model,DOT/FAA/AR-03/57[R].Springfield:U.S.Department of Transportation,Federal Aviation Administration,2003.
    [184]STEINBERG D J.Equation of state and strength properties of selected materials,UCRL-MA-106439 change 1[R].Livermore:Lawrence Livermore National Laboratory,1996.
    [185]CRONIN D S.Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA[C].Ulm:4th European LS-DYNA Users Conference,2003.
    [186]BELYTSCHKO T,LIU W K,MORAN B.Nonlinear Finite Elements for Continua and Structures[M].New York:Wiley,2001.
    [187]HALLQUIST J O.LS-DYNA Theoretical manual[M].Livermore:Livermore Software Technology Corpoation,1998.
    [188]MEO M,VIGNEVIC R.Finite element analysis of residual stress induced by shot peening process[J].Advances in Engineering Software,2003,34:569-575.
    [189]HUTCHINGS I M,WINTER R E.Particle erosion of ductile metals:a mechanism of material removal[J].Wear,1974,27:121-128.
    [190]HUTCHINGS I M.A model for the erosion of metals by spherical particles at normal incidence[J].Wear,1981,70:269-281.
    [191]DESALE G R,GANDHI B K,JAIN S C.Effect of erodent properties on erosion wear of ductile type materials[J].Wear,2006,261:914-921.
    [192]YERRAMAREDDY S,BAHADUR S.Effect of operational variables,microstructure and mechanical properties on the erosion of Ti-6Al-4V[J].Wear,1991,142:253-263.
    [193]WANG D F,SHE J H,MAO Z Y.Effect of microstructure on erosive wear behavior of SiC ceramics[J].Wear,1995,180:35-41.
    [194]李裕春,时党勇,赵远.ANSYS 10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006:389.
    [195]GINGOLD R A,MONAGHAN J J.Smoothed particle hydrodynamics:theory and application to non-spherical stars[J].Royal Astronomical Society,Monthly Notices,1977,181:375-389.
    [196]BELYTSCHKO T,LU Y Y,GU L.Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37:229-256
    [197]LIU W K,JUN S,ADEE J,et al.Reproducing kernel particle methods for structural dynamics[J].International Journal for Numerical Methods in Engineering,1995,38:1655-1679.
    [198]LIU W K,JUN S,LI S,et al.Reproducing kernel particle methods[J].International Journal for Numerical Methods in Fluids,1995,20:1081-1106.
    [199]BELYTSCHKO T,ORGAN D,KRONGGAUZ Y.A coupled finite element.element-free Galerkin method[J].Computational Mechanics,1995,51:221-258.
    [200]LIU W K,URAS R A,CHEN Y.Enrichment of the finite element method with reproducing kernel particle methods[J].Journal of Applied Mechanics,1997,64:861-870.
    [201]HUERTA A,FERNANDEZ-MENDEZ S.Enrichment and coupling of the finite element and meshless methods[J].International Journal for Numerical Methods in Engineering,2000,48:1615-1636.
    [202]WAGNER G J,LIU W K.Application of essential boundary conditions in mesh-free methods:a corrected collection method[J].International Journal for Numerical Methods in Engineerin,2000,47:1367-1379..
    [203]WU C -T,BOTKIN M E,WANG H -P.Development of a coupled finite element and mesh-free method in LS-DYNA[C].Dearborn:7th International LS-DYNA Users Conference,2002:1229-1240.
    [204]FAWAZ Z,ZHENG W,BEHDINAN K.Numerical simulation of normal and oblique ballistic impact on ceramic composite armours[J].Composite Structures,2004,63:387-395.
    [205]TORRES M,VOORWALD H.An evaluation of shot peening,residual stress and stress relaxation on the fatigue life of AISI 4340 steel[J].International Journal of Fatigue,2002,24:877-886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700