晚型恒星磁活动与恒星自转相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们在第一章中系统地总结了前人对晚型恒星的磁活动与恒星自转向的相关性研究方面的成果,在第二章中对两种不同的发电机理论进行了简要的叙述和分析,同时在第三章中从理论和观测方面简要地描述了晚型恒星的角动量演化方面的研究。由于前人采用的恒星样本、磁活动和自转参量的不同,以及观测资料的限制,晚型恒星的磁活动与恒星自转间的关系在很大程度上是不确定的。因此,我们收集了晚型恒星的色球和冕球活动的指数以及恒星自转方面研究发表的大量的观测资料并结合Hipparcos卫星的观测结果,对晚型恒星的磁活动与恒星自转间的相关性进行细致的研究。在第四章我们给出了晚型恒星的磁活动指数和自转参量的计算及样本的总体信息。
     在第五章中,我们采用不同的磁活动指数研究了晚型恒星磁活动与恒星自转参量(自转周期、Rossby数)、磁活动与恒星色指数以及恒星磁活动指数之间的相关性。大样本分析显示晚型主序恒星的色球活动与恒星自转参量的研究晚型主序恒星的色球活动与恒星自转参量间的关系表现出对恒星光谱型的依赖。对于A—早F型主序恒星的色球活动水平也随自转周期呈线性下降趋势,随Rossby数却呈上升趋势。A—早F型主序恒星的自转周期和恒星对流区的随色指数的分布明显地影响着这些恒星的色球活动行为。而M型主序星的色球活动水平基本上随自转参量的增大呈上升趋势,并且M型主序星的色球活动水平在色指数较大时趋于饱和。从M型主序星的自转周期的和恒星内部对流区随色指数的分布来看,M型主序星的色球活动行为与αΩ发电机理论的预期有明显的差异。从主序星的角动量与以色球活动指数为指标的磁动量间的相关性分析表明α~2Ω发电机可能是M型主序星磁场产生的主要机制。对于介于早F型和M型之间的主序星,色球活动的水平基本上随恒星自转参量的增大而下降。通过主序星的色球活动对恒星色指数不同依赖关系的研究,我们分析了Vaughan—Preston间隙产生的原因,分析结果显示恒星的年龄在这一间隙的形成中扮演了重要的角色。演化恒星的色球活动与恒星自转周期间存在很好的相关性。但是细致分析显示演化恒星色球活动水平随恒星自转周期间的分布对恒星光谱型和恒星表面有效温度有很强的依赖,并对这些现象提出了几种可能的解释。
     晚型主序星的冕球活动也表现出对恒星光谱型的依赖性。分析结果显示F型主序星的冕球活动在光谱型F5附近存在拐点。这一拐点的出现可能是F型主序星的对流区的变化影响形成的,也可能是F型主序星在F5附近存在较差自转的上限形成的。对不同光谱型的主序星的统计研究显示G、K、M型主序星的冕球活动基本上随色指数的增大而下降。但是M型主序星的冕球活动是随色指数的增大而下降,这与M型主序星色球活动的行为相反。这种现象可能是由于主序星的色球与冕球间存在的能量平衡和转移以及加热机制不同产生的。此外,统计结果也显示,M型主序星中强冕球活动的样本占总的M型主序星样本比率明显地高于G、K型主序星。主序星的角动量与以冕球活动指数为指标的磁动量间的相关性分析表明M型主序星的角动量与磁动量间的关系偏离了其它类型的主序星的总体线性关系。与主序星色球活动的研究相比,尽管数据点的弥散使这种偏离不是十分的明显,仍然能够对主序星色球研究中的结论提供了一定程度的支持。由于样本的不完备对演化恒星冕球活动与恒星自转间的分析,没有
    
    新男
    得到二者间十分可靠的相关性。演化恒星的磁冕球活动在色指数和自转周期
    分布上都显示出冕球磁活动存在上限的现象,并且对冕球磁活动上限的拟合表
    明在色指数B一V为1.0附近和自转周期!og尸为1.75附近出现拐点。这些拐点
    的出现可能是演化恒星的色球、冕球的能量平衡和加热机制引起的。
     我们通过对大样本恒星的统计分析分别得到了晚型主序星磁活动与恒星自
    转参量间以及磁活动与恒星色指数之间更广泛意义的数值关系。
     在第六章中,我们对晚型主序星和演化恒星的色球、冕球磁活动指数的相
    关性进行分析。我们发现主序星的色球与冕球磁活动指数存在着很好的线性相
    关性,而演化恒星的则表现出较弱的相关性。晚型主序星和演化恒星色球与冕
    球磁活动指数相关性差异进一步支持了对演化恒星的冕球磁活动研究中得到的
    结论,即演化恒星的冕球活动与色球活动行为的差异是恒星色球、冕球的能量
    平衡和加热机制不同产生的。M型主序星在演化恒星的冕球活动与色球活动行
    为的差异则是由于M型主序星的色球与冕球间存在的能量平衡和转移过程产生
    的。
     在第七章中,我们讨论了晚型恒星的自转周期的分布、恒星年龄对晚型恒
    星磁活动的影响以及晚型恒星的角动量演化。晚型主序恒星的自转周期、磁活
    动与恒星年龄之间存在很好的线性相关性。而晚型演化恒星不论是演化恒星的
    磁活动还是自转周期以恒星年龄10”年为分界点表现出随年龄不同的规律。这
    种现象在很大程度上反映了不同质量的恒星的不同的演化历程和演化状态。对
    晚型恒星角动量演化的分析显示晚型恒星的角动量演化基本上是守恒演化。但
    处于演化晚期的巨星和超巨星,由于星风的增大,恒星角动量的演化会不守恒。
We have collected a mass of stellar activity and rotation data of late-type stars. Combining with the results of Hipparcos satellite, we reserch the relation between stellar activity and rotation(include rotation period and Rossby number), and discuss the distribution of stellar rotation period and the evolution of angle momentum of late-type stars. Furthermore, we also reserch the influence of setllar age to stellar activity of late-type stars.
    The relation of stellar chromospheric activity and rotation of late-type main sequence stars depend on stellar spectral type. For A-early F type MS stars, stellar chromospheric activity decrease with stellar rotation period, but increase with Rossby number; For M type MS stars, stellar chromospheric activity increase with stellar rotation period and Rossby number, and stellar chromospheric activity reach saturation at large color index; For the MS stars between mid-F to M type, stellar chromospheric activity decrease with stellar rotation period and Rossby number. From the distribution of rotation period and convection parameter of M type stars, stellar chromospheric activity of M type stars depart from the anticipation of a. dynamo theory obviously. According to the analysis of the relation of between angle momentum and magnetic
    momentum, we find that a2 dynamo is main mechanism for the stars with
    deep interior convection zone similarly late-M type stars. By the reserching the relation between stellar chromospheric activity and color index, we find that stellar ages play a pivotal role for producing Vaughan-Preston gap of MS stars. The relation between stellar chromospheric activity and rotation of evolution stars have a good relativity. But meticulous analysis show chromospheric activity of evolution stars depend on stellar spectral type and effective temperature strongly. We provide several possible explain for those phenomena.
    The corona activity of late-type main sequence stars also depend on the stellar spectral type. The corona activity of late-type MS stars exist a inflexion nearby F5. There have two fold reason. One reason is the change of interior convection zone with spectral type produce the phenomena; Another reason is the differential rotation of F type stars exist a upper limit. The corona activity of G, K, M type stars decrease with color index increasing as a whole. The result of statistics show the ratio of strong activity samples in M type MS stars is larger than that in other G, K type MS stars, the relation of between angle momentum and magnetic momentum of M type stars also depart from the whole relation of MS stars. Though this departure is not obvious, the result still support the conclusion in the analysis of stellar chromospheric activity. For evolution stars,
    
    
    
    wo don't, obtain significative result because the deficient samples. But the statistics analysis show the distrbution of corona activity of late type with color index and rotation period exist upper limit. And those
    limit have inflexion nearby B-V=1.0 and log P=1.75 respectively. Those
    inflexion are brought by the energy balance and heating mechanism in stellar chromosphere and corona.
    Using large samples, we gain several credible numeric relation between different magnetic activity index and rotational parameters.
    Between chromospheric activity index and corona activity index of MS stars, there exist good linear relativity. But for evolution stars, this relation show a large dispersion. This phenomenon farther surport our conclusion in the analysis of evolution stars, i.e. the difference of stellar chromosphere and corona activity of evolution stars is bred by the energy balance and heating mechanism in stellar chromosphere and corona.
    There have good linear relativity between stellar magnetic activity, rotational period and stellar age of MS stars, but this relativity of evolution stars has different action. For the evolution stars with age less than 109 years, stellar magnetic activity and rotational period decrease with stellar age; For the stars with age larger
引文
[1] Robinson et al., Observations of magnetic fields on two late-type dwarf stars, 1980, ApJ, 236, 155。
    [2] Marcy, G. W., Observations of magnetic fields on solar-type stars, 1984. ApJ, 276, 286。
    [3] Marcy, G. W., The magnetic field on the late-type dwarf Ⅺ Bootis A, 1981, ApJ, 245, 624。
    [4] Marcy, G. W.: Bruning, D. H., Magnetic field observations of evolved stars, 1984, ApJ, 281, 2860
    [5] Gray, D. F., Measurements of Zeeman broadening in F, G, and K dwarfs, 1984. ApJ, 277, 640。
    [6] Saar, et al., The magnetic field of the BY Draconis flare star EQ Virginis, 1986, ApJ, 302, 777。
    [7] Durney, B. R.; Robinson, R. D., On an estimate of the dynamo-generated magnetic fields in late-type stars, 1982, ApJ, 253, 290。
    [8] Linsky, J.; Saar, S., Measurements of Stellar Magnetic Fields: Empirical Constraints on Stellar Dynamo and Rotational Evolution Theories, 1987, csss, 5, 44。
    [9] Giampapa, M. S.; Imhoff, C. L., Simultaneous Observations of the Hα and Mg Ⅱ Resonance Line Profiles in the T Tauri Star SU Aurigae, 1987, BAAS, 19, 1026。
    [10] Gondoin, Ph.; Giampapa, M.S.; Bookbinder, J. A., Stellar magnetic field measurements utilizing infrared spectral lines, 1985, ApJ, 297, 710。
    [11] Saar, S. H.; Linsky, J. L., The photospheric magnetic field of the dM3.5e flare star AD Leonis, 1985, ApJ, 299, 47。
    [12] Strassmeier et al., A catalog of chromospherieally active binary stars (second edition), 1993, A&AS, 100, 173。
    [13] Wilson, O. C., Chromospheric variations in main-sequence stars, 1978, ApJ, 226, 379。
    [14] Wilson, O. C., Flux Measurements at the Centers of Stellar h- and K-Lines, 1968, ApJ, 153, 221。
    [15] Henry, et al., A Survey of Ca Ⅱ H and K Chromospheric Emission in Southern Solar-Type Stars, 1996, AJ, 111, 439。
    [16] Strassmeier, et al., Stellar-activity of late-type stars (Strassmeier+ 2000), 2000, yCat, 41420275.
    [17] Wilson, O. C., A Probable Correlation Between Chromospheric Activity and Age in Main-Sequence Stars, 1963, ApJ, 138, 832。
    [18] Wilson, O.C.; Skumanich, A., Chromospheric Activity as a Function of Age in gain-Sequence Stars, 1966, IAUS, 24, 40。
    [19] Wilson, O. C.; Skumanich, Andrew, Dependence of Chromospheric Activity upon Age in Main-Sequence Stars: Additional Evidence, 1964, ApJ, 140, 1401。
    [20] Wilson, O.; Woolley, R., Calcium emission intensities as indicators of stellar age, 1970, MNRAS, 148, 463。
    
    
    [21] Skumanich, A., Time Scales for CA Ⅱ Emission Decay, Rotational Braking, and Lithium Depletion, 1972, ApJ, 171, 565。
    [22] Kraft, Robert P., Studies of Stellar Rotation. V. The Dependence of Rotation on Age among Solar-Type Stars, 1967, ApJ, 150, 551。
    [23] Kraft, R. P., Stellar Rotation, 1970, Berkeley: University of California Press, P385。
    [24] Smith, M. A., Rotational studies of lower main-sequence stars, 1979, PASP, 91, 737。
    [25] Soderblom, D. R., Rotation and Age Among Solar-Type Stars,, 1980, BAAS,12, 797。
    [26] Charbonneau, P., Modeling Stellar Angular Momentum Evolution (Invited Review), 1992, csss, 7, 416。
    [27] Middelkoop, F., Magnetic structure in cool stars. Ⅵ - CA Ⅱ H and K fluxes from evolved stars, 1982, A&A, 113, 1。
    [28] Vaughan, et al., Flux measurements of CA Ⅱ H and K emission, 1978, PASP, 90, 267。
    [29] Vaughan, A. H.; Preston, G. W., A survey of chromospheric CA Ⅱ H and K emission in field stars of the solar neighborhood, 1980, PASP, 92, 385。
    [30] Vaughan, A. H., Comparison of activity cycles in old and young main-sequence stars, 1980, PASP, 92, 392。
    [31] Baliunas, S. L.; Vaughan, A. H., Stellar activity cycles, 1985, ARA&A, 23, 379。
    [32] Hartmann, et al., An analysis of the Vaughan-Preston survey of chromospheric emission, 1984, ApJ, 276, 254。
    [33] Catalano, S.; Marilli, E., CA Ⅱ chromospheric emission and rotation of main sequence stars, 1983, A&A, 121, 190。
    [34] Rutten, R. G. M., Magnetic structure in cool stars. Ⅹ-The CA Ⅱ H + K flux density and rotation rate for main-sequence stars, 1986, A&A, 159, 291。
    [35] Rutten, R. G. M., Magnetic structure in cool stars. Ⅻ- Chromospheric activity and rotation of giants and dwarfs, 1987, A&A, 177, 131。
    [36] Middelkoop, F., Magnetic structure in cool stars. Ⅲ- CA Ⅱ H and K emission and rotation ofmain-sequence stars, 1981, A&A, 101, 295。
    [37] Oranje, B. J., Magnetic structure in cool stars. Ⅸ- Ultraviolet emission lines from chromospheres and transition regions, 1986, A&A, 154, 1850。
    [38] Oranje, B. J.: Zwaan, C., Magnetic structure in cool stars. Ⅷ-The MG Ⅱ H and K surface fluxes in relation to the Mt. Wilson photometric CA Ⅱ H and K measurements, 1985 A&A, 147, 265。
    [39] Hartmann, et al., A study of the dependence of MG Ⅱ emission on the rotational periods of main-sequence stars, 1984, ApJ, 279, 778。
    [40] Simon, et al., The evolution of chromospheric activity and the spin-down of solar-type stars, 1985, ApJ, 293, 551。
    [41] Caillault, J.-P.; Helfand, D. J., The Einstein soft Ⅹ-ray survey of the Pleiades, 1985, ApJ, 289, 279。
    
    
    [42] Herbig, G. H., Chromospheric H-alpha emission in F8-G3 dwarfs, and its connection with the T Tauri stars, 1985, ApJ, 289, 269。
    [43] Randich, et al., Lithium in Late-Type Subgiants, 1995, lea., conf., 284
    [44] Patten, Brian M. ; Simon, Theodore, The Evolution of Rotation and Activity in Young Open Clusters: IC 2391, 1996, ApJS, 106, 489。
    [45] Duncan, et al., Chromospheric emission and rotation of the Hyades lower main sequence, 1984, PASP, 96, 707。
    [46] Stauffer, et al., The chromospheric activity of low-mass stars in the Hyades, 1991, ApJ, 374, 142。
    [47] Stauffer, J. R., Rotational Velocities of Low Mass Stars in Young Clusters, 1991, amey., conf., 117。
    [48] Stauffer, John R.; Soderblom, David R., The evolution of angular momentum in solar mass stars, 1991, Tucson, AZ, University of Arizona Press, P832。
    [49] Stauffer, et al., Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades, 1995, AJ, 109, 298。
    [50] Jones, et al., Keck Rotational Velocities of the Faintest Pleiades and Hyades Members, 1996, AJ, 112, 1562。
    [51] Terndrup, et al., Rotational Velocities of Low-Mass Stars in the Pleiades and Hyades, 2000, AJ, 119, 1303。
    [52] Soderblom, et al., Rotation and activity among solar-type stars of the Ursa Major Group, 1993, ApJ, 402L, 5。
    [53] Jeffries, et al., The lithium depletion boundary and age of NGC 2547, 2000, scac., conf., 281。
    [54] Wilson, O. C., Absolute magnitudes of stars from widths of chromospheric CaII emission lines, 1975, ApJ, 205, 823。
    [55] Stepien, K., Excess calcium emission flux and the Rossby number, 1989, A&A, 210, 273。
    [56] Young, et al., Chromospheric activity in evolved stars - The rotation- activity connection and the binary-single dichotomy, 1989, PASP, 101, 1017。
    [57] Pasquini, et al., Chromospheric activity of evolved late-type stars - Chromospheric activity in evolved stars, 1990, A&A, 234, 277。
    [58] Strassmeier, et al., Chromospheric CA Ⅱ H and K and H-alpha emission in single and binary stars of spectral types F6-M2, 1990, ApJS, 72, 191。
    [59] Strassmeier, et al., Chromospheric activity in G and K giants and their rotation-activity relation, 1994, A&A, 281, 855。
    [60] Stepien, K. , Applicability of the Rossby number in activity-rotation relations for dwarfs and giants, 1994, A&A, 292, 191。
    [61] Parker, E. N., The Origin of Magnetic Fields, 1970, ApJ, 160, 383。
    [62] Parker, E. N., The generation of magnetic fields in astrophysical bodies. Ⅺ - The effect of magnetic buoyancy on the growth and migration of dynamo waves in the sun, 1977, ApJ, 215, 370。
    [63] Durney, B.R.; Latour, J., On the angular momentum loss of late-type stars, 1978, GApFD, 9, 241。
    
    
    [64] Noyes, R. W., The relation between rotation and magnetic activity on lower main sequence stars as derived from chromospheric indicators, 1983, IAUS, 102, 133。
    [65] Gilman, P. A., Differential rotation in stars with convection zones, 1980, sttu., coll., 19。
    [66] Gilliland, R. L., The relation of chromospheric activity to convection, rotation, and evolution off the main sequence, 1985, ApJ, 299, 286。
    [67] Rucinski, S. M.; Vandenberg, D. A., Activity-related characteristics of the convective envelopes in evolving low-mass stars, 1986, PASP, 98, 669。
    [68] Noyes, et al. , Rotation, convection, and magnetic activity in lower main-sequence stars, 1984, ApJ, 279, 763。
    [69] Rutten, R. G. M.; Schrijver, C. J., Magnetic structure in cool stars. ⅫⅠ- Appropriate units for the rotation-activity relation, 1987, A&A, 177, 155。
    [70] Montesinos, et al., A new look at the relationship between activity, dynamo number and Rossby number in late-type stars, 2001, MNRAS, 326, 877。
    [71] Holt, et al., Ⅹ-ray line emission from Capella, 1979, ApJ, 234, 65。
    [72] Swank, et al., Two-component Ⅹ-ray emission from RS Canum Venaticorum binaries, 1981, ApJ, 246, 208。
    [73] Mewe, et al., Ⅹ-ray spectrum of Capella and its relation to coronal structure and ultraviolet emission, 1982, ApJ, 260, 233。
    [74] Swank, J. H.; Johnson, H. M., Einstein solid state spectrometer observation of the peculiar red dwarf Wolf 630 AB, 1982, ApJ, 259, 67。
    [75] Vedder, P. W.; Canizares, C. R., Measurement of coronal Ⅹ-ray emission lines from Capella, 1983, ApJ, 270, 666。
    [76] Schrijver, et al., Coronal activity in F-, G-, and K-type stars. Ⅱ- Coronal structure and rotation, 1984, A&A, 138, 258。
    [77] Ayres, T., Coronal Dichotomies, 1980, csss, 1, 65。
    [78] Ayres, et al., Outer atmospheres of cool stars. Ⅸ - A survey of ultraviolet emission from F-K dwarfs and giants with IUE, 1981, ApJ, 247, 545。
    [79] Vaiana, et al., Results from an extensive Einstein stellar survey, 1981, ApJ, 245, 163。
    [80] Haisch, B. M.; Simon, T., The Status of the Corona/Wind Boundary Line in the Cool Star Region of the HR Diagram, 1981, BAAS, 13, 784。
    [81] Haisch, et al., Outer atmospheres of cool stars. Ⅳ-A discussion of cool stellar wind models, 1980, ApJ, 235, 519。
    [82] Haisch, B. M., Ⅹ-ray observations of stellar flares, 1983, ards, proc., 255。
    [83] Kahler, et al., Coordinated Ⅹ-ray, optical, and radio observations of flaring activity on YZ Canis Minoris, 1982, ApJ, 252, 239。
    [84] Walter, et al., The coronae of RS CVn systems, 1980, IAUS, 88, 397。
    [85] Agrawal, et al. , Heat and mass transfer in convective flow of an incompressible rarefied visco-elastic fluid in presence of transverse magnetic field, 1983, Ap&SS, 95, 439。
    
    
    [86] Pallavicini, et al., Relations among stellar Ⅹ-ray emission observed from Einstein, stellar rotation and bolometric luminosity, 1981 ApJ, 248, 279。
    [87] Walter, F. M., On the coronae of rapidly rotating stars. Ⅲ- an improved coronal rotation-activity relation in late type dwarfs, 1982, ApJ, 253, 745。
    [88] Vilhu, O., The nature of magnetic activity in lower main sequence stars, 1984A&A, 133, 117。
    [89] Simon, et al., Flux changes in small magnetic regions. Ⅱ- Further observations and analysis, 1985, ApJ, 295, 241。
    [90] Walter, F. M.; Bowyer, S., On the coronae of rapidly rotating stars. Ⅰ- The relation between rotation and coronal activity in RS CVn systems, 1981, ApJ, 245, 671。
    [91] Verma, V. K., Microwave & hard Ⅹ-ray emission during solar flare of 19 Oct. 1981, 1984, IJRSP, 13, 159。
    [92] Rengarajan, T. N., Age-rotation relationship for late-type main-sequence stars, 1984, ApJ, 283, 63。
    [93] Rengarajan, T. N.; Verma, R. P., Ⅹ-ray emission from RS CVn binaries, 1983, MNRAS, 203, 1035。
    [94] Schrijver, C. J.; Mewe, R.; Walter, F. M., Coronal activity in F-, G-, and K-type stars. Ⅱ- Coronal structure and rotation, 1984, A&A, 138, 258。
    [95] Rosner, et al., On stellar Ⅹ-ray emission, 1985, ARA&A, 23, 413。
    [96] Stepien, K., Coronal activity in late-type main-sequence stars, 1988, ApJ, 335, 892。
    [97] Dobson, Andrea K.; Radick, Richard R., Coronal activity-rotation relations for lower main-sequence stars, 1989, ApJ, 344, 907。
    [98] Randich, et al., Coronal activity in the Coma Berenices open cluster, 1996, A&A, 313, 815。
    [99] Stauffer, et al., Rotational Velocities and Chromospheric/coronal Activity of Low-Mass Stars in the Young Open Clusters IC 2391 and IC 2602, 1997, ApJ, 479, 776。
    [100] Barnes, S.; Pinsonneault, M.; Sofia, S., Disk-locking and the slow rotators in young star clusters, 1996, AAS, 188, 1802。
    [101] Elvey, C. T., The contours of helium lines in stellar spectra, 1929, ApJ, 70, 141。
    [102] Elvey, C. T., The rotation of stars and the contours of Mg+ 4481, 1930, ApJ, 71, 221。
    [103] Struve, O., On the axial rotation of stars, 1930, ApJ, 72, 1。
    [104] Wilson, A, Carroll's method applied to small stellar rotations, 1969,MNRAS, 144, 325。
    [105] Kraft, Robert P., Studies of Stetler Rotation. Ⅰ. Comparison of Rotalional Velocities in the Hyades and Coma Clusters, 1965, ApJ, 142, 681。
    [106] Slettebak, A., Rotation of early-type stars, 1954, Obs, 74, 165。
    
    
    [107] Slettebak, A., Line Broadening in the Spectra of o- and Early B-Type Stars, 1956, ApJ, 124, 173。
    [108] Slettebak, A., Spectra and Rotational Velocities of the Components of 116 Visual Double Star Systems, 1963, AJ, 68, 292。
    [109] Slettebak, et al., A system of standard stars for rotational velocity determinations, 1975, ApJS, 29, 137。
    [110] Herbig, G. H.; Spalding, J. F., Line Widths in Stars of Spectral Types F0-K5, 1953, PASP, 65, 192。
    [111] Herbig, George H.; Spalding, John F.,Jr.,Axial Rotation and Line Broadening in Stars of Spectral Types F0-K5, 1955, ApJ, 121, 118。
    [112] Oke, J. B.; Greenstein, Jesse L., The Rotational Velocities of--and G-Type Giant Stars, 1954, ApJ, 120, 384。
    [113] Huang, Su-Shu, A Statistical Study of the Rotation of the Stars, 1953, ApJ, 118, 285。
    [114] Alschuler, W. R., Observations of lithium dilution and rotational velocity decay in F and G giant stars, 1975ApJ, 195, 649。
    [115] Gray, D. F. , Atmospheric turbulence measured in stars above the main sequence, 1975ApJ, 202, 148。
    [116] Gray, D. F., Measurements of rotation and turbulence in F, G, and K dwarfs, 1984, ApJ, 281, 719。
    [117] Gray, D. F., The rotational break for G giants, 1989, ApJ, 347, 1021。
    [118] Gray, D. F.; Nagar, P., The rotational discontinuity shown by luminosity class Ⅳ stars, 1985, ApJ, 298, 756。
    [119] Gray, David F.; Toner, C. G., Rotation andmacroturbulence in bright giants, 1986, ApJ, 310, 277。
    [120] Gray, David F.; Toner, C. G., An analysis of the photospheric line profiles in F, G, and K supergiants, 1987, ApJ, 322, 360。
    [121] Vogel, S. N.; Kuhi,L. V.,Rotational velocities of pre-main-sequence stars, 1981, ApJ, 245, 960。
    [122] Soderblom, D. R., Rotational studies of late-type stars. Ⅰ- Rotational velocities of solar-type stars, 1982, ApJ, 263, 239。
    [123] Soderblom, et al., Calibration stars for cross-correlation studies of stellar rotation, and an examination of the archival data, 1989, AJ, 97, 539。
    [124] Mermilliod, J.-C.; Mayor, M., Red giants in open clusters. Ⅰ- Binarity and stellar evolution in five Hyades-generation clusters: NGC 2447, 2539, 2632, 6633, and 6940, 1989, A&A, 219, 125。
    [125] de Medeiros, J. R.; Mayor, M., A catalog of rotational and radial velocities for evolved stars, 1999, A&AS, 139, 433。
    [126] Fekel, F. C., Rapidly rotating single late-type giants: New FK Comae stars, 1986, niia, conf., 79。
    [127] Fekel, Francis C.; Balachandran, Suchitra, Lithium and rapid rotation in chromospherically active single giants, 1993, ApJ, 403, 708。
    
    
    [128] Fekel, F. C., Rotational Velocities of Late-Type Stars, 1997, PASP, 109, 514。
    [129] Groot, et al., Rotational velocities of F dwarfs: application of the Fourier-Bessel transformation method, 1996, A&AS, 118, 545。
    [130] Uesugi, Akira: Fukuda, Ichiro, Catalogue of stellar rotational velocities (revised), 1982, Kyoto: University of Kyoto, Departement of Astronomy。
    [131] Babcock, H. W., The Topology of the Sun's Magnetic Field and the 22-YEAR Cycle, 1961, ApJ, 133, 572。
    [132] Leighton, Robert B., A Magneto-Kinematic Model of the Solar Cycle, 1969, ApJ, 156, 1。
    [133] Steenbeck, M.; Krause, F., On the Dynamo Theory of Stellar and Planetary Magnetic Fields. Ⅰ. AC Dynamos of Solar Type, 1969, AN, 291, 49。
    [134] Steenbeck, M.; Krause, F., On the Dynamo Theory of Stellar and Planetary Magnetic Fields. Ⅱ. DC Dynamos of Planetary Type, 1969, AN, 291, 271。
    [135] Moffatt, H. K., A self-consistent treatment of simple dynamo systems, 1979, GApFD, 14, 147。
    [136] Parker, E. N., The instability of a horizontal magnetic field in an atmosphere stable against convection, 1979, Ap&SS, 62, 135。
    [137] Schuessler, M., Axisymmetric alpha-squared-dynamos in the Hayashi-phase, 1975, A&A, 38, 263。
    [138] Kichatinov, L. L.; Rudiger,G.,A-effect and differential rotation in stellar convection zones, 1993, A&A, 276, 96。
    [139] Ruediger, G.; Kichatinov, L. L., Alpha-effect and alpha-quenching, 1993A&A, 269, 581。
    [140] Kichatinov, L. L.; Ruediger, G., Magnetic-field advection in inhomogeneous turbulence, 1992, A&A, 260, 494。
    [141] Durney, B. R.; Spruit, H. C., On the dynamics of stellar convection zones - The effect of rotation on the turbulent viscosity and conductivity, 1979, ApJ, 234, 1067。
    [142] Kichatinov, L. L., Turbulent transport of magnetic fields in a highly conducting rotating fluid and the solar cycle, 1991A&A, 243, 483。
    [143] Kitchatinov, et al., Lambda-quenching as the nonlinearity in stellarturbulence dynamos, 1994, A&A, 292, 125。
    [144] Durney, B. R., A comparison of the meridional flows in the sun's convection zone, predicted by theories of the solar dynamo and differential rotation, 1975, ApJ, 199, 761。
    [145] Roberts, P. H., Stellar winds, 1974, sowi, conf., 231。
    [146] Hartmann, Lee W.; Noyes, Robert W., Rotation and magnetic activity in main-sequence stars, 1987, ARA&A, 25, 271。
    [147] Kearns, et al., Rotation periods for stars in NGC 2264, 1997, AJ, 114, 1098。
    [148] Bouvier, et al., Rotation in T Tauri stars. Ⅰ -Observations and immediate analysis, 1986, A&A, 165, 110。
    
    
    [149] Hartmann, et al., Rotational and radial velocities of T Tauri stars, 1986, ApJ, 309, 275。
    [150] Herbst,W.; Bailer-Jones, C. A. L.; Mundt, R.,The Mass Dependence of Stellar Rotation in the Orion Nebula Cluster, 2001, ApJ, 554L, 197。
    [151] Stassun, et al., The Rotation Period Distribution of Pre-Main-Sequence Stars in and around the Orion Nebula, 1999, AJ, 117, 2941。
    [152] Kappelmann, N.: Mauder, H., Cyclic Variations of T-Tauri Stars, 1981, Msngr, 23, 18。
    [153] Schaefer, B. E., A large-amplitude photometric periodicity on a T Tauri star, 1983, ApJ, 266, 45。
    [154] Rydgren, A. E. ; Vrba, F.J., Periodic light variations in four premain-sequence K stars, 1983, ApJ, 267, 191。
    [155] Vrba, et al., UBVRI Photometric Monitoring of the Low-Mass T Tauri Stars BP Tau, DN Tau, GK Tau, and GI Tau, 1984, BAAS, 16, 998。
    [156] Rydgren, et al., UBVRI Photometric Monitoring of the Late-Type PMS Stars AA Tau, DH Tau, DI Tau, GG Tau, and HP Tau/G2, 1985, BAAS, 17, 556。
    [157] Choi,P. I.; Herbst,W.,Rotation Periods of Stars in the Orion Nebula Cluster: The Bimodal Distribution, 1996, AJ, 111, 283。
    [158] Herbst, et al., Photometric Studies of Young Stars in Clusters: Rotation and Disks (Contributed Talk), 2000, dpp., conf., 121。
    [159] Stauffer, J. R.: Hartmann, L. W., Chromospheric activity, kinematics, and metallicities of nearby M dwarfs, 1986, ApJS, 61, 531。
    [160] Stauffer, John R.: Hartmann, Lee W.: Latham, David W.,Rotational velocities of low-mass stars in the Hyades, 1987, ApJ, 320, 51。
    [161] Krishnamurthi, et al., New Rotation Periods in the Pleiades: Interpreting Activity Indicators, 1997, AAS, 191, 8014。
    [162] Koenigl, A., Disk accretion onto magnetic T Tauri stars, 1991, ApJ, 370, 39。
    [163] Shu, et al., Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model, 1994a, ApJ, 429, 781。
    [164] Shu, et al., Magnetocentrifugally driven flows from young stars and disks.2: Formulation of the dynamical problem, 1994b, ApJ, 429, 797。
    [165] Collier Cameron, A.; Campbell, C. G., Rotational evolution of magnetic T Tauri stars with accretion discs, 1993, A&A, 274, 309。
    [166] Keppens, R.; MacGregor, K. B.; Charbonneau, P., On the evolution of rotational velocity distributions for solar-type stars, 1995, A&A, 294, 469。
    [167] Attridge, Joanne M.; Herbst, William, Rotation periods of T Tauri stars in the Orion Nebula Cluster - A bimodal frequency distribution, 1992, ApJ, 398, 61。
    [168] Hillenbrand, et al., Circumstellar Disks in the Orion Nebula Cluster, 1998. AJ, 116, 1816。
    [169] Stauffer, et al., Rotational velocities of newly discovered, low-mass members of the Alpha Persei cluster, 1989, ApJ, 346, 160。
    
    
    [170] Stauffer, et al., Evolution of low-mass stars in the Alpha Persei cluster, 1985, ApJ, 289, 247。
    [171] Stauffer, et al., Rotational velocities of low-mass stars in the Pleiades, 1984, ApJ, 280, 202。
    [172] Soderblom, et al. , The evolution of angular momentum among zero-age main-sequence solar-type stars, 1993, ApJ, 409, 624。
    [173] Allain, et al., COYOTES Ⅲ: observational evidence for a lower limit to the rotational velocity of ZAMS G and K dwarfs, 1996, A&A, 314, 173。
    [174] Krishnamurthi, et al., Theoretical Models of the Angular Momentum Evolution of Solar-Type Stars, 1997, ApJ, 480, 303。
    [175] Allain, S., Modelling the angular momentum evolution of low-mass stars with core-envelope decoupling, 1998A&A, 333, 629。
    [176] Barnes, Sydney; Sofia, Sabatino; Pinsonneault, Marc, Disk Locking and the Presence of Slow Rotators among Solar-Type Stars in Young Star Clusters, 2001, ApJ, 548, 1071。
    [177] Roxburgh, I. W., Stellar winds and spindown in solar type stars, 1983, IAUS, 102, 449。
    [178] Mestel, L., The interaction of rotation and magnetic field in the solar system, 1984, RSPTA, 313, 19。
    [179] van Leeuwen, F.; Alphenaar, P., Variable K-type stars in the Pleiades cluster, 1982, Msngr, 28, 15。
    [180] Soderblom, et al., Rapid rotation among Pleiades K dwarfs, 1983, ApJ, 274, 37。
    [181] Stauffer, John R. ; Hartmann, Lee W., The distribution of rotational velocities for low-mass stars in the Pleiades, 1987, ApJ, 318, 337。
    [182] Oppenheimer, et al., Lithuim in Very Low-Mass Stars in the Pleiades, 1997, AJ, 113, 2960。
    [183] Delfosse, et al., Rotation and chromospheric activity in field M dwarfs, 1998, A&A, 331, 581。
    [184] Queloz, et al., The rotational velocity of low-mass stars in the Pleiades cluster, 1998, A&A, 335, 183。
    [185] Endal, A. S.; Sofia, S., Rotation in solar-type stars. Ⅰ- Evolutionary models for the spin-down of the sun, 1981, ApJ, 243, 625。
    [186] Soderblom, et al., Rotational Studies of Late-Type Stars. Ⅶ. M34 (NGC 1039) and the Evolution of Angular Momentum and Activity in Young Solar-Type Stars, 2001, ApJ, 563, 334。
    [187] Gray, David F., The rotational break for G giants, 1989, ApJ, 347, 1021。
    [188] Peterson, R. C., The rotation of horizontal-branch stars. Ⅱ- Members of the globular clusters M3, M5, and M13, 1983, ApJ, 275, 737。
    [189] Peterson, R. C., The rotation of horizontal-branch stars. Ⅳ- Members of the globular cluster NGC 288, 1985a, ApJ, 294, 35。
    [190] Peterson, R. C., The rotation of horizontal-branch stars. Ⅲ- Members of the globular cluster M4, 1985b, ApJ, 289, 320。
    
    
    [191] de Medeiros, et al., The distribution of rotational velocity for evolved stars, 1996, A&A, 314, 499。
    [192] Sion, E. , White Dwarf Mass Loss Rotation Individual Masses and the Identification of the White Dwarf Remnants of Upper Main Sequence Stars, 1990, amml., conf., 307S。
    [193] Bohannan, et al., Steps to a New Calibration of the Spectral Type-Effective Temperature Relationship for Early-Type Stars, 1986, IAUS, 116, 111。
    [194] Kudritzki, R.-P., Non-LTE analysis of the 03-star HD 93250, 1980, A&A, 85, 174。
    [195] Kudritzki, R. P.; Simon, K. P.; Hamann, W.-R., Non-LTE analysis of massive O-stars. Ⅱ- The 04 star Zeta Puppis, 1983, A&A, 118, 245。
    [196] Simon, et al., Non-LTE analysis of massive 0 stars. Ⅲ- The 03 stars HD 93128, HD 93129A, and HDE 303308, 1983, A&A, 125, 34。
    [197] Voels, et al., Photospheres of hot stars. Ⅲ- Luminosity effects at spectral type 09.5, 1989, ApJ, 340, 1073。
    [198] Bell, R. A. Gustafsson, B., The effective temperatures and colours of G and K stars, 1989, MNRAS, 236, 653。
    [199] Beeckmans, F., Comparison of the S2/68 and OAO-2 stellar ultraviolet flux measurements, 1977, A&A, 60, 1。
    [200] Blackwell, et al., Derivation of stellar integrated flux from photometric indexes, 1991, A&A, 250, 459。
    [201] Cayrel de Strobel, et al., A thorough spectroscopic study of the very nearby triple system - 36 Ophiuchi, 1989, A&A, 225, 369。
    [202] Code, et al., Empirical effective temperatures and bolometric corrections for early-type stars, 1976, ApJ, 203, 417。
    [203] Leggett, et al., The effective temperatures, diameters and luminosities of 22 bright stars by application of the infrared flux method, 1986, A&A, 159, 217。
    [204] Malagnini, M. L.; Morossi, C., Accurate absolute luminosities, effective temperatures, radii, masses and surface gravities for a selected sample of field stars, 1990, A&AS, 85, 1015。
    [205] Malagnini, et al., The empirical BC versus T(eff) scale for non-supergiant 09-G5 stars, 1986, A&A, 162, 140。
    [206] Malagnini, et al., Determination of Teff for candidate standard stars based on comparison with model atmospheres, 1985, IAUS, 111, 535。
    [207] Faucherre, et al. , Stellar interferometry - Diameters and effective temperatures of five giant stars, 1983, A&A, 120, 263。
    [208] Ridgway, et al., Effective temperatures of late-type stars -The field giants from K0 to M6, 1980, ApJ, 235, 126。
    [209] Alonso, et al., The effective temperature scale of giant stars (F0-K5). Ⅱ. Empirical calibration of T_{eff} versus colours and [Fe/H], 1999, A&AS, 140, 261。
    [210] Alonso, et al., The effective temperature scale of giant stars (F0-K5). Ⅰ. The effective temperature determination by means of the IRFM, 1999, A&AS,
    
    139, 335。
    [211] Bell, et al., Near-Infrared Imaging of Mars from HST: Surface Reflectance, Photometric Properties, and Implications for MOLA Data, 1999, Icar., 138, 25。
    [212] Flower, P. J. , Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections, 1996, ApJ, 469, 355。
    [213] Allen, C. W., Astrophysical quantities, 1973, London: University of London, Athlone Press.。
    [214] Cox, A. N., Allen's astrophysical quantities, 2000, New York: AIP Press; Springer.。
    [215] ESA, The Hipparcos and Tycho Catalogues (ESA 1997), 1997, yCat., 1239。
    [216] Mermilliod, J. C., Comparative studies of young open clusters, Ⅲ- Empirical isochronous curves and the zero age main sequence, 1981, A&A, 97, 235。
    [217] Feltzing, et al., The solar neighbourhood age-metallicity relation - Does it exist, 2001, A&A, 377, 911。
    [218] Shan, Hong-Guang, The effect of gravity darkening on spectral lines in a rotating star, 2000, ChA&A, 24, 81。
    [219] 谭徽松,1985,3,226。
    [220] Royer, et al., Rotational velocities of A-type stars. Ⅰ. Measurement of v sin i in the southern hemisphere, 2002, A&A, 381, 105。
    [221] Glebocki, et al., Catalog of Projected Rotational Velocities, 2000, AcA, 50, 509。
    [222] Rutten, R. G. M., Magnetic structure in cool stars. Ⅶ- Absolute surface flux in CA Ⅱ H and K line cores, 1984, A&A, 130, 353。
    [223] Donahue, et al., A Relationship between Mean Rotation Period in Lower Main-Sequence Stars and Its Observed Range, 1996, ApJ, 466, 384。
    [224] Arge, C.N.; Mullan, D.J.; Dolginov, A. Z., Magnetic moments and angular momenta of stars and planets, 1995, ApJ, 443, 795。
    [225] Maggio, et al., Einstein Observatory magnitude-limited Ⅹ-ray survey of late-type giant and supergiant stars, 1990, ApJ, 348, 253。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700