CD226抗体治疗小鼠实验性自身免疫性脑脊髓炎的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人CD226曾先后被称为T细胞谱系特异性活化抗原(1 TLiSA1,1985)、血小板T细胞活化抗原1(PTA1,1989)DNAX辅助分子1(DNAM-1,1996),并于2000年首次以我国实验室为主要研究单位在国际人类白细胞分化抗原协作组(HLDA)大会上获得编号为CD226。该分子于1996年基因克隆成功,cDNA全长2603bp,包含7个外显子,开放读框编码336个氨基酸,胞浆区具有磷酸化及与信号分子相互作用的位点。CD226分子与表达于杀伤性T细胞(CTL)和NK细胞的CD96(Tactile)分子在蛋白水平有22%的同源性,与BGP-1、CD36、PRR和果蝇神经胶质蛋白Neuroglian也有一定的同源性。CD226成熟蛋白由318个氨基酸组成,分子量约为65kDa,属免疫球蛋白超家族I型跨膜糖蛋白,表达于T细胞、NK细胞、NKT细胞、单核细胞、巨核/血小板谱系及活化的血管内皮细胞;广泛参与了免疫系统的生理和病理学功能,如T细胞、巨核细胞的分化,NK细胞对肿瘤细胞、病毒感染细胞的杀伤,血小板的活化与聚集,单核/巨噬细胞穿越血管内皮细胞等过程,并参与其中的信号转导。
     CD226分子体内天然配体于2003年得到鉴定,为同属于nectin/Necl家族的黏附分子:人脊髓灰质炎病毒受体(PVR/Necl-5/CD155)及其家族成员人PVR受体相关分子(PRR-2/nectin-2/CD112),CD112同时也是单纯疱疹病毒(HSV-1和HSV-2)的受体。
     小鼠PTA1/CD226基因于2002年成功克隆,由7个外显子组成,编码完整小鼠CD226分子的cDNA开放读框有1002bp,编码333个氨基酸残基,小鼠CD226分子亦属免疫球蛋白超家族I型跨膜糖蛋白。小鼠CD226与人CD226在核苷酸水平有67%的同源性,而在氨基酸水平有53%的同源性。已证实mCD112和mCD155(Tage4)是mCD226的配体。小鼠CD226介导了抗原特异性CD8+T细胞共刺激信号的转导,并可参与肿瘤的免疫监视,而小鼠CD226分子在自身免疫调节中的作用尚未有较多的研究结果。
     Th17细胞和Th1细胞均可诱导自身免疫应答,但其二者的相互关系尚未清楚。EAE最初被认为是由Th1细胞介导的,但近期的越来越多的研究认为,部分器官特异性自身免疫性动物模型中,Th17细胞对于诱导整个免疫病理中是必不可少的,并提出EAE首先是由Th17细胞启动介导的理论。本实验就小鼠CD226分子在体外培养体系及体内功能实验所参与的自身免疫调节进行了初步研究。
     本研究中首先克隆化建立稳定表达mPTA1-Fc融合蛋白的CHO-mPTA1/Ig细胞株,通过培养上清制备mPTA1-Fc融合蛋白,并成功免疫新西兰大白兔动物,获得了较高的免疫血清,通过亲和层析的方法纯化出特异性的多抗,ELISA、SDS-PAGE电泳结果及免疫荧光流式检测显示,该多克隆抗体具有良好的生物学活性和较高的纯度。在单抗制备过程中,将融合蛋白免疫大鼠,利用杂交瘤技术,建立制备大鼠源性单抗的平台,从5400个克隆孔中,通过交叉筛选挑选出5株阳性克隆,利用裸鼠体内诱生腹水及无血清培养上清纯化获得了具有较高活性的单抗克隆抗体。所获得的5株单抗经ELISA、SDS-PAGE电泳结果及免疫荧光流式检测显示,有4株能很好的识别小鼠CD226的重组蛋白及天然分子,为后续研究mPTA1分子的表达、分布及功能提供了有利的研究工具。
     我们利用所制备的抗体通过免疫荧光染色技术检测小鼠PTA1在不同细胞系的表达情况。结果表明,在小鼠肥大细胞系、小鼠单核/巨噬细胞系PTA1分子表达较高。此外mPTA1分子在小鼠树突状细胞系表达较高,在B细胞也有组成性的表达。而在上皮细胞来源、纤维母细胞或低分化细胞来源细胞系上表达为阴性。
     本研究还发现正常小鼠脾淋巴细胞即有mPTA1分子的高表达,CD4+T细胞及CD8+T细胞均表达mPTA1分子,但CD8+T细胞表达更高,小鼠NK细胞及巨噬细胞表面也有mPTA1分子的表达。小鼠脾淋巴细胞经MLC培养7天后,其mPTA1的表达更加明显,CD8+mPTA1+细胞与CD4+mPTA1+细胞均有明显增多,而且以CD8+mPTA1+细胞更为显著。
     同时发现,作为小鼠PBMC的脾淋巴细胞在经MLC刺激的同时,与PTA1抗体共培养后,其细胞培养上清中Th1样细胞因子INF-γ水平明显升高,胞内细胞因子的荧光标记染色结果也有类似变化。提示PTA1分子可能在CD4+Th细胞分化中发挥了重要的免疫调节作用。
     为进一步研究小鼠PTA1分子所参与的免疫调节机制作用,我们又进行了mPTA1的体内功能实验。首先我们成功建立了自身免疫性疾病的经典动物模型实验性自身免疫性脑脊髓炎(EAE)。用髓鞘少突胶质细胞糖蛋白(MOG)35-55肽段并辅以结核杆菌及百日咳毒素免疫EAE敏感动物品系C57BL/6小鼠后,于免疫免疫后第10天开始陆续发病,出现EAE的典型临床神经系统症状,病程为慢性单时相进展型,约在第20天达到发病高峰,发病率达到70%,同时伴随脑组织的病理改变, HE染色检测结果发现,在脑白质区小血管周围有淋巴细胞浸润,即呈“袖套样”炎性结构改变。LFB染色发现在脑的冠状切片及脊髓纵向矢状切片中发现,白质区有LFB未着色区,髓鞘稀疏不连续,部分呈片状脱失。EAE模型小鼠的脾淋巴细胞IFN-γ的胞内染色水平表达较正常小鼠有明显下降,而IL-17水平增高了近70%。
     当小鼠EAE模型中注射mPTA1抗体时,发现EAE的发病率、发病时间及发病程度均有较好的缓解,发病率由60%减少到30%,发病起始时间由免疫后的第7天延缓至第14天,平均临床分数由2.2分降低至0.5分。同时,在对EAE组和抗体注射组的研究中发现,抗体注射组的脾淋巴细胞IFN-γ的胞内染色水平较EAE组升高了约85%,接近正常未免疫小鼠;而IL-17水平反而较EAE组降低了约87%。这些研究结果提示我们,抗mPTA1抗体对EAE有较强的保护机制之一可能是由于通过提高了EAE小鼠机体内IFN-γ的水平,从而抑制了IL-17的产生,进而减弱了IL-17诱导的自身免疫性炎症。
Human CD226 platelet and T cell activation antigen 1 (PTA1), also named as T lineage-specific activation antigen 1 (TLiSA1,1985) and DNAX accessory molecule-1(DNAM-1,1996) was designated as CD226 in the 7th Workshop and Conference on Human Leukocyte Differentiation Antigen (HLDA7) in 2000. In 1996, Human CD226 gene was cloned. The full length of human CD226 cDNA has 2603bp, and its ORF encoding 336 amino acids is composed of 7 exons and 6 introns. There are some phosphorylation sites in its cytoplasmic region. At protein level, CD226 shows 22% homology with CD96 (Tactile) which is expressed on activated T cells and NK cells, and also shares certain homology to BGP-1, CD36, PRR, and drosophila nerve colloid protein-Neuroglian. As a member of the immunoglobulin superfamily (IgSF), CD226 is a 65kDaⅠtype transmembrane glycoprotein, and composed of 318 amino acids. Human CD226 is expressed on cell surface of T cells, NK cells, NKT cells, monocytes/macrophages, megakaryocytes and platelets, and activated vascular endothelial cells, which is involved in a variety of immunological functions, including the differentiation of T cells and megakaryocytes, the cytotoxicity of NK cells against tumor cells and virus infected cells, the activation and aggregation of platelets, and the transmigration of monocytes/macrophages through vascular endothelial cells.
     In 2003, human poliovirus receptor (PVR/Necl-5/CD155) and its nectin/Necl (nectin-like) family member poliovirus receptor related 2 (PRR-2/ nectin-2/CD112) were identified as the ligands for CD226. CD112 also serves as the receptor for herpes simplex virus (HSV-1 and HSV-2).
     The cDNA encoding murine PTA1/CD226 (mPTA1/mCD226) was cloned in 2002, which is composed of 7 exons. It was shown that the ORF of murine CD226 has 1002bp, encoding 333 amino acids. The mPTA1 isⅠtype transmembrane glycoprotein, and also belongs to the immunoglobulin superfamily. Murine PTA1 has 67% homology with human PTA1 at cDNA level, and 53% homology at amino acid level. It has been demonstrated that murine CD112 and murine CD155 (Tage 4) are the ligands for murine PTA1/CD226. Murine CD226 can mediate the costimulatory signal in antigen-specific CD8+ T cell, and also participate in cell-mediated tumor specific immunity. Nevertheless, there are not sufficient researches whether and how mPTA1 play the function of immunological regulation in the auto-immunity.
     Both Th17 cells and Th1 cells could induce the auto-immunity response. However the relationship of the two kinds of cells is not clear. Th1 cells were once thought to be the key induction factor in EAE. Along with more and more researchs, it recently is considered that Th17 cells are indispensable to induce whole immunopathogenesis in organ-specific autoimmunity in animal model. And the theory also has been presented that EAE is primed firstly by Th17 cells. The laboratory mouse holds a special place in biology as the most accessible mammalian genetic system and therefore the organism of first resort in modeling many human trails and disorders. Therefore, in order to explore the biological function and pathological significance, we started to investigate the effect of mCD226 on pathogeny of experimental autoimmune encephalomyelitis.
     At first, we cloned and stabilized the CHO-mPTA1/Ig cell strain secreting mPTA1-Fcfusion protein and prepared the mPTA1-Fc fusion protein by purifing the culture supernatant. Then we gained the immune serum after immunizing New-Zealand rabbit using mCD226-Fc fusion protein. With the affinity chromatograph technology, we purified the specific poly antibodies against mPTA1. These antibodies have the satisfactory biologic activity and higher purity detected by ELISA, SDS-PAGE electrophoresis and immunofluorescence. Meanwhile, we immunized SD rat with the fusion protein and set up the system of preparing rat monoclone antibody against murine PTA1. Five positive hybrid strains from 5400 clones were selected by ELISA screening. Specific monoclone antibodies against mPTA1 were obtained from the ascitic fluid derivated from nude mice and cell culture supernatant, and could be used for detecting both the fusion protein and the natural murine PTA1 molecule which provide a favourable tool of for research on the expression,distribution and function of murine PTA1.
     Using these specific antibodies against murine PTA1, the expression of mPTA1 on various murine cell lineage was investigated by immunofluorescence staining technique. The results showed that mPTA1 expressed on the surface of murine mast cell, monocyte/macrophage cell lines, murine dendritic cell and a portion of B cells, but not cells origined from epithelium, fibroblast and poor-differentiated cells.
     We also found that normal mice splenic cells expressed mPTA1 including T cells, NK cells and macrophages. Although CD4+ T cells and CD8+ T cells all expressed the mPTA1 molecule, and CD8+ T cells expressed higher level of mPTA1 than CD4+ T cells. The expression of mPTA1 on murine splenic lymphocytes (both CD4+ T cells and CD8+ T cells) was increased after alloatigen simulation, MLC.
     At the same time, we found that the level of IFN-γfrom cell culture supernants in MLC was elevated in the presence of anti-mPTA1 andibodies. The similarly results also could be gained by detecting fluorescent labeling intracellular IFN-γ.
     To investigate the regulatory effect of mPTA1 antibodies on autoimmune diseases in vivo, we set up the murine experimental autoimmune encephalomyelitis (EAE) model. Immunizing C57BL/6 mice with MOG35-55 peptide plus Bacillus tuberculosis and pertussis toxin, the clinical disorder in nervous system appeared on day 10 after the peptide immunization. Histological examination revealed inflammatory foci characteristic of EAE throughout the CNS of affected animals with typical perivascular infiltration of mononuclear cells. Secondary demyelination was also observed. The level of IFN-γin the EAE mice splenic lymphocyte also was decreased by intracellular cytokine staining, whereas the level of IL-17 was raised up sixty percentages.
     The administration of anti-mPTA1 antibody could significantly decrease the disease incidence, delay the disease onset and reduce the severity of the initial phase of EAE compared with the control group. The EAE disease incidence of the group with antibody treatment downed from 60% to 30%. The disease onset was postponed on day 14 after immunizing. The clinical mean score of treatment group was cut downed from 2.2 to 0.5. The intracellular level of IFN-γin antibody treatment mice splenic lymphocyte compared with the control group was raised up 85% whereas the level of IL-17 was decreased 87%. So we assumed that PTA1 plays an important role in autoimmunity inflammation by regulating the producing of IFN-γwhich inhibited the Th17 cells in mice.
引文
1 Burns, G. F., Triglia, T., Werkmeister, J. A., Begley, C. G. and Boyd, A. W., TLiSA1, a human T lineage-specific activation antigen involved in the differentiation of cytotoxic T lymphocytes and anomalous killer cells from their precursors. J Exp Med 1985. 161: 1063-1078.
    2 Scott, J. L., Dunn, S. M., Jin, B., Hillam, A. J., Walton, S., Berndt, M. C., Murray, A. W., Krissansen, G. W. and Burns, G. F., Characterization of a novel membrane glycoprotein involved in platelet activation. J Biol Chem 1989. 264: 13475-13482.
    3 Shibuya, A., Campbell, D., Hannum, C., Yssel, H., Franz-Bacon, K., McClanahan, T., Kitamura, T., Nicholl, J., Sutherland, G. R., Lanier, L. L. and Phillips, J. H., DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996. 4: 573-581.
    4 Sherrington, P. D., Scott, J. L., Jin, B., Simmons, D., Dorahy, D. J., Lloyd, J., Brien, J. H., Aebersold, R. H., Adamson, J., Zuzel, M. and Burns, G. F., TLiSA1 (PTA1) activation antigen implicated in T cell differentiation and platelet activation is a member of the immunoglobulin superfamily exhibiting distinctive regulation of expression. J Biol Chem 1997. 272: 21735-21744.
    5 Jia, W., Liu, X. S., Zhu, Y., Li, Q., Han, W. N., Zhang, Y., Zhang, J. S., Yang, K., Zhang, X. H. and Jin, B. Q., Preparation and characterization of mabs against different epitopes of CD226 (PTA1). Hybridoma 2000. 19: 489-494.
    6 Bottino, C., Castriconi, R., Pende, D., Rivera, P., Nanni, M., Carnemolla, B., Cantoni, C., Grassi, J., Marcenaro, S., Reymond, N., Vitale, M., Moretta, L., Lopez, M. and Moretta, A., Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003. 198: 557-567.
    7 Tahara-Hanaoka, S., Shibuya, K., Onoda, Y., Zhang, H., Yamazaki, S., Miyamoto, A., Honda, S., Lanier, L. L. and Shibuya, A., Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 2004. 16: 533-538.
    8 Jian, J. L., Zhu, C. S., Xu, Z. W., Ouyang, W. M., Ma, D. C., Zhang, Y., Chen, L. J., Yang, A. G. and Jin, B. Q., Identification and characterization of the CD226 genepromoter. J Biol Chem 2006. 281: 28731-28736.
    9 Tao, D., Shangwu, L., Qun, W., Yan, L., Wei, J., Junyan, L., Feili, G., Boquan, J. and Jinquan, T., CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus. J Immunol 2005. 174: 1281-1290.
    10 Ralston, K. J., Hird, S. L., Zhang, X., Scott, J. L., Jin, B., Thorne, R. F., Berndt, M. C., Boyd, A. W. and Burns, G. F., The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large. J Biol Chem 2004. 279: 33816-33828.
    11 Tian, F., Li, D., Xia, H., Liu, X., Jia, W., Sun, C., Sun, K. and Jin, B., Isolation of cDNAs encoding gibbon and monkey platelet and T cell activation antigen 1 (PTA1). DNA Seq 1999. 10: 155-161.
    12 Jin, B., Scott, J. L., Vadas, M. A. and Burns, G. F., TGF beta down-regulates TLiSA1 expression and inhibits the differentiation of precursor lymphocytes into CTL and LAK cells. Immunology 1989. 66: 570-576.
    13 Crabtree, G. R., Contingent genetic regulatory events in T lymphocyte activation. Science 1989. 243: 355-361.
    14 Ma, D., Sun, Y., Lin, D., Wang, H., Dai, B., Zhang, X., Ouyang, W., Jian, J., Jia, W., Xu, X. and Jin, B., CD226 is expressed on the megakaryocytic lineage from hematopoietic stem cells/progenitor cells and involved in its polyploidization. Eur J Haematol 2005. 74: 228-240.
    15 Bachelet, I., Munitz, A., Mankutad, D. and Levi-Schaffer, F., Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J Biol Chem 2006. 281: 27190-27196.
    16 Springer, T. A., Dustin, M. L., Kishimoto, T. K. and Marlin, S. D., The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol 1987. 5: 223-252.
    17 Shuster, D. E., Kehrli, M. E., Jr., Ackermann, M. R. and Gilbert, R. O., Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc Natl Acad Sci U S A 1992. 89: 9225-9229.
    18 Shirakawa, J., Shibuya, K. and Shibuya, A., Requirement of the serine at residue 329 for lipid raft recruitment of DNAM-1 (CD226). Int Immunol 2005. 17: 217-223.
    19 Shirakawa, J., Wang, Y., Tahara-Hanaoka, S., Honda, S., Shibuya, K. and Shibuya, A., LFA-1-dependent lipid raft recruitment of DNAM-1 (CD226) in CD4+ T cell. Int Immunol 2006. 18: 951-957.
    20 Shibuya, K., Lanier, L. L., Phillips, J. H., Ochs, H. D., Shimizu, K., Nakayama, E., Nakauchi, H. and Shibuya, A., Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 1999. 11: 615-623.
    21 Shibuya, K., Shirakawa, J., Kameyama, T., Honda, S., Tahara-Hanaoka, S., Miyamoto, A., Onodera, M., Sumida, T., Nakauchi, H., Miyoshi, H. and Shibuya, A., CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med 2003. 198: 1829-1839.
    22 Hoover, K. B. and Bryant, P. J., The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr Opin Cell Biol 2000. 12: 229-234.
    23 Lue, R. A., Marfatia, S. M., Branton, D. and Chishti, A. H., Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc Natl Acad Sci U S A 1994. 91: 9818-9822.
    24 Gonzalez-Mariscal, L., Betanzos, A. and Avila-Flores, A., MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 2000. 11: 315-324.
    25 Fujita, A. and Kurachi, Y., SAP family proteins. Biochem Biophys Res Commun 2000. 269: 1-6.
    26 Caron, E., Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci 2003. 116: 435-440.
    27 Sims, T. N. and Dustin, M. L., The immunological synapse: integrins take the stage. Immunol Rev 2002. 186: 100-117.
    28 Mendelsohn, C. L., Wimmer, E. and Racaniello, V. R., Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 1989. 56: 855-865.
    29 Baury, B., Masson, D., McDermott, B. M., Jr., Jarry, A., Blottiere, H. M., Blanchardie, P., Laboisse, C. L., Lustenberger, P., Racaniello, V. R. and Denis, M. G., Identification of secreted CD155 isoforms. Biochem Biophys Res Commun 2003. 309: 175-182.
    30 Trask, B., Fertitta, A., Christensen, M., Youngblom, J., Bergmann, A., Copeland, A., de Jong, P., Mohrenweiser, H., Olsen, A., Carrano, A. and et al., Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers. Genomics 1993. 15: 133-145.
    31 Gromeier, M., Solecki, D., Patel, D. D. and Wimmer, E., Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology 2000. 273: 248-257.
    32 Mueller, S. and Wimmer, E., Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to alpha(v)beta3 integrin-containing membrane microdomains. J Biol Chem 2003. 278: 31251-31260.
    33 Pende, D., Bottino, C., Castriconi, R., Cantoni, C., Marcenaro, S., Rivera, P., Spaggiari, G. M., Dondero, A., Carnemolla, B., Reymond, N., Mingari, M. C.,Lopez, M., Moretta, L. and Moretta, A., PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 2005. 42: 463-469.
    34 Kakehi, S., Nakahama, K. and Morita, I., Expression and possible role of PVR/CD155/Necl-5 in osteoclastogenesis. Mol Cell Biochem 2007. 301: 209-217.
    35 Morrison, M. E. and Racaniello, V. R., Molecular cloning and expression of a murine homolog of the human poliovirus receptor gene. J Virol 1992. 66: 2807-2813.
    36 Lopez, M., Aoubala, M., Jordier, F., Isnardon, D., Gomez, S. and Dubreuil, P., The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood 1998. 92: 4602-4611.
    37 Eberle, F., Dubreuil, P., Mattei, M. G., Devilard, E. and Lopez, M., The human PRR2 gene, related to the human poliovirus receptor gene (PVR), is the true homolog of the murine MPH gene. Gene 1995. 159: 267-272.
    38 Takahashi, K., Nakanishi, H., Miyahara, M., Mandai, K., Satoh, K., Satoh, A., Nishioka, H., Aoki, J., Nomoto, A., Mizoguchi, A. and Takai, Y., Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 1999. 145: 539-549.
    39 Takai, Y., Irie, K., Shimizu, K., Sakisaka, T. and Ikeda, W., Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 2003. 94: 655-667.
    40 Pende, D., Spaggiari, G. M., Marcenaro, S., Martini, S., Rivera, P., Capobianco, A., Falco, M., Lanino, E., Pierri, I., Zambello, R., Bacigalupo, A., Mingari, M. C., Moretta, A. and Moretta, L., Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005. 105: 2066-2073.
    41 Pende, D., Castriconi, R., Romagnani, P., Spaggiari, G. M., Marcenaro, S., Dondero, A., Lazzeri, E., Lasagni, L., Martini, S., Rivera, P., Capobianco, A., Moretta, L., Moretta, A. and Bottino, C., Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 2006. 107: 2030-2036.
    42 Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. and Dustin, M. L., The immunological synapse: a molecular machine controlling T cell activation. Science 1999. 285: 221-227.
    43 Castriconi, R., Dondero, A., Corrias, M. V., Lanino, E., Pende, D., Moretta, L., Bottino, C. and Moretta, A., Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptorinteraction. Cancer Res 2004. 64: 9180-9184.
    44 Tomasec, P., Wang, E. C., Davison, A. J., Vojtesek, B., Armstrong, M., Griffin, C., McSharry, B. P., Morris, R. J., Llewellyn-Lacey, S., Rickards, C., Nomoto, A., Sinzger, C. and Wilkinson, G. W., Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 2005. 6: 181-188.
    45 Della Chiesa, M., Romagnani, C., Thiel, A., Moretta, L. and Moretta, A., Multidirectional interactions are bridging human NK cells with plasmacytoid and monocyte-derived dendritic cells during innate immune responses. Blood 2006. 108: 3851-3858.
    46 Chen, X., Trivedi, P. P., Ge, B., Krzewski, K. and Strominger, J. L., Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci U S A 2007. 104: 6329-6334.
    47 von Geldern, M., Simm, B., Braun, M., Weiss, E. H., Schendel, D. J. and Falk, C. S., TCR-independent cytokine stimulation induces non-MHC-restricted T cell activity and is negatively regulated by HLA class I. Eur J Immunol 2006. 36: 2347-2358.
    48 Chen, L., Xie, X., Zhang, X., Jia, W., Jian, J., Song, C. and Jin, B., The expression, regulation and adhesion function of a novel CD molecule, CD226, on human endothelial cells. Life Sci 2003. 73: 2373-2382.
    49 Kojima, H., Kanada, H., Shimizu, S., Kasama, E., Shibuya, K., Nakauchi, H., Nagasawa, T. and Shibuya, A., CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem 2003. 278: 36748-36753.
    50 Reymond, N., Imbert, A. M., Devilard, E., Fabre, S., Chabannon, C., Xerri, L., Farnarier, C., Cantoni, C., Bottino, C., Moretta, A., Dubreuil, P. and Lopez, M., DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 2004. 199: 1331-1341.
    51 Zuzel, M., Walton, S., Burns, G. F., Berndt, M. C. and Cawley, J. C., A monoclonal antibody to a 67 kD cell membrane glycoprotein directly induces persistent platelet aggregation independently of granule secretion. Br J Haematol 1991. 79: 466-473.
    52 Hunkapiller, T. and Hood, L., Diversity of the immunoglobulin gene superfamily. Adv Immunol 1989. 44: 1-63.
    53 Shibuya, A., Lanier, L. L. and Phillips, J. H., Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J Immunol 1998. 161: 1671-1676.
    54 Tabata, H., Hara, M., Kitani, A., Hirose, T., Norioka, K., Harigai, M., Suzuki, K., Kawakami, M., Kawagoe, M. and Nakamura, H., Expression of TLiSA1 on Tcells from patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Immunol Immunopathol 1989. 52: 366-375.
    55 Miller, F. W., Love, L. A., Barbieri, S. A., Balow, J. E. and Plotz, P. H., Lymphocyte activation markers in idiopathic myositis: changes with disease activity and differences among clinical and autoantibody subgroups. Clin Exp Immunol 1990. 81: 373-379.
    56 Sen, Y., Yongyi, B., Yuling, H., Luokun, X., Li, H., Jie, X., Tao, D., Gang, Z., Junyan, L., Chunsong, H., Zhang, X., Youxin, J., Feili, G., Boquan, J. and Jinquan, T., V alpha 24-invariant NKT cells from patients with allergic asthma express CCR9 at high frequency and induce Th2 bias of CD3+ T cells upon CD226 engagement. J Immunol 2005. 175: 4914-4926.
    57 Jinquan, T., Li, W., Yuling, H. and Lang, C., All roads lead to Rome: pathways of NKT cells promoting asthma. Arch Immunol Ther Exp (Warsz) 2006. 54: 335-340.
    58 Loertscher, R., Forbes, R. D., Halabi, G., Lavery, P. and Quinn, T., Expression of early and late activation markers on peripheral blood T lymphocytes does not reliably reflect immune events in transplanted hearts. Clin Transplant 1994. 8: 230-238.
    59 Huang, C., Jin, B., Wang, M., Li, E. and Sun, C., Hemorrhagic fever with renal syndrome: relationship between pathogenesis and cellular immunity. J Infect Dis 1994. 169: 868-870.
    60 Ye, X., Zhang, Z., Jiang, Y., Han, X., Wang, Y., Zhang, M., Liu, J., Geng, W., Dai, D., Shi, W. and Shang, H., Expression of human CD226 on T cells and natural killer cells and of soluble CD226 in plasma of HIV-1-infected Chinese patients. Viral Immunol 2006. 19: 576-581.
    61 Storojeva, I., Boulay, J. L., Ballabeni, P., Buess, M., Terracciano, L., Laffer, U., Mild, G., Herrmann, R. and Rochlitz, C., Prognostic and predictive relevance of DNAM-1, SOCS6 and CADH-7 genes on chromosome 18q in colorectal cancer. Oncology 2005. 68: 246-255.
    62 Ravens, I., Seth, S., Forster, R. and Bernhardt, G., Characterization and identification of Tage4 as the murine orthologue of human poliovirus receptor/CD155. Biochem Biophys Res Commun 2003. 312: 1364-1371.
    63 Tahara-Hanaoka, S., Miyamoto, A., Hara, A., Honda, S., Shibuya, K. and Shibuya, A., Identification and characterization of murine DNAM-1 (CD226) and its poliovirus receptor family ligands. Biochem Biophys Res Commun 2005. 329: 996-1000.
    64 Tahara-Hanaoka, S., Shibuya, K., Kai, H., Miyamoto, A., Morikawa, Y., Ohkochi, N., Honda, S. and Shibuya, A., Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 2006. 107:1491-1496.
    65 Harrington, L. E., Mangan, P. R. and Weaver, C. T., Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 2006. 18: 349-356.
    66 Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M. and Weaver, C. T., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005. 6: 1123-1132.
    67 Schnyder, B., Schnyder-Candrian, S., Pansky, A., Schmitz, M. L., Heim, M., Ryffel, B. and Moser, R., IL-17 reduces TNF-induced Rantes and VCAM-1 expression. Cytokine 2005. 31: 191-202.
    68 McAllister, F., Henry, A., Kreindler, J. L., Dubin, P. J., Ulrich, L., Steele, C., Finder, J. D., Pilewski, J. M., Carreno, B. M., Goldman, S. J., Pirhonen, J. and Kolls, J. K., Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol 2005. 175: 404-412.
    69 Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., Sudo, K. and Iwakura, Y., IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006. 177: 566-573.
    70 Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. and Stockinger, B., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006. 24: 179-189.
    71 Abebe, F., Mustafa, T., Nerland, A. H. and Bjune, G. A., Cytokine profile during latent and slowly progressive primary tuberculosis: a possible role for interleukin-15 in mediating clinical disease. Clin Exp Immunol 2006. 143: 180-192.
    72 Iwakura, Y. and Ishigame, H., The IL-23/IL-17 axis in inflammation. J Clin Invest 2006. 116: 1218-1222.
    73 Khader, S. A., Pearl, J. E., Sakamoto, K., Gilmartin, L., Bell, G. K., Jelley-Gibbs, D. M., Ghilardi, N., deSauvage, F. and Cooper, A. M., IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 2005. 175: 788-795.
    74 Yen, D., Cheung, J., Scheerens, H., Poulet, F., McClanahan, T., McKenzie, B., Kleinschek, M. A., Owyang, A., Mattson, J., Blumenschein, W., Murphy, E., Sathe, M., Cua, D. J., Kastelein, R. A. and Rennick, D., IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006. 116: 1310-1316.
    75 Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B.,Sedgwick, J. D., McClanahan, T., Kastelein, R. A. and Cua, D. J., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005. 201: 233-240.
    76 Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. and Gurney, A. L., Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003. 278: 1910-1914.
    77 Chen, Y., Langrish, C. L., McKenzie, B., Joyce-Shaikh, B., Stumhofer, J. S., McClanahan, T., Blumenschein, W., Churakovsa, T., Low, J., Presta, L., Hunter, C. A., Kastelein, R. A. and Cua, D. J., Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006. 116: 1317-1326.
    78 Zhang, G. X., Gran, B., Yu, S., Li, J., Siglienti, I., Chen, X., Kamoun, M. and Rostami, A., Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 2003. 170: 2153-2160.
    79 Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., Wang, Y., Hood, L., Zhu, Z., Tian, Q. and Dong, C., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005. 6: 1133-1141.
    80 Lubberts, E., Joosten, L. A., van de Loo, F. A., van den Gersselaar, L. A. and van den Berg, W. B., Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4. Arthritis Rheum 2000. 43: 1300-1306.
    81 Cruz, A., Khader, S. A., Torrado, E., Fraga, A., Pearl, J. E., Pedrosa, J., Cooper, A. M. and Castro, A. G., Cutting edge: IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J Immunol 2006. 177: 1416-1420.
    82 Batten, M., Li, J., Yi, S., Kljavin, N. M., Danilenko, D. M., Lucas, S., Lee, J., de Sauvage, F. J. and Ghilardi, N., Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 2006. 7: 929-936.
    83 Stumhofer, J. S., Laurence, A., Wilson, E. H., Huang, E., Tato, C. M., Johnson, L. M., Villarino, A. V., Huang, Q., Yoshimura, A., Sehy, D., Saris, C. J., O'Shea, J. J., Hennighausen, L., Ernst, M. and Hunter, C. A., Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006. 7: 937-945.
    84 Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L.and Kuchroo, V. K., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235-238.
    85 Mangan, P. R., Harrington, L. E., O'Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D., Wahl, S. M., Schoeb, T. R. and Weaver, C. T., Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006. 441: 231-234.
    86 Veldhoen, M. and Stockinger, B., TGFbeta1, a "Jack of all trades": the link with pro-inflammatory IL-17-producing T cells. Trends Immunol 2006. 27: 358-361.
    87 Starnes, T., Robertson, M. J., Sledge, G., Kelich, S., Nakshatri, H., Broxmeyer, H. E. and Hromas, R., Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol 2001. 167: 4137-4140.
    88 Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. and Murphy, K. M., Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006. 24: 677-688.
    89 Kimura, A., Naka, T. and Kishimoto, T., IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci U S A 2007. 104: 12099-12104.
    90 Chen, Z., Laurence, A., Kanno, Y., Pacher-Zavisin, M., Zhu, B. M., Tato, C., Yoshimura, A., Hennighausen, L. and O'Shea, J. J., Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A 2006. 103: 8137-8142.
    91 Yang, X. O., Panopoulos, A. D., Nurieva, R., Chang, S. H., Wang, D., Watowich, S. S. and Dong, C., STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007. 282: 9358-9363.
    92 Laurence, A., Tato, C. M., Davidson, T. S., Kanno, Y., Chen, Z., Yao, Z., Blank, R. B., Meylan, F., Siegel, R., Hennighausen, L., Shevach, E. M. and O'Shea J, J., Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007. 26: 371-381.
    93 Rangachari, M., Mauermann, N., Marty, R. R., Dirnhofer, S., Kurrer, M. O., Komnenovic, V., Penninger, J. M. and Eriksson, U., T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med 2006. 203: 2009-2019.
    94 Mathur, A. N., Chang, H. C., Zisoulis, D. G., Stritesky, G. L., Yu, Q., O'Malley, J. T., Kapur, R., Levy, D. E., Kansas, G. S. and Kaplan, M. H., Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 2007. 178: 4901-4907.
    95 Chitnis, T., Najafian, N., Benou, C., Salama, A. D., Grusby, M. J., Sayegh, M. H. and Khoury, S. J., Effect of targeted disruption of STAT4 and STAT6 on theinduction of experimental autoimmune encephalomyelitis. J Clin Invest 2001. 108: 739-747.
    96 Mathur, A. N., Chang, H. C., Zisoulis, D. G., Kapur, R., Belladonna, M. L., Kansas, G. S. and Kaplan, M. H., T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype. Blood 2006. 108: 1595-1601.
    97 Liu, X. K., Clements, J. L. and Gaffen, S. L., Signaling through the murine T cell receptor induces IL-17 production in the absence of costimulation, IL-23 or dendritic cells. Mol Cells 2005. 20: 339-347.
    98 Eberl, G., Marmon, S., Sunshine, M. J., Rennert, P. D., Choi, Y. and Littman, D. R., An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004. 5: 64-73.
    99 Ivanov, II, McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. and Littman, D. R., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006. 126: 1121-1133.
    100 Ziolkowska, M., Koc, A., Luszczykiewicz, G., Ksiezopolska-Pietrzak, K., Klimczak, E., Chwalinska-Sadowska, H. and Maslinski, W., High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 2000. 164: 2832-2838.
    101 Pichavant, M., Goya, S., Meyer, E. H., Johnston, R. A., Kim, H. Y., Matangkasombut, P., Zhu, M., Iwakura, Y., Savage, P. B., DeKruyff, R. H., Shore, S. A. and Umetsu, D. T., Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 2008. 205: 385-393.
    102 Wong, C. K., Ho, C. Y., Li, E. K. and Lam, C. W., Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 2000. 9: 589-593.
    103 Yoshida, S., Haque, A., Mizobuchi, T., Iwata, T., Chiyo, M., Webb, T. J., Baldridge, L. A., Heidler, K. M., Cummings, O. W., Fujisawa, T., Blum, J. S., Brand, D. D. and Wilkes, D. S., Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant 2006. 6: 724-735.
    104 McKenzie, B. S., Kastelein, R. A. and Cua, D. J., Understanding the IL-23-IL-17 immune pathway. Trends Immunol 2006. 27: 17-23.
    105 Ye, P., Garvey, P. B., Zhang, P., Nelson, S., Bagby, G., Summer, W. R., Schwarzenberger, P., Shellito, J. E. and Kolls, J. K., Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol 2001. 25: 335-340.
    106 Chung, D. R., Kasper, D. L., Panzo, R. J., Chitnis, T., Grusby, M. J., Sayegh, M. H. and Tzianabos, A. O., CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol 2003. 170: 1958-1963.
    107 Infante-Duarte, C., Horton, H. F., Byrne, M. C. and Kamradt, T., Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 2000. 165: 6107-6115.
    108 Higgins, S. C., Jarnicki, A. G., Lavelle, E. C. and Mills, K. H., TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol 2006. 177: 7980-7989.
    109 Khader, S. A., Bell, G. K., Pearl, J. E., Fountain, J. J., Rangel-Moreno, J., Cilley, G. E., Shen, F., Eaton, S. M., Gaffen, S. L., Swain, S. L., Locksley, R. M., Haynes, L., Randall, T. D. and Cooper, A. M., IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 2007. 8: 369-377.
    110 LeibundGut-Landmann, S., Gross, O., Robinson, M. J., Osorio, F., Slack, E. C., Tsoni, S. V., Schweighoffer, E., Tybulewicz, V., Brown, G. D., Ruland, J. and Reis e Sousa, C., Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 2007. 8: 630-638.
    111 Fujino, S., Andoh, A., Bamba, S., Ogawa, A., Hata, K., Araki, Y., Bamba, T. and Fujiyama, Y., Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003. 52: 65-70.
    112 Ogawa, A., Andoh, A., Araki, Y., Bamba, T. and Fujiyama, Y., Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 2004. 110: 55-62.
    113 Schwartz, S., Beaulieu, J. F. and Ruemmele, F. M., Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth. Biochem Biophys Res Commun 2005. 337: 505-509.
    114 Matusevicius, D., Kivisakk, P., He, B., Kostulas, N., Ozenci, V., Fredrikson, S. and Link, H., Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999. 5: 101-104.
    115 Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., Langer-Gould, A., Strober, S., Cannella, B., Allard, J., Klonowski, P., Austin, A., Lad, N., Kaminski, N., Galli, S. J., Oksenberg, J. R., Raine, C. S., Heller, R. and Steinman, L., Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002. 8: 500-508.
    116 Aarvak, T., Chabaud, M., Kallberg, E., Miossec, P. and Natvig, J. B., Change inthe Th1/Th2 phenotype of memory T-cell clones from rheumatoid arthritis synovium. Scand J Immunol 1999. 50: 1-9.
    117 Teunissen, M. B., Koomen, C. W., de Waal Malefyt, R., Wierenga, E. A. and Bos, J. D., Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 1998. 111: 645-649.
    118 Bush, K. A., Farmer, K. M., Walker, J. S. and Kirkham, B. W., Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum 2002. 46: 802-805.
    119 Nakae, S., Nambu, A., Sudo, K. and Iwakura, Y., Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003. 171: 6173-6177.
    120 Koenders, M. I., Lubberts, E., Oppers-Walgreen, B., van den Bersselaar, L., Helsen, M. M., Di Padova, F. E., Boots, A. M., Gram, H., Joosten, L. A. and van den Berg, W. B., Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol 2005. 167: 141-149.
    121 Hofstetter, H. H., Ibrahim, S. M., Koczan, D., Kruse, N., Weishaupt, A., Toyka, K. V. and Gold, R., Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 2005. 237: 123-130.
    122 Wekerle, H., Kojima, K., Lannes-Vieira, J., Lassmann, H. and Linington, C., Animal models. Ann Neurol 1994. 36 Suppl: S47-53.
    123 Flugel, A., Matsumuro, K., Neumann, H., Klinkert, W. E., Birnbacher, R., Lassmann, H., Otten, U. and Wekerle, H., Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 2001. 31: 11-22.
    124 Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T., Zurawski, S., Wiekowski, M., Lira, S. A., Gorman, D., Kastelein, R. A. and Sedgwick, J. D., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003. 421: 744-748.
    125 Becher, B., Durell, B. G. and Noelle, R. J., IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 2003. 112: 1186-1191.
    126 Gran, B., Zhang, G. X., Yu, S., Li, J., Chen, X. H., Ventura, E. S., Kamoun, M. and Rostami, A., IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 2002.169: 7104-7110.
    127 Sutton, C., Brereton, C., Keogh, B., Mills, K. H. and Lavelle, E. C., A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006. 203: 1685-1691.
    128 Kleinschek, M. A., Owyang, A. M., Joyce-Shaikh, B., Langrish, C. L., Chen, Y., Gorman, D. M., Blumenschein, W. M., McClanahan, T., Brombacher, F., Hurst, S. D., Kastelein, R. A. and Cua, D. J., IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 2007. 204: 161-170.
    129 Korn, T., Oukka, M., Kuchroo, V. and Bettelli, E., Th17 cells: Effector T cells with inflammatory properties. Semin Immunol 2007. 19: 362-371.
    130 Korn, T., Anderson, A. C., Bettelli, E. and Oukka, M., The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol 2007. 191: 51-60.
    131 Liu, G. Q., Wu, H. Y., Zhang, G. B., Ma, H. B., Ma, Z. N., Ju, S. G. and Zhang, X. G., [Prokaryotic expression, purification and biological activity of recombinant human IL-17/His protein]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2007. 23: 715-718.
    132 Langowski, J. L., Zhang, X., Wu, L., Mattson, J. D., Chen, T., Smith, K., Basham, B., McClanahan, T., Kastelein, R. A. and Oft, M., IL-23 promotes tumour incidence and growth. Nature 2006. 442: 461-465.
    133 Sweenie, C. H., Mackenzie, K. J., Rone-Orugboh, A., Liu, M. and Anderton, S. M., Distinct T cell recognition of naturally processed and cryptic epitopes within the immunodominant 35-55 region of myelin oligodendrocyte glycoprotein. J Neuroimmunol 2007. 183: 7-16.
    134 Costa, O., Divoux, D., Ischenko, A., Tron, F. and Fontaine, M., Optimization of an animal model of experimental autoimmune encephalomyelitis achieved with a multiple MOG(35-55)peptide in C57BL6/J strain of mice. J Autoimmun 2003. 20: 51-61.
    135 Stefferl, A., Brehm, U. and Linington, C., The myelin oligodendrocyte glycoprotein (MOG): a model for antibody-mediated demyelination in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neural Transm Suppl 2000: 123-133.
    136 Ichikawa, M., Johns, T. G., Liu, J. and Bernard, C. C., Analysis of the fine B cell specificity during the chronic/relapsing course of a multiple sclerosis-like disease in Lewis rats injected with the encephalitogenic myelin oligodendrocyte glycoprotein peptide 35-55. J Immunol 1996. 157: 919-926.
    137 Albouz-Abo, S., Wilson, J. C., Bernard, C. C. and von Itzstein, M., A conformational study of the human and rat encephalitogenic myelin oligodendrocyte glycoprotein peptides 35-55. Eur J Biochem 1997. 246: 59-70.
    138 Yasuda, T., Tsumita, T., Nagai, Y., Mitsuzawa, E. and Ohtani, S., Experimental allergic encephalomyelitis (EAE) in mice. I. Induction of EAE with mouse spinal cord homogenate and myelin basic protein. Jpn J Exp Med 1975. 45: 423-427.
    139 Bernard, C. C. and Carnegie, P. R., Experimental autoimmune encephalomyelitis in mice: immunologic response to mouse spinal cord and myelin basic proteins. J Immunol 1975. 114: 1537-1540.
    140 Amor, S., Smith, P. A., Hart, B. and Baker, D., Biozzi mice: of mice and human neurological diseases. J Neuroimmunol 2005. 165: 1-10.
    141 Morris-Downes, M. M., Smith, P. A., Rundle, J. L., Piddlesden, S. J., Baker, D., Pham-Dinh, D., Heijmans, N. and Amor, S., Pathological and regulatory effects of anti-myelin antibodies in experimental allergic encephalomyelitis in mice. J Neuroimmunol 2002. 125: 114-124.
    142 Kanter, J. L., Narayana, S., Ho, P. P., Catz, I., Warren, K. G., Sobel, R. A., Steinman, L. and Robinson, W. H., Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med 2006. 12: 138-143.
    143 Khoury, S. J., Hancock, W. W. and Weiner, H. L., Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 1992. 176: 1355-1364.
    144 Krakowski, M. and Owens, T., Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol 1996. 26: 1641-1646.
    145 Becher, B., Durell, B. G. and Noelle, R. J., Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 2002. 110: 493-497.
    146 Bettelli, E., Oukka, M. and Kuchroo, V. K., T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007. 8: 345-350.
    147 Kreymborg, K., Etzensperger, R., Dumoutier, L., Haak, S., Rebollo, A., Buch, T., Heppner, F. L., Renauld, J. C. and Becher, B., IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 2007. 179: 8098-8104.
    148 Wang, Y., Kai, H., Chang, F., Shibata, K., Tahara-Hanaoka, S., Honda, S., Shibuya, A. and Shibuya, K., A critical role of LFA-1 in the development of Th17 cells and induction of experimental autoimmune encephalomyelytis. Biochem Biophys Res Commun 2007. 353: 857-862.
    149 Wang, J., Wang, G., Sun, B., Li, H., Mu, L., Wang, Q., Li, G., Shi, L., Jin, L. and Kostulas, N., Interleukin-27 suppresses experimental autoimmune encephalomyelitis during bone marrow stromal cell treatment. J Autoimmun 2007.
    150 Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E.,Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., Mancardi, G. and Uccelli, A., Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005. 106: 1755-1761.
    151 Miljkovic, D., Momcilovic, M., Stojanovic, I., Stosic-Grujicic, S., Ramic, Z. and Mostarica-Stojkovic, M., Astrocytes stimulate interleukin-17 and interferon-gamma production in vitro. J Neurosci Res 2007. 85: 3598-3606.
    152 Liu, J. Q., Carl, J. W., Jr., Joshi, P. S., RayChaudhury, A., Pu, X. A., Shi, F. D. and Bai, X. F., CD24 on the resident cells of the central nervous system enhances experimental autoimmune encephalomyelitis. J Immunol 2007. 178: 6227-6235.
    153 田方,金伯泉,贾卫,等. 一种新的免疫球蛋白超家族成员 PTA1 的细胞分布及表达研究[J]. 细胞与分子免疫学杂志,1996,12(1):53-57.
    154 孙凯,金伯泉,冯琦. PTA1 配体表达的免疫组化研究(英文)[J]. 第四军医大学学报,1999, 20(10):s62-s63.
    155 张赟, 韩卫宁, 贾卫, 等. IL-2、IL-15 对 NK 细胞亚群表型和功能的调节作用. 免疫学杂志, 2004, 20(1):6-9.
    156 张赟, 程光, 韩卫宁, 曹云新, 金伯泉. 超抗原对 NK 细胞 CD226 分子表达与功能的调节. 细胞与分子免疫学杂志,2006, 22 (1):4-6.
    157 张赟, 程光, 尤向辉, 张红梅, 任军, 金伯泉. 自体外周血造血干细胞移植后造血重建中CD226分子在NK细胞上表达的变化. 标记免疫分析与临床, 2006, 12 (3):152-155
    158 陈丽华, 金伯泉, 贾卫, 等. 一种新的人内皮细胞可诱导性粘附分子 PTA1 的表达、调变、及粘附功能. 细胞与分子免疫学杂志, 2000, 16 (1):23-25.
    159 张赟, 贾卫, 韩卫宁, 等. CD226 分子在 NK 细胞亚群上表达规律与功能关系的研究. 中国免疫学杂志, 2004, 20 (8):14-17.
    160 马东初, 金伯泉, 孙英慧, 等. CD226在TPO诱导胎肝Lin-细胞增殖分化过程中的表达[J]. 细胞与分子免疫学杂志, 2001,17(4):307-309.
    161 宁双飞, 贾卫, 张新海, 杨琨, 李琦, 刘雪松, 金伯泉. 检测可溶型 CD226 双mAb 夹心 ELISA 的建立及初步应用 . 细胞与分子免疫学杂志 2003, 19(2):192-194.
    162 黄慧, 陈升汶, 李富荣, 等。支气管哮喘患者 T 淋巴细胞 PTA1 的表达. 实用医学杂志, 2002, 18(5):476-477.
    163 王坚, 胡邵文, 王伯云, 等. 自身免疫性甲状腺病浸润 T 细胞活化与滤泡细胞DR 抗原表达. 中华医学杂志, 1992, 72 (2):77-80.
    164 董光龙, 王为忠, 吴国生, 等.血清 sPTA1 与人活体小肠移植急性排斥反应的相关性评价. 免疫学杂志, 2000,16(6):439-441.
    165 李州利, 石秉毅, 蔡明, 等.血小板 T 细胞活化抗原 1 与移植肾急性排斥反应的相关性. 肾脏病与透析肾移植杂志, 2003,12(3):229-233.
    166 宁双飞, 贾卫, 刘京梅, 等.肾综合症出血热患者血清可溶性 CD226/PTA1的检测及意义. 细胞与分子免疫学杂志,2002,18(3): 283-284.
    167 叶晓卉, 尚红, 马东初, 等. HIV-1 感染对 NK 细胞及其活化性受体 CD226 表达的影响. 中华微生物学和免疫学杂志, 2003,23(5):380-383.
    168 贾卫, 金伯泉, 李琦, 闵密克, 刘雪松. 可溶性 PTA1 分子的发现及其检测方法的建立. 细胞与分子免疫学杂志,2000, 16(4):282-284
    169 张新海,李德敏,欧阳为明,等. 小鼠 CD226(PTA1)的基因克隆及其异型[J]. 中国免疫学杂志,2002, 18(6): 371-375.
    170 孙忱, 金伯泉, 孙凯, 等. PTA1 单克隆抗体诱导人血小板活化聚集和胞浆 Ca2+水平的升高. 中华血液学杂志, 1998,19(3):133-135
    171 周武庆, 宁双飞,金伯泉, 等. 银屑病患者血清可溶性血小板/T 细胞活化抗原1 的检测. 中华皮肤科杂志, 2003,36(3):159-160.
    172 李富荣, 叶志中, 戴勇, 等. DNAM-1 在系统性红斑狼疮患者 T 淋巴细胞的表达研究. 中国免疫学杂志, 19(5):200-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700