汽车—电动自行车碰撞事故分析及骑车人头部损伤防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骑电动自行车人作为道路交通使用者中的易受伤害群体,事故发生率较高。汽车-电动自行车碰撞事故中,骑车人颅脑损伤占身体各部位损伤总数比例仅次于下肢,是造成死亡的主要原因。针对我国道路交通环境和交通模式开展汽车与电动自行车碰撞的事故分析和防护技术研究是目前我国道路车辆交通安全领域急待解决的重要科技问题,也是推动社会进步的一项重要工作。
     本文旨在研究骑车人颅脑损伤机理及车辆前部结构导致损伤的设计参数。进而为颅脑损伤防护探讨改进车辆前部安全性能的可行的途径。为此目的,首先研究了人体颅脑的解剖学结构,总结了颅脑主要损伤形式和损伤机理,并列出了现有的主要颅脑损伤评价标准;开展了深入的电动自行车事故调查研究,总结了深入的电动自行车事故调查的关键数据和调查方法;通过对长沙地区一起典型的汽车-电动自行车碰撞事故采用MADYMO软件进行事故重建,再现了汽车与骑车人碰撞动力学响应过程,仿真结果与实际事故情况比较,验证了仿真方法和模型的可行性和准确性。借助计算机仿真模型,针对影响骑车人颅脑动力学响应的主要因素:汽车碰撞速度和车辆前部结构进行参数研究,研究了不同参数对骑车人颅脑损伤的影响。为我国道路弱势群体的安全法规的制订和骑车人颅脑损伤防护技术提供依据。
     参数分析表明,汽车碰撞速度、发动机罩前缘高度和保险杠高度对骑车人颅脑损伤有显著的影响;汽车-电动自行车碰撞发生时,若汽车碰撞速度在40km/h以上将极易导致骑车人颅脑严重损伤,从而城市道路特别是行人密集区域最好对汽车进行限速;尤其对于轿车,适当地提高其发动机罩前缘高度和降低保险杠高度可以有效地降低骑车人颅脑损伤的风险。
     本文研究方法和研究结果对于指导道路弱势群体损伤研究和车辆安全性设计有重要意义。
Electric bicycle riders are one group of the vulnerable road users, and they are frequently involved in vehicle traffic accidences. The proportion of the head-brain injuries in vehicle to electric bicycle driver was next to lower extremity, which often resulted in a fatal consequence. In China the traffic safety of the electric bicycle riders is a serious social problem, and also an important technical issue to be urgently resolved.
     This thesis aimed at study of the injury mechanisms of the head of the electric bicycle riders and the design parameters of vehicle front structures which caused the injuries. Therefore the possible way for improvement of the safety performance of the vehicle front was explored for injury prevention of the rider head. For this purpose, a literature study was carried out for the anatomical structures of human head. The injury patterns and mechanism of head-brain, as well as the main head-brain injury criteria were summarized from the literature study. On site investigation was carried out for in-depth electric bicycle driver accident study. The critical data and investigation methods were summarized in present study. A real vehicle to electric bicycle driver accident in Changsha was reconstructed by using MADYMO multi-body software. In the reconstruction, the kinetic track of vehicle and electric bicycle driver were presented. The main dynamic parameters related to electric bicycle driver injury were calculated. The simulation result compared with real accident, validated the feasibility of simulation methodology and accuracy of muti-body mode. A parametric study was to analyse the influence of vehicle impact velocity and vehicle front structures on electric bicycle driver head-brain injuries .Result of the simulation can be adopted as a basis of establishing safe regulation of vulnerable road users and the vehicle safety design.
     Parametric study indicates that vehicle impact velocity has remarkable effect on severity of electric bicycle driver brain inury. First of all, vehicle speed has the significant influence to head-brain injuries; it would lead to fatal injuries when the speed exceeds 40 km/h. For the sedan, the brain injury risk of electric bicycle driver can be decreased by properly improving the height of sedan’s bonnet leading edge and reducing the bumper height.
     The methodology and research result from this study has a significant contribution for vulnerable road users’protection and vehicle safety design.
引文
[1]杨良敏.本刊研讨获回应标准委决定“电摩新国标”暂缓实施.中国发展观察/发展论坛,2010,1:32
    [2]中华人民共和国公安部.中华人民共和国道路交通事故统计年报(2008年度).北京:公安部交通管理局,2009
    [3] Christopher Robin Cherry . Electric Two-wheelers in China : Analysis of Environmental , Safety and Mobility Impact . University of California ,Berkeley. Spring 2007
    [4] Annick Roetynck.E-bike and Pedelec Legislation in the European Union. ETRA Secretary General Pedelec & E-bike,Taipei,April 1,2001
    [5] Centre for Electric Vehicle Experimentation in Quebec.Electric bike 2000 project . Transportation development centre safety and security transport Canada, April ,2001
    [6]中华人民共和国国家标准.电动自行车通用技术条件.GB17761-1999
    [7]关于电动摩托车标准有关情况的说明.国家标准化管理委员会
    [8]刘颖.城市电动车问题分析与对策研究:[同济大学博士学位论文].上海:同济大学,2008
    [9]罗江凡.电动自行车交通安全相关问题及管理研究:[西南交通大学硕士学位论文].成都:西南交通大学,2008
    [10]石臣鹏.电动自行车交通现状分析及对策研究:[重庆交通大学硕士学位论文].重庆:重庆交通大学,2007
    [11]马国忠.电动自行车安全特性分析.中国安全科学学报,2006,Vol.16 No.4
    [12]宋力,吴海军.道路交通事故中电动自行车驾驶员损伤特点观察.中国法医学会第十一次法医临床学学术研讨会,2008
    [13]葛力.电动自行车管理中的法律缺失及对策研究.新疆警官高等专科学校学报,2008,Vol.28 No.2
    [14]白骆韬.电动自行车通行能力研究.科技信息,2010,1
    [15] Cowin S.C.Bone Mechanics.Boca Raton,Florida,USA:CRC Press,1989
    [16] Frankel V.H , Nordin M . Basic Biomechanics of the Skeletal System , Philadelphia,USA:Lea & Febiger,1980
    [17] Fung Y.C.Biomechanics:Mechanical Properties of Living Tissues.New York:Springer-Verlag,1993
    [18] Nahum A.M,Melvin J.W.Accidental Injury Biomechanics and Prevention. New York:Spring-Verlag,2001
    [19]徐正国,韩秋生,霍琨.人体解剖学彩色图谱.第一版.沈阳:辽宁科学技术出版社,2003,150-180
    [20] Yang, J.K.Review of Injury Biomechanics in Car-Pedestrian Collisions.In:J. Vehicle Safety,2005,Vol. 1,Nos. 1/2/3,1-18
    [21] Marion, D. W. Traumatic brain injury(颅脑创伤学).北京:人民卫生出版社,2004,23-28
    [22] Teasdale G, Mathew P. Mechanisms of Cerebral Concussion, Contusion, and Other Effects of Head Injury. In: YoumansJR, ed. Neurological Surgery. Philadelphia: WB Saunders, 1996
    [23] Ommaya AK, Grubb RL, Naumann RA. Coup and Contre-coup Injury: Observation on the Mechanics of Visible Brain Injury in the Rhesus Monkey. In: J Neurosurg. 1997, Vol.35, 503-516
    [24] Gennarelli TA, Thibault LE. Biomechanics of acute subdural hematomas. In: J Trauma. 1982, Vol.22, 680-686
    [25] Gennarelli TA, Meaney DF. Mechanisms of Primary Head Injury. In: Wilkins RH, Rengachary SS, eds. New Rosurgery. New York: McGraw-Hill, 1996
    [26]李莉,杨济匡,李伟强等.汽车碰撞行人交通伤特点分析.汽车工程, 2005, 27(1): 44-46
    [27] AAAM. Abbreviated Injury Scale-1990 Revision. Association for the Advancement of Automotive Medicine. Des Plaines, IL, USA. 1998
    [28] The Abbreviated Injury Scale-1990 revision. 2340 Des Plaines River Road, Suite 106, Des Plained, II 60018, USA: Association for the Advancement of Automotive Medicine, 1990
    [29] Association for the Advancement of Automotive Medicine: The Abbreviated Injury Scale-1990 Revision. AAAM, Des Plaines(IL-USA), 1990
    [30] Lissner. H.R, Lebow M., Evans F.G. Experimental Studies on the relation between Acceleration and Intracranial Pressure Changes in Man. Surg.Gyn.Obst., 1960, V.111, 320-338
    [31] Gadd C.W. Criteria for Injury Potential. Impact Acceleration Stress, Publication 977, NAS-NRC, 1962, 141-145
    [32] Yang J.K. Review of Injury Biomechanics in Car-Pedestrian Collisions. Int. J. Vehicle Safety, Vol. 1, 2005,1-3
    [33] Haddon W. The changing approach to the epidemiology, prevention, and amelioration of trauma: the trasition to approaches etiologically rather than descriptively based. Am J Public Health 1968; 58:1431-1438.
    [34]阳兆祥.交通事故力学鉴定教程.广西:广西科学技术出版社,2002,303
    [35] Otte, D. Use of Throw Distances of Pedestrains and Bicyclists as Part of a Scientific Accident Reconstruction Method, SAE paper 626. Detroit 2004-06-30
    [36] Liu X J and Yang J K. Development of child pedestraian models and evaluation with accident reconstruction. Traffic Injury Prevention, Vol. 3(4): 321-329.
    [37] Astrid Linder, Yang J K, Laurie Sparke, et al. Mathematical modelling of pedestrian crashes. Journal of Biomechanics, 2006, 39(1),160-161
    [38] Luis Martinez. Stiffness corridors of the European fleet for pedestrian simulation. In: Proceeds of the 20th ESV Conference.France: The Enhanced Safety of Vehicles Conference, 2007, Paper Number 07-0267
    [39] Yang J K, Lovsund P. Development and validation of a human-body mathematical model for simulation of car-pedestrian collision. In: Proceeds of the Int IRCOBI Conference on Biomechanics of Impact. Hannover Germany: IRCOBI Secretariat, 1997, 133-147
    [40] Gadd C W. Criteria for Injury Potential. In: Proceedings of impact acceleration stress symposium. Washington: National Research Council Publication No. 977, 1962, 141-144
    [41] Deguchi M. Modeling of a Motorcycle for Collision Simulation, 2003, 18th ESV Paper No.157-O
    [42] Yoshiyuki, Mizuno. Summary of IHRA Pedestrian Safety WG Activities (2003) Proposed Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars. In: The 18th ESV Conference. Japan., 2003, Paper-0580
    [43] Yang J K. Effects of Vehicle Front Design Parameters on Pedestrian Head-Brain Injury Protection. In: The 18th ESV Conference. Japan, 2003, Paper-0289
    [44] Mizuno Y, and Ishikawa H. Summary of IHRA Pedestrian Safety WG Activities-Proposed Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars. In: The 17th ESV Conference. Holland, 2001
    [45]李凡.汽车-行人碰撞中的行人颅脑动力学响应及损伤防护的研究:[湖南大学硕士论文].长沙:湖南大学,2005,38-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700