水稻细菌性条斑病菌中受DSF调控的鞭毛基因和天冬酰胺合成酶基因的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻黄单胞菌包含两个致病变种Xanthomonas orzae pv.oryzae(Xoo)和X.opvzae pv.oryzicola肠(Xoc),在水稻上分别引起白叶枯病和细菌性条斑病。为了阐明可扩散性信号分子(diffusible signal factor,DSF)调控的两个鞭毛基因flgD和flgE以及天冬酰胺合成酶基因(asparagine synthetase B,asnB)对水稻细菌性条斑病菌Rs105在致病性等方面的影响。在本研究中,我们克隆了flgD、flgE和asnB基因,并对其进行序列分析。用同源重组的方法构建相应基因的缺失突变株,明确了这三个基因对水稻细菌性条斑病菌在运动性,致病性和生长能力等方面的影响,以此来推知基因的功能;并进一步证明了DSF通过调控flgD、flgE和asnB基因得表达,从而影响条斑病菌的致病性等表型。为深入认识DSF对细菌性条斑病菌相关基因的调控提供了科学依据。
     (一)采用PCR的方法从Rs105基因组中克隆到flgD和flgE基因,并证实这两个基因在基因组中均为单拷贝。用同源重组法构建缺失突变体,测定突变体及其互补菌株的菌体形态、运动性、致病性及过敏性反应等表型,用反转录PCR(RT-PCR)的方法验证Rs105和ΔrpF(rpfF基因的缺失突变体,不产生DSF)中flgD、flgE表达量的差异。PCR和Southern杂交结果显示,flgD、flgE基因被成功敲除。与野生型相比,突变体的鞭毛产生能力丧失,游动性和趋化性能力减弱,接种水稻叶片显示其致病性部分减弱,基因互补可使其恢复。生长能力和对烟草叶片的致敏性无明显改变。RT-PCR结果显示,flgD、flgE基因在ΔrpfF中的转录水平明显降低。这表明:FlgD、FlgE是水稻细菌性条斑病菌鞭毛形成所必需的因子;进一步证明了DSF通过调控flgD、flgE基因表达,从而影响条斑病菌的致病性等表型。
     (二)从Rs105基因组中克隆到asnB基因,并证实这个基因在基因组中为单拷贝。用同源重组法构建缺失突变体,测定突变体及其互补菌株的菌体形态、运动性、致病性和过敏性反应、在水稻叶片中的繁殖能力以及在添加不同氮源的MMX基本培养基里的生长能力等表型,用反转录PCR(RT-PCR)的方法验证Rs105和ΔrpfF(rpfF基因的缺失突变体,不产生DSF)中asnB表达量的差异。PCR和Southern杂交结果显示,asnB基因被成功敲除。与野生型相比,突变体接种水稻叶片显示其致病性基本丧失,基因互补可使其恢复。asnB基因的缺失严重影响了细菌性条斑病菌的生长,添加外源天冬酰胺可使其生长情况恢复。鞭毛产生能力,游动性和趋化性能力,降解胞外蛋白酶、纤维素酶的能力以及对烟草叶片的致敏性等无明显改变。RT-PCR结果显示,asnB基因在ΔrpfF中的转录水平明显降低。试验表明:asnB基因是细菌性条斑病菌正常生长所必需的,其突变可使细菌丧失致病性;进一步证明了DSF通过调控asnB基因表达,从而影响条斑病菌的致病性等表型。
Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola(Xoc) cause leaf blight and leaf streak on rice respectively. To investigate functions of flagellar genes flgD and flgE and asparagine synthetase B gene (asnB) regulated by diffusible signal factor (DSF) in Xoc strain Rs105.In this study, the flgD, flgE and asnB genes were cloned and sequence analyzed from Xoc. We constructed the deletion mutants from Rs105 by using double crossover method, characterized the contribution of these genes to motility, virulence and bacterial growth to speculat the function of the genes. In addition, our results provided molecular evidences that the contribution of DSF-type quorum sensing to pathogen's virulence might be.
     (Ⅰ) The flgD and flgE genes were amplified by PCR. We constructedΔflgD andΔflgE, the deletion mutants from Rs105 by using double crossover method, and determined cell morphology, motility, pathogenicity in host rice and hypersensitive response (HR) in nonhost tobacco. We tested the differential expression of flgD and flgE gene by reverse transcriptional polymerase chain reaction (RT-PCR) between the wide type andΔrpfF (the deletion mutant of rpfF gene, which could not produce DSF). PCR and Southern blot analysis demonstrated that the flgD and flgE genes were knocked out successfully. Both mutants were non-flagellated and significantly attenuated motility on the 0.3% semi-solid medium. The pathogenicity on rice were obviously attenuated inΔflgD andΔflgE compared to the wild type. All the changes in mutant could be restored through the complementation. However, there was no significant difference in bacterial growth in MMX medium and induction of HR between mutant (ΔflgD orΔflgE) and the wild type. In addition, the results of RT-PCR demonstrated that the transcription level of flgD and flgE were down-regulated inΔrpfF. This study showed that expressions of flgD and flgE were positively regulated by DSF, and necessary for flagellar hook assembly and flagellar structure in Xoc. Meanwhile, FlgD and FlgE contributed to pathogen's virulence, motility and chemotaxis, but no deferences at growth rate in MMX medium and HR in nonhost.
     (Ⅱ) The asnB gene was amplified by PCR. We constructedΔasnB, the deletion mutants by using double crossover method, and determined cell morphology, motility, pathogenicity in host rice and hypersensitive response (HR) in nonhost tobacco, bacterial growth in rice and MMX medium with different nitrogen sources (Peptone, Yeast extract, Asparagine, Aspartic acid, Glutamine, Glutamate, Ammonium sulfate, Urea, Potassium nitrate or Alanine). We tested the differential expression of asnB gene by reverse transcriptional polymerase chain reaction (RT-PCR) between the wide type andΔrpfF. PCR and Southern blot analysis demonstrated that the asnB gene were knocked out successfully. Compaired with the wide type strain,ΔasnB was no pathogenicity on rice, the change in mutant could be restored through the complementation. The deletion of asnB gene had seriously affected the bacrerial growth, the change could be restored by adding exogenous asparagine. However, there was no significant difference in flagella production, motility and induction of HR between mutant and the wild type. In addition, the results of RT-PCR demonstrated that the transcription level of asnB was down-regulated in ArpfF. This study showed that expressions of asnB were positively regulated by DSF, and necessary for bacterial growth in Xoc. Meanwhile, AsnB contributed to pathogen's virulence in nonhost rice.
引文
1. Adhikari T B, Mew T W. Pathogenic variability in Xanthomonas compestriis pv. Oryzicola. IRRN, 1985,10(1):16.
    2. Alfano J R, Charkowski A O, Deng W L, et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA,2000,97:4851-4861.
    3. Anna V, Mark J B, Andrew S W, et al. N-acyl-L-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. Environ Microbiol,2004,6 (4):424-433.
    4. Aravind L, Koonin E V. The HD domain defines a new super family of metal-dependent phosphohydrolases. Trends Biochem Sci,1998,23:469-472.
    5. Arlat M, Gough C L, Barber C E, et al. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol Plant-Microbe Interact,1991, 4:593-601.
    6. Aslam S N, Newman M A, Erbs G, et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol,2008,18 (14):1078-1083.
    7. Awoderu V A, Bangura N, John V T. Incidence, distribution and severity of bacterial diseases on rice in West Africa. Trop. Pest Manag,1991,37:113-117.
    8. Barber C E, Tang J L, Feng J X, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol,1997, 24:556-566.
    9. Bassler B L, Losick R. Bacterially speaking. Cell,2006,125:237-246.
    10. Boucher C A, Bareris P A, Trigalet A P, et al. Transposon mutagenesis of Pseudomonas solanacearum:isolation of Tn5-induced avirulent mutants. J Gen Microbiol,1985,131:2449-2457.
    11. Boucher C A, Gijsegem F V, Barberis P A, et al. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J Bacteriol,1987,169: 5626-5632.
    12. Bronstein P A, Marrichi M, Cartinhour S, et al. Identification of a Twin-Arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness. J Bacteriol,2005.187 (24):8450-8461
    13. Buttner D, Bonas U. Regulationand secretion of Xanthomonas virulence factors. FEMS Microbiol, 2010,34:107-133.
    14. Camilli A, Bassler B L. Bacterial Small-Molecule Signaling Pathways. Science,2006,311 (24): 1113-1116.
    15. Chang W H, Lee M C, Yang M T, et al. Expression of heat-shock genes groESL in Xanthomonas campestris is upregulated by CLP in an indirect manner. FEMS Microbiol Lett,2005,243: 365-372.
    16. Chatterjee S, Sonti R V. rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol Plant Microbe Interactions,2002,15 (5): 463-471.
    17. Chatterjee S, Wistrom C, Lindow S E. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci,2008,105:2670-2675.
    18. Chen G Y, Zou L F, Wang X P, et al. Pathogenicity determinants of Xanthomonas oryzae pv. oryzae. Chin Agric Sci,2004,37 (9):1301-1307.
    19. Chesnokova O, Coutinho J B, Khan I H, et al. Characterization of flagella genes of Agrobacterium tumefaciens, and the effect of a bald strain on virulence. Mol Microbiol,1997,23: 579-590.
    20. Chua K L, Chan Y Y, Gan Y H. Immune,2003,71 (4):1622-1629.
    21. Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol,1995,21:1-18.
    22. da Silva F R, Vettore A L, Kemper E L, et al. Fastidian gum:the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity. FEMS Microbiol Lett,2001,203 (2):165-171.
    23. Davies D G, Parsek M R, Pearson J P, et al. the involvenlent of cell-to-cell signals in the development of a bacterial biofilm. Science,1998,280 (5361):295-298。
    24. Ding Z Y, Christie P J. Agrobacterium tumefaciens Twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol,2003, 185 (3):760-771
    25. Dobrindt U, Hochhut B, Hentschel U, et al. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol,2004,2:414-24.
    26. Dong Y H, Wang L H, Zhang L H. Quorum quenching microbial infections-mechanisms and implications. Phil Trans R Soc B,2007,362:1201-1211.
    27. Dow M J, Crossman L, Findlay K, et al. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci, 2003,100:10995-11000.
    28. Eberhard A, Burlingame A L, Eberhard C, et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochem,1981,20:2444-2449.
    29. Fuqua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria:The LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol,1994,176:269-275.
    30. Fuqua C, Greenberg E P. Listening in on bacteria:acylhomoserine lactone signalling. Nat Rev Mol Cell Biol,2002,3:685-695.
    31. Furutani A, Tsuge S, Tsuno TOK, et al. Hpal secretion via type Ⅲ secretion system in Xanthomonas oryzae pv. oryzae. J Gen Plant Pathol.2003,69:271-275
    32. Gail M P, Bernhard H, Paul B R. Bacterial genomics and adaptation to life on plants:implications for the evolution of pathogenicity and symbiosis. Bacterial,1998,180:4532-4537。
    33. Galperin M Y, Natale D A, Aravind L,et al. A specialized version of the HD hydrolase domain implicated in signal transduction. J Mol Microbiol Biotechnol,1999,1:303-305.
    34. Gonzdlez J E, Keshavan N D. Microbiol Mol Biol Rev,2006,70 (4):859-875.
    35. Gonzdlez J E, Marketon M M. Microbiol Mol Biol Rev,2003,67 (4):574-592.
    36. Goto M. Resistance of rice varieties and species of wild rice to bacterial leaf blight and bacterial leaf streak disease. Philipp Agric,1965,48,329-338.
    37. Guo Y H, Xu Z G. Current Progress in the Research on Virulence Differentiation of Xanthomonas oryzae pv. oryzicola. J Anhui Agri Sci.,2006,34 (23):6247-6248.
    38. Heanther R B, Shigeru Y, Kelly T H. The flagellar hook protein,of salmonella enterica serovar typhimurium is posttranscriptionally regulated in response to the stage of flagellar assembly. J Bacteriol,2000, P.4044-4050.
    39. He Y W. Cell-cell communication in Xanthomonas campestris pv. campestris. PhD Thesis, Library of National University of Singapore (http://libpweb1.nus.edu.sg/lion/l/ wtheses.html), Singapore, 2006.
    40. He Y W, Ng A Y, Xu M, et al. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol,2007, 64:281-292.
    41. He Y W, Xu M, Lin K, et al. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. Campestris:identification of novel cell-cell communication-dependent genes and function. Mol Microbiol,2006,59:610-622.
    42. He Y W, Zhang L H. Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev,2008.32 (5):842-857
    43. Hsiao Y M, Liao H Y, Lee M C, et al. Clp upregulates transcription of engA gene encoding a virulence factor in Xanthomonas campestris by direct binding to the upstream tandem Clp sites. FEBS Lett,2005,579:3525-3533.
    44. Hsiao Y M, Tseng Y H. Transcription of Xanthomonas campestris prtl gene encoding protease 1 increases during stationary phase and requires global transcription factor Clp. Biochem Biophys Res Commun,2002,295:43-49.
    45. Hsiao Y M, Zheng M H, Hu R M, et al. Regulation of the pehA gene encoding the major polygalacturonase of Xanthomonas campestris by Clp and RpfF. Microbiol,2008,154 (3):705-713.
    46. Hu J, Qian W, He C. The Xanthomonas oryzae pv. oryzae eglXoB endoglucanase gene is required for virulence to rice. FEMS Microbiol Lett,2007,269 (2):273-279.
    47. Hutcheson S W, Bretz J, Sussan T, et al. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type Ⅲ protein secretion in Pseudomonas syringae strains. J Bacteriol,2001, 183:5589-5598.
    48. Ji G H, Xu Z G Analysis of DNA Polymorphism and Virulence in China Strains of Xanthomonas oryzae pv. oryzicola. J Huazhong Agri,2000,19 (5):430-433.
    49. Kanehisa, M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res, Database issue,2004,32, D277-D280.
    50. Kearney B, Staskawicz B J. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature,1990,346:385-386.
    51. Kohler S. Basics for Biosystems of the Cell. Assignment Report,2004, PP.1-12.
    52. Lars R, Allan B. Christensen methods for detecting acylated homoserine lactones produced by gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods,2001,44 (3):239-251.
    53. Lee M C, Weng S F, Tseng YH. Flagellin gene fliC of Xanthomonas campestris is upregulated by transcription factor Clp. Biochem Biophys Res Commun,2003,307:647-652.
    54. Lindgren P B, Peet R C, Panopoulos N J. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J. Bacteriol.,1986,168:512-522.
    55. Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars:Model pathogens of a model crop. Mol Plant Pathology,2006,7:303-324.
    56. Lu G T, Tang J L, Wei G N, et al. The gene wxcA of Xanthomonas campestris pv. campestris 8004 strain involved in EPS yield. Sheng Wu Gong Cheng Xue Bao,2004,20 (4):477-483.
    57. Macnab R M. Examination of bacterial flagellation by dark-field microscopy. J Clin Microbiol, 1976,4:258-265.
    58. Macnab R M. The bacterial flagellum:reversible rotary propellor and type Ⅲ export apparatus. J Bacteriol,1999,181,7149-7153.
    59. Macnab R M. How bacteria assemble flagella. Annu Rev Microbiol,2003,57,77-100.
    60. Mary J. echanisms of Bacterial Motility. http://www indstate.edu/thcme/nficm/flagella. html, 1999.
    61. Matthew R P, Greenberg E P. Sociomierobiology:the connections between quorum sensing and biofilms. Trends Microbiol,2005,13(1):27-33.
    62. Mew T W, Alvarez A M, Leach J E, et al. Focus on bacterial blight of rice. Plant Dis,1993,77: 5-12.
    63. Miller M B, Bassler B L. Cell-to-Cell Communication in Bacteria. Annu Rev Miorobiol,2001,55: 165-199.
    64. Nealson K H, Hastings J W. Bacterial bioluminescence:its control and ecological significance. Microbiol Rev.1979,43:496-518.
    65. Noe"l L, Thieme F, Nennstiel D, et al. Two novel type Ⅲ-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol.2002,184: 1340-1348.
    66. Ochiai H, Kaku H. Genetic relationships among Xanthomonas species and pathovars based on RFLP analyses of PCR-amplified 16S,23SrDNA and rDNA internal transcribed spacer. Ann Phytopathol Soc Japan,65:437-446.
    67. Ombeline R, Kai W, Karoline H, et al. The Xanthomonas Hrp type Ⅲ system secretes proteins from plant and mammalian bacterial pathogens. Proc Natl Acad Sci,1999,96:9368-9373.
    68. Ou S H. Rice Diseases. (Kew, Surrey:Commonwealth Agricultural Bureau),1985.
    69. Pallen M J, Penn C W, Chaudhuri R R. Bacterial flagellar diversity in the post-genomic era.Trends Microbiol.2005,13,143-149.
    70. Raymundo A K, Briones A M, Ardalos E Y. Analysis of DNA polymorphism and virulence in Philippine strains of Xanthomonas oryzae pv.oryzicola. Plant Dis,1999,83:434-440.
    71. Ray S K, Rajeshwari R, Sharma Y, et al. A high molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol Microbiol,2002,46:637-647.
    72. Reng Q, Ni R. Prevention and Cure for Bacterial Leaf Streak. Anhui Agri Sci Bull,2008,14(18): 87-97.
    73. Romagni, J G, Duke S O, Dayan F E. Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiology,2000,123:725-732.
    74. Romling U, Gomelsky M, Galperin M Y. C-di-GMP:the dawning of a novel bacterial signaling system. Mol Microbiol,2005,57:629-639.
    75. Ryan RP, Fouhy Y, Lucey J F, et al. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA,2006, 103:6712-6717.
    76. Schulte R, Bonas U. Expression of the Xanthomonas campestris pv. vesicatoria hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. J Bacteriol,1992,174:815-823.
    77. Sebastian K. Basics for Biosystems of the Cell. Assignment rep,2004, PP.1-12.
    78. Shekawat G S. Host specialization in bacterial leaf streak pathogen of rice. Indian J. Agrie. Sci., 1972,42(1):11-15.
    79. Shekawat G S, Srivastava D N. Mode of seed infection and transmission of bacterial leaf streak of rice. Ann Phytopathol Soci Japan,1972,38 (1):4-6.
    80. Slater H, Alvarez-Morales A, Barber C E, et al. A two-component system involving an HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol,2000,38:986-1003.
    81. Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction. Ann Rev of Biochem,2000,69:183-215.
    82. Suga H, Smith K. Library screening for synthetic agonists and antagonists of Pseudomonas aeruginosa autoinudcer. Curr Opin Chem Biol,2003,7:586-591.
    83. Swings J, Van Den Mooter M, Vauterin L, et al. Reclassification of the causal agents of bacterial blight Xanthomonas campestris pathovar oryzae and bacterial leaf streak Xanthomonas campestris pathovar oryzicola of rice as pathovars of Xanthomonas oryzae new species. Ex Ishiyama 1922 Revived Name. Int J Syst Bacteriol,1990,40:309-311.
    84. Tang D J, He Y Q, Feng J X, et al. Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence. J Bacteriol,2005,187:6231-6237.
    85. Tang J L, Liu Y N, Barber C E, et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellar enzymes and polysaccharide in Xanthomonas campestris pv. campestris. Mol Gen Genet,1991,226:409-417.
    86. Vauterin L, Hoste B, Kersters K, et al. Reclassification of Xanthomonas. Int J Syst Bacteriol, 1995,45:472-489.
    87. Vendeville A, Winzer K, Heurlier K, et al. Making 'sense' of metabolism:autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol,2005,3:383-396.
    88. Wang L F, Rong W, He C. Two Xanthomonas Extracellular Polygalacturonases, PghAxc and PghBxc, Are Regulated by Type Ⅲ Secretion Regulators HrpX and HrpG and Are Required for Virulence. Mol. Plant-Microbe Interact,2008,21 (5):555-563.
    89. Wang L H, He Y, Gao Y, et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol,2004,51:903-912.
    90. Wang J S. Molecular Plant Pathology. Scientia Agri Press,2001.
    91. Waters C M, Bassler B L. Quorum sensing:cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol,2005,21:319-346.
    92. Wei Z, Beer S V. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J Bacteriol,1995,177:6201-6210.
    93. Wei Z, Kim J F, Beer S V. Regulation of hrp genes and type Ⅲ protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system and HrpS. MPMI,2000,13:1251-1262.
    94. Wengelnik K, Bonas U. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol,1996,178:3462-3469.
    95. Whitehead N A, Barnard A M, Slater H, et al. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev,2001,25:365-404.
    96. Williams P, Winzer K, Chan W C, et al. Look who's talking:communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci,2007,362:1119-1134.
    97. Xavier K B, Bassler B L. LuxS quorum sensing:more than just a numbers game. Curr Opin Microbio,2003,16:191-197.
    98. Yang B, Zhu W, Johnson L B, et al. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. PNAS,2000,97:9807-9812.
    99. Zhang L H, Dong Y H. Quorum sensing and signal interference:diverse implications. Mol Microbiol,2004,53:1563-1571.
    100. Zhao Y C,Qian G L,Yin F Q, et al. Proteomic analysis of the regulatory function of DSF-dependent quorumsensing in Xanthomonas oryzae pv. Oryzicola. Microbiol Pathogen,2011, 50(1):48-55.
    101. Zhu W, Magbanua M M, White F F. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J Bacteriol,2000,182:1844-1853.
    102. Zou L F, Wang X P, Xiang Y, et al. Elucidation of the hrp Clusters of Xanthomonas oryzae pv. oryzicola That Control the Hypersensitive Response in Nonhost Tobacco and Pathogenicity in Susceptible Host Rice. Appl Environ Microbiol,2006,72 (9):6212-6224.
    103.陈功友。水稻黄单胞菌(Xanthomonas oryzae) hrp基因克隆与特性研究。南京:南京农业大学。2000,博士学位论文。
    104.成国英,林梅根,侯著卫。稻细条病菌在病残体上的越冬及越冬病田中稻株发病情况调查,湖北植保,1996,4:21-22。
    105.方中达,任欣正,陈泰英等。水稻白叶枯病及条斑病和李氏禾条斑病病原细菌的比较研究。植物病理学报,1957,3(2):99-122。
    106.韩志成。水稻黄单胞菌clp基因的克隆及功能研究。南京:南京农业大学。2010,硕士学位论文。
    107.李建仁,李碧文。水稻组菌性条斑病发生规律及防治措施研究。湖南农业科学,1989,(4):31-33。
    108.李玉蓉。水稻条斑病菌Xanthomonas oryzae pv. oryzicola RS105 hrp基因簇功能分析及hcm1转基因水稻的研究。南京:南京农业大学。2010,博士学位论文。
    109.邱健,贾振华,李承光。细菌群体感应淬灭酶的研究进展.微生物学通报,2006,33(4):139-142。
    110.齐枝花,于鑫,余萍。细菌群感效应的猝灭。生命的化学,2005,25(6):463-466。
    111.齐枝花,于鑫,余萍。生物法中细菌群感效应所需自诱导物的存在证明。中国给水排水,2006,22(13):18-25。
    112.任新国,向建国,廖晓兰。水稻细菌性条斑病菌血清型的初步研究。湖南农业科学,1994(1):37-38。
    113.夏怡厚,林维英,陈藕英。水稻品种(系)对稻细菌性条斑病的抗性鉴定和抗性筛选。福建农学院学报,1992,21(1):32-36
    114.徐羡明,林璧润,曾列先等。普通野生稻种质资源对细菌性条斑病的抗性鉴定。植物保护,1991,17(6):4-5。
    115.许志刚,刘凤权,沈秀萍等。水稻白叶枯病和条斑病的流行与预测(综述)。西南农业大学学报,1998,20(5):567-572。
    116.邹华松。水稻黄单胞菌(Xanthomonas oryzae) pig和hrp基因的克隆与鉴定。南京农业大学,2002,博士学位论文。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700