超宽带无线传感器网络节能与中继协作通信技术策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足无线传感器网络(wireless sensor networks, WSNs)中无线数据传输服务质量的要求,以及尽可能地消除恶劣的无线传播环境对通信性能产生的影响,WSNs需要采用有效的节能策略和新的通信技术来保证可靠的服务、有效的覆盖、高效的传输。功率控制策略通过控制减少传感器节点的冗余功耗,可以有效地降低能量开销,延长工作寿命而被认为是一项高效的节能策略。无线中继协作技术作为改善和提高无线通信性能的最有效手段之一,借助中继站(或者中继节点)的转发来改善无线信号的传输质量,实现改善源信号强度较弱地区的覆盖质量以及对盲区的补充覆盖,有效提高系统的吞吐量,特别是网络边缘用户和盲区用户的吞吐量。鉴于中继协作通信技术在未来网络中的重要地位和潜在的商业价值,工业界和学术界针对该技术已经展开了广泛深入的研究,其标准化工作也已经取得实质性的进展。
     本文首先回顾分析了WSNs发展历史,网络特点以及其节能策略的研究状态:然后追溯回顾了中继协作通信技术的发展历史,分析讨论了现如今中继协作通信技术的研究热点内容和状态,指出了其中存在的不足和局限性。
     本文工作主要包括两个方面:节能策略和中继协作通信技术。鉴于超宽带(ultra wideband, UWB)在无线信道中传输时,其信道模型为Log-normal衰落,本文中有关中继协作通信技术的内容均基于Log-normal衰落环境。
     对于节能策略,本文针对WSNs的网络结构特点和UWB技术特征,提出了一个基于簇结构的传输功率优化选择算法,然后给出了其实现方案并评估了其实现代价。
     接下来,本文主要围绕工作于Log-normal衰落环境的中继协作系统的性能建模与分析开展研究。鉴于现有研究基本上均假设目标研究系统工作于Rayleigh等衰落信道而忽略了Log-normal衰落(主要指室外的大尺度衰落效应以及室内无线通信存在的遮蔽效应)产生的影响且UWB信号的衰落统计特征服从Log-normal分布,本文研究分析了多种自适应传输策略、UWB两跳中继系统、多中继UWB中继协作通信系统、链式多跳中继系统、以及多支路多跳中继系统在Log-normal衰落信道中的通信性能。本文有关无线(中继/协作)系统性能建模与分析的工作主要包括如下几个方面:
     1.提出了三种不同的自适应传输策略,即最优实时功率与速率自适应策略,恒功率最优速率自适应策略以及恒速率截断信道倒置策略,在Log-normal衰落信道中的信道容量分析模型并推导出了遍历容量的封闭表达式;
     2.分析了门限数字中继策略在Log-normal衰落信道中的误码率性能并推导出了端到端误码率的封闭表达式;
     3.在考虑中继节点和目的节点处接收信号经历多用户干扰的前提下,分析并研究了放大转发和译码转发跳时UWB中继协作通信系统在Log-normal衰落信道中的通信性能,推导出了这两种不同中继策略下跳时UWB中继协作系统的误比特概率和中断概率的封闭表达式;
     4.针对单中继跳时UWB中继协作系统,研究分析了中断概率和ε-中断容量性能并推导出了相应的封闭表达式;然后,在多中继场景中,研究了三种不同的中继选择策略(最优S-R链路策略,最优R-D链路策略,最优S-R-D链路策略)下的中断概率性能并推导出了相应的封闭表达式;
     5.提出了放大转发多支路多跳中继系统在Log-normal衰落信道中端到端通信性能的分析模型,指出了系统端到端信噪比的统计分布性能。然后,在此基础上分别推导出了采用最大比合并与选择合并策略情况下的平均误码概率、中断概率以及遍历容量的封闭表达式。最后,推导出了译码转发多跳链式中继系统的端到端误码率的表达式。
To satify the QoS (Quality of Service) of the traffic transmission and to combat wireless propagation environment's negective effects on wirelss transmission, it is now highly necessary for wireless sensor networks (WSNs) to employ novel methods to realize reliable services, effective coverage and efficient transmissions. Power control is an efficient energy conservation method, which aims to cutting down the power overhead to achieve energy saving and prolonging sensor's lifetime. Wirelss cooperative relay technology has been regarded as a promising way to improve wireless communication systems'perfromances. Due to the adventages of the signal forwarding function at relays, the coverage on the regions with poor signal strength can be improved and blind spots can be covered by using wirelss relay and cooperation technology, which results in the improved systems'throughput, especially for the cell-edge and blind-spot users. Movitated by the the important role and potential commercial value in the future networks, industry and academia have carried out extensive and deep researches on wirelss relay and cooperation technology, the standardli-zation work of which has achieved substantial progresses.
     First, a comprehensive survey on the development history, network characteristcs of WSN, and the research status of the energy conservation in WSNs is presented. Next, the development history of wirelss cooperative relay technology is reviewed, and then the research status and issues in this field has been analyzed.
     In this work, two items are mainly focused on: energy conservation scheme and cooperative relay technology. As observed that the characteristic of UWB signal fading obeys Log-normal distribution, all the performance modeling and anlysis of wirelss coopera-tive relay systems are carried on over Log-normal fading channels.
     A cluster-based power control scheme for UWB WSNs was proposed under the consideration on the unique properities of WSNs and UWB technology. Also, the implement-tation scheme and implementation cost have been introdced.
     As it is easy to see that the researchers alway asume that the object systems work in normal fading environments, such as Rayleigh fading channels, ingnoring the effect of large-scale fading in outdoor scenarios and the shadowing in both in/outdoor scenarios. As observing there are some insuffieieneies and limitations among the existed works, the performance of various adaptive transmission schemes, time hopping ultra-wideband (TH UWB) two-ways wirelss relay systems, multi-relay TH UWB wireless cooperative relay systems, multi-hop chain relay systems and multi-branch multi-hop relay system over Log-normal fading channels have been studied, respectively. The main contributions of this work are listed as follows:
     1. Analytical models to estimate the capacity of log-normal channels are presented for three adaptive transmission schemes:(i) optimal simultaneous power and rate adaptation,(ii) optimal rate adaptation with constant transmit power, and (iii) truncated channel inversion with fixed rate. Closed-form approximation expressions for capacity under these adaptive transmission schemes are derived.
     2. An accurate analytical model is proposed to study the performance of threshold digital relaying schemes in cooperative systems over log-normal fading channels. The analytical expression for the average end-to-end bit error rate has been derived.
     3. An analytical model was proposed to study the performance of cooperative links for TH UWB systems under two relay models:amplify-and-forward (AF) and decode-and-forward (DF). The effects of multiuser interference are considered when deriving closed-form expressions for outage probability and average bit error probability (ABEP).
     4. The outage behavior of the relay-based communication channel of TH UWB systems was studied. Specifically, outage probability and ε-outage capacity in single relay network scenarios and outage probability in multiple relays network scenarios have been analyzed, respectively. The simulation and numerical results show that increasing transmission power is not an efficient way to improve outage probability due to the effect of multi-user interference at relays and the destination.
     5. Analytical models have been proposed for studying the performance of AF relaying multi-branch multi-hop wireless relaying systems (M2WRS) over Log-normal fading channels. The presented analytical models are for estimating the end-to-end performance of the M2WRS with maximal ratio combining (MRC) and selection combining (SC) schemes. In particular, the closed-form expressions for the parameters of the distribution have been derived for the end-to-end SNR of an AF relaying multi-hop chain link. Then, Accurate analytical expressions have been developed for ABEP, outage probability and ergodic capacity under MRC and SC schemes, respectively. Finally, a theoretical model for the end-to-end bit error rate (BER) performance of DF relaying multi-hop chain systems (MCSs) has been proposed. The expression of the end-to-end BER has been derived and can be used to estimate the end-to-end BER of DF relaying MCSs.
引文
[1]J. Yicka, B. Mukherjeea and D. Ghosal, Wireless sensor network survey, Computer Networks (Elsevier),2008,52(12):2292-2330.
    [2]I. F. Akyildiz, T. Melodia, and K. Chowdhury, A survey on wireless multimedia sensor networks, Computer networks (Elsevier),2007,51(4):921-960.
    [3]I. F. Akyildiz, T. Melodia, and K.R. Chowdhury, Wireless multimedia sensor networks:A survey, IEEE Wireless Commun.,2007,14(6):32-39.
    [4]J. G. Andrews, S. Weber, and M. Haenggi, Ad hoc networks:to spread or not to spread? Ad hoc and sensor networks, IEEE Commun. Mag.,2007,45(12):84-91.
    [5]A. Rezgui and M. Eltoweissy, Service-oriented sensor-actuator networks, IEEE Commun. Mag., 2007,45(12):92-100.
    [6]A. Rezgui and M. Eltoweissy, Service-oriented sensor actuator networks:Promises, challenges, and the road ahead, Journal of Computer Communications, 2007, 30(13):2627-2648.
    [7]A. Flammini, P. Ferrari, D. Marioli, et al. Wired and wireless sensor networks for industrial applicat-ions, Microelectronics Journal (Elsevier),2009, 51(6):1483-1498.
    [8]马华东,陶丹.多媒体传感器网络及其研究进展.软件学报,2006,17(9):2013-2028.
    [9]21 ideas for the 21 st century, Business week, pp.78-167, August 30th, 1999.
    [10]10 emerging technologies that will change the world, MIT technology review, 2003,106 (1): 33-49.
    [11]The future of technology, Business Week, August 25th, 2003.
    [12]http://wsn.973program.org/.
    [13]http://www.gov.cn/jrzg/2006-02/09/content_1 83787.htm.
    [14]吴起.超宽带无线网络性能分析和优化研究.北京:中国科学院研究生院博士学位论文,2005.
    [15]Y. F. Chen, J. Teo, Y. Lai, et al. Cooperative communications in ultra-wideband wireless body area networks:Channel modeling and system diversity analysis, IEEE J. Sel. Areas in Commun.,2009, 27(1):5-16.
    [16]L. Yang and G. B. Giannakis, Ultra-wideband communications:An idea whose time has come, IEEESig. Proc. Mag.,2004, 21(6):26-54.
    [17]J. Cai, K.-H. Liu, X. Shen, et al. Power Allocation and scheduling for ultra-wideband wireless networks, IEEE Trans. Veh. Technol.,2008,57(2):1103- 1112.
    [18]N. August, H.-J. Lee, and D.S. Ha, Enabling distributed medium access control for impulse-based ultra wideband radios, IEEE Trans. Veh. Technol.,2007,56(3):1064-1075.
    [19]S. Niranjayan, A. Nallanathan, and B. Kannan, Modeling of multiple access interference and BER derivation for TH and DS UWB multiple access systems, IEEE Trans. Wireless Commun.,2006, 5(10):2794-2804.
    [20]N. August and D. S. Ha, Operation, system architectures, and physical layer design considerations of distributed MAC protocols for UWB, IEEE Trans. Microwave Theory Tech.,2006, 54(7): 3001-3012.
    [21]A. El Fawal, et al. Trade-off analysis of PHY-aware MAC in low-rate low-power UWB networks, IEEE Commun. Mag.,2005,43(12):147-155.
    [22]Y. Zhao, The study of multiple access techniques in ultra wideband impulse radio communications, Ph.D. dissertation, The University of Akron, Akron OH, USA, Aug.2005.
    [23]C. Chong, UWB direct chaotic communications technology for low-rate WPAN applications, IEEE Trans. Veh. Technol.,2008,57(3):1527-1536.
    [24]X. Shen, W. Zhuang, H. Jiang, et al. Medium access control in ultra-wideband wireless networks, IEEE Trans. Veh. Technol.,2005,54(5):1663-1677.
    [25]R. J. Fontana, Recent system applications of short-pulse ultra-wideband (UWB) technology, IEEE Trans. Microwave Theory Tech.,2004,52(9), Part 1:2087-2104.
    [26]B. Radunovic and J. Y. Le Boudec, Optimal power control, scheduling and routing in UWB networks, IEEE J. Sel. Areas in Commun.,2004,22(7):1252-1270.
    [27]C. Cordeiro, R. Fantacci, and S. Gupta, Body area networking technology and applications, IEEE J. Sel. Areas in Commun.,2009,27(1):1-4.
    [28]A. A. D'Amico, U. Mengali, and E. A. de Reyna, Energy-detection uwb receivers with multiple energy measurements, IEEE Trans. Wireless Commun.,2007,6(7):2652-2659.
    [29]S. R. Aedudodla, S. Vijayakumaran, and T. F. Wong, Ultra-wideband signal acquisition with hybrid DS-TH spreading, IEEE Trans. Wireless Commun.,2006, 5(9):2504-2515.
    [30]U. G. Schuster and H. Bolcskei, Ultrawideband channel modeling on the basis of information-theoretic criteria, IEEE Trans. Wireless Commun.,2007,6(7):2464-2474.
    [31]B. M. Donlan, D. R. McKinstry, and R. M. Buehrer, The UWB indoor channel:Large and small scale modeling, IEEE Trans. Wireless Commun.,2006, 5(10):2863-2872.
    [32]A. Muqaibel, A. Safaai-Jazi, A. Attiya, et al. Path-loss and time dispersion parameters for indoor UWB propagation, IEEE Trans. Wireless Commun.,2006,5(3):550-559.
    [33]B. Hu andN. C. Beaulieu, Accurate evaluation of multiple access performance in TH-PPM and TH-BPSK systems, IEEE Trans. Commun.,2004, 52(10):1758-1766.
    [34]M. Win and R. Scholtz, Ultra-wide bandwidth time-hopping spread spectrum impulse radio for wireless multiple-access communications, IEEE Trans. Commun.,2000, 48(4):679-691.
    [35]A. F. Molisch, Ultrawideband propagation channels-theory, measurement, and modeling, IEEE Trans. Veh. Technol,2005,54(5):1528-1545.
    [36]A. Fort, J. Ryckaert, C. Desset, et al. Ultra-wideband channel model for communication around the human body, IEEE J. Sel. Areas in Commun.,2006, 24(4-1):927-933.
    [37]P. C. Richardson, W. Xiang, and W. Stark, Modeling of ultra-wideband channels within vehicles, IEEE J. Sel. Areas in Commun.,2006, 24(4-1): 906-912.
    [38]M. Win and R. Scholtz, Characterization of ultra-wide bandwidth wireless indoor channels:A communication-theoretic view, IEEEJ. Sel. Areas in Commun.,2002, 20(9):1613-1627.
    [39]H. Zhang, W. Li, and T.A. Gulliver, Pulse position amplitude modulation for time-hopping multiple-access UWB communications, IEEE Trans. Commun.,2005,53(8):1269-1273.
    [40]吴微威,王卫东,卫国.基于超宽带技术的无线传感器网络.中兴通讯技术,2005,04:28-31.
    [41]唐秋玲,杨柳青,覃团发等.无线传感器网络中PPM节能调制方案.中国科学(E辑),2007,37(12):1583-1596.
    [42]彭炳光,卫国,朱近康等.ALOHA脉冲超宽带网络的性能分析.电子与信息学报,2008,30(7):1602-1605.
    [43]吴微威.基于IRJUWB的无线传感器网络研究.合肥:中国科技大学博士学位论文,2007.
    [44]C. C. Enz, A. El-Hoiydi, J.-D. Decotignie, et al. WiseNET:An ultra low-power wireless sensor network solution, IEEE Computer Magazine,2004,37(8):62-70.
    [45]Oppermann, et al. UWB wireless sensor networks:UWEN-a practical example, IEEE Commun. Mag.,2004,42(12):27-32.
    [46]E. Karapistoli, I. Gragopoulos, I. Tsetsinas, et al. A MAC protocol for low-rate UWB wireless sensor networks using directional antennas, Computer Networks (Elsevier),2009, 51(6):1483-1498.
    [47]Y. Shi, Y. Thomas Hou, On the capacity of UWB-based wireless sensor networks, Computer Networks (Elsevier),2008,52(14):2797-2804.
    [48]Q. Tang, L. Yang, G. B. Giannakis, et al. Battery power efficiency of PPM and FSK in wireless sensor networks, IEEE Trans. Wireless Commun.,2007,6(4):1308-1319.
    [49]I. Guvenc, H. Arslan, S. Gezici, et al. Adaptation of two types of processing gains for UWB impulse radio wireless sensor networks, IET Commun.,2007, 1(6):1280-1288.
    [50]S. Xiao, A. Dhamdhere, V. Sivaraman, et al. Transmission power control in body area sensor networks for healthcare monitoring, IEEE J. Sel. Areas in Commun.,2009,27(1):37-48.
    [51]Q. Ren and Q. Liang, Throughput and energy-efficiency aware ultra wideband communication in wireless sensor networks:A cross-layer approach, IEEE Trans. Mob. Comput.,2008, 7(6):805-816.
    [52]廖盛斌,程文青,刘威等.基于效用的无线传感器网络能量分配优化策略.电子与信息学报,2008,30(9):2271-2275.
    [53]张瑞华.基于能量效率的无线传感器网络关键技术研究.济南:山东大学博士学位论文,2007.
    [54]王晓东.无线传感器网络节能算法研究.杭州:浙江大学博士学位论文,2007.
    [55]袁林峰.无线传感器网络中网络层节能策略研究.武汉:华中科技大学博士学位论文,2006.
    [56]杜军朝.无线传感器网络节能介质访问控制协议与可靠路由协议研究.西安:西安电子科技大学博士学位论文,2008.
    [57]马书惠.无线传感器网络中基于能量的关键算法研究.北京:北京邮电大学博士学位论文,2007.
    [58]G. Anastasi, M. Conti, M. Francesco, et al. Energy conservation in wireless sensor networks:A survey, Ad Hoc Networks (Elsevier),2009, 7(3):537-568.
    [59]G. V. Merrett, N. R. Harrisa, B. M. Al-Hashimi, et al. Energy managed reporting for wireless sensor networks, Sensors and Actuators A: Physical (Elsevier),2008, 142(1):379-389.
    [60]V. Raghunathan, C. Schurghers, S. Park, et al. Energy-aware wireless microsensor networks, IEEE Sig. Proc. Mag.,2002, 19(2):40-50.
    [61]C. Chiasserini and R. Rao, Energy efficient battery management, IEEE J. Sel. Areas in Commun., 2001,19(7):1235-1245.
    [62]C. Schurgers, V Tsiatsis, S. Ganeriwal, et al. Optimizing sensor networks in the energy-density-latency design space, IEEE Trans. Mob. Comput.,2002,1(1):70-80.
    [63]A. Ephremides, Energy concerns in wireless networks, IEEE Wireless Commun.,2002,9(4):48-59.
    [64]Y. E. Sagduyu and A. Ephremides, The problem of medium access control in wireless sensor networks, IEEE Wireless Commun., 2004,11(6):44-53.
    [65]N. Pantazis and D. Vergados, A survey on power control issues in wireless sensor networks, IEEE Communications Surveys & Tutorials,2007,9(4):86-107.
    [66]L. Correia, D. Macedoa, A. dos Santos, et al. Transmission power control techniques for wireless sensor networks, Computer Networks (Elsevier),2007,51(17):4765-4779.
    [67]A. Eisenblatter and H. F. Geerd, Wireless network design:solution-oriented modeling and mathe-matical optimization, IEEE Wireless Commun.,2006, 13(6):8-14.
    [68]I. Demirkol, C. Ersoy, and F. Alagoz, MAC protocols for wireless sensor networks:A survey, IEEE Computer Magazine, 2006, 44(4):115-121.
    [69]A. Goldsmith and S. B. Wicker, Design challenges for energy-constrained ad hoc wireless networks, IEEE Wireless Commun.,2002,9(4):8-27.
    [70]Raghunathan, et al. Emerging techniques for long lived wireless sensor networks, IEEE Commun. Mag.,2006,44(4):108-114.
    [71]V. Kawadia and P. R. Kumar, Principles and protocols for power control in wireless ad hoc net -works, IEEEJ. Sel. Areas in Commun.,2005,23(1):76-88.
    [72]N. Bambos, Toward power-sensitive network architectures in wireless communications:Concepts, issues, and design aspects, IEEE Personal Communications, 1998,5(3):50-59.
    [73]M. Krunz and A. Muqattash, Transmission power control in wireless ad hoc networks:Challenges, solutions, and open issues, IEEE Network Mag.,2004, 18(5):8-14.
    [74]D. Avidor, S. Mukherjee, and F. Onat, Transmit power distribution of wireless ad-hoc networks with topology control, IEEE Trans. Wireless Commun.,2008,7(4):1111-1116.
    [75]A. Muqattash, M. M. Krunz, A distributed transmission power control protocol for mobile Ad Hoc networks, IEEE Trans. Mob. Comput.,2004,3(2): 113-128.
    [76]李方敏,刘新华,徐文君,韩屏.无线传感器网络的链路稳定成簇与功率控制算法.计算机学报,2008,31(6):968-978.
    [77]李方敏,徐文君,高超.一种适用于无线传感器网络的功率控制MAC协议.软件学报,2007,18(5):1080-1091.
    [78]雷磊,许宗泽.基于地理位置信息和功率控制的ad hoc网络并行MAC协议.通信学报,2008,29(9):81-90.
    [79]Y. Gu, D. Bozdag, R. W. Brewer, et al. Data harvesting with mobile elements in wireless sensor networks, Computer Networks (Elsevier),2006,50(17):3449-3465.
    [80]Y. Wang, H. Wu, F. Lin, et al. Cross-layer protocol design and optimization for delay/fault-tolerant mobile sensor networks, IEEE J. Sel. Areas in Commun.,2008,26(5):809-819.
    [81]P. Venkitasubramaniam, S. Adireddy, and L. Tong, Sensor networks with mobile agents optimal random access and coding, IEEE J. Sel. Areas in Commun.,2004,22(6):1058-1068.
    [82]S. Chellappan, W. Gu, X. Bai, et al. Deploying wireless sensor networks under limited mobility constraints, IEEE Trans. Mob. Comput.,2007,6(10):1142-1157.
    [83]W. Wang, V. Srinivasan, and K.-C. Chua, Extending the lifetime of wireless sensor networks through mobile relays, IEEE/ACM Trans. Networking, 2008,16(5):1108-1120.
    [84]H. M. Ammari, S. K. Das, Promoting heterogeneity, mobility, and energy-aware voronoi diagram in wireless sensor networks, IEEE Trans. Parallel Distrib. Syst.,2008,19(9):995-1008.
    [85]G. Mergen, Q. Zhao, and L. Tong, Sensor networks with mobile access energy and capacity conside-rations, IEEE Trans. Commun.,2006,54(11):2033-2044.
    [86]李方敏,徐文君,刘新华.无线传感器网络功率控制技术及研究进展.软件学报,2008,19(3):716-732.
    [87]徐强,陈健.功率控制技术在可靠连通无线传感器网络中的应用研究.电子学报,2008,36(7):1451-1456.
    [88]S. Panichpapiboon, G. Ferrari, and O. K. Tonguz, Optimal transmit power in wireless sensor networks, IEEE Trans. Mob. Comput.,2006,5(10):1432-1447.
    [89]K. Cha, S. Jagannathan, and D. Pommerenke, Adaptive power control with hardware implementa-tion for wireless sensor and RFID networks, IEEE Systems Journal, 2007,1(2):145-159.
    [90]Y. Shi, Y. Thomas Hou, H. D. Sherali, Cross-layer optimization for data rate utility problem in UWB-based Ad Hoc networks, IEEE Trans. Mob. Comput,2008,7(6):764-777.
    [91]S. G. Glisic, Advanced Wireless Communications 4G Cognitive and Cooperative Broadband Technologies (2nd Ed.), New Jersey:John Wiley & Sons,2007.
    [92]T. S. Rappaport, Wireless Communications, Principles and Practice (2nd Ed.), New Jersey: Prentice Hall, 2002.
    [93]K. J. Ray Liu, A. K. Sadek, W. Su, et al. Cooperative Communications and Networking, New York: Cambridge University Press, 2009.
    [94]Y.-W. Peter Hong, W.-J. Huang, C.-C. Jay Kuo, Cooperative Communications and Networking Technologies and System Design, New York: Springer, 2010.
    [95]J. N. Laneman, D. N. C. Tse, and G. W. Wornell, Cooperative diversity in wireless networks:Effici-ent protocols and outage behavior, IEEE Trans. Info. Theory, 2004, 50(12):3062-3080.
    [96]T. E. Hunter, S. Sanayei, A. Nosratinia, Outage analysis of coded cooperation, IEEE Trans. Info. Theory,2006,52(2):375-391.
    [97]M. Janani, A. Hedayat, T. E. Hunter, et al. Coded cooperation in wireless communications:Space-time transmission and iterative decoding, IEEE Trans. Sig. Proc.,2004,52(2):362-371.
    [98]G. Kramer, M. Gastpar, P. Gupta, Cooperative strategies and capacity theorems for relay networks, IEEE Trans. Info. Theory,2005,51(9):3037-3063.
    [99]Z. Liu, M. Uppal, V. Stankovic, et al. Compress-forward coding with BPSK modulation for the half-duplex Gaussian relay channel, IEEE Trans. Sig. Proc.,2009,57(11):4467-4481.
    [100]H. Shan, W. Zhuang, and Z. Wang, Distributed cooperative MAC for multihop wireless networks, IEEE Commun. Mag.,2009,47(2):126-133.
    [101]S. Moh, C. Yu, A cooperative diversity-based robust MAC protocol in wireless ad hoc networks, IEEE Trans. Parallel Distrib. Syst.,2011,22(3):353-363.
    [102]J. Alonso-Zarate, L. Alonso, and C. Verikoukis, Performance analysis of a persistent relay carrier sensing multiple access protocol, IEEE Trans. Wireless Commun.,2009, 8(12):5827-5831.
    [103]W.-S. Lim, D.-W. Kim, and Y.-J. Suh, PR-MAC:A practical approach for exploiting relay transmiss-ions in multi-rate WLANs, IEEE Trans. Wireless Commun.,2010,9(1):66-71.
    [104]A. Ibrahim, H. Zhu, and K. J. Ray Liu, Distributed energy-efficient cooperative routing in wireless networks, IEEE Trans. Wireless Commun.,2008,7(10):3930-3941.
    [105]B. Gui, D. Lin, and L. J. Cimini, Routing strategies in multihop cooperative networks, IEEE Trans. Wireless Commun.,2009, 8(2):843-855.
    [106]R. Madan. N. B. Mehta, A. F. Molisch et al. Energy-efficient decentralized cooperative routing in wireless networks, IEEE Trans. Automatic Control, 2009,54(3):512-527.
    [107]H. T. Cheng, W. Zhuang, QoS-driven MAC-layer resource allocation for wireless mesh networks with non-altruistic node cooperation and service differentiation, IEEE Trans. Wireless Commun., 2009,8(12):6089-6103.
    [108]W. Chen, L. Dai, K. B. Letaief, et al. A unified cross-layer framework for resource allocation in cooperative networks, IEEE Trans. Wireless Commun.,2008,7(8):3000-3012.
    [109]Z. Han, T. Himsoon, W. P. Siriwongpairat, et al. Resource allocation for multiuser cooperative OFDM networks:Who helps whom and how to cooperate, IEEE Trans. Veh. TechnoL,2009, 58(5): 2378-2391.
    [110]L. Weng, R. D. Murch, Cooperation strategies and resource allocations in multiuser OFDMA systems, IEEE Trans. Veh. TechnoL,2009, 58(5):2331-2342.
    [111]Edward C. Van Der Meulen, Transmission of information in a T-terminal discrete memoryless chan-nel. Ph.D. thesis, University of California, Berkeley, CA (1968).
    [112]Edward C. Van Der Meulen, Three-terminal communication channels, Advances in Applied Proba-bility,1971,3(1):120-154.
    [113]T. Cover, A. El Gamal, Capacity theorems for the relay channel, IEEE Trans. Info. Theory,1979, 25(5):572-584.
    [114]M. R. Aref, Information flow in relay networks. Ph.D. thesis, Stanford University, 1980.
    [115]T. M. Cover, Broadcast channels, IEEE Trans. Info. Theory,1972,18(1):2-14.
    [116]P. P. Bergmans, T. M. Cover, Cooperative broadcasting, IEEE Trans. Info. Theory, 1974, 20(3):317-324.
    [117]K. Marton, A coding theorem for the discrete memoryless broadcast channel, IEEE Trans. Info. Theory,1979,25(3):306-311.
    [118]A. El Gamal, Edward C. Van Der Meulen, A proof of Marton's coding theorem for the discrete memoryless broadcast channel (Corresp.), IEEE Trans. Info. Theory, 1981,27(1):120-122.
    [119]T. M. Cover, A. El Gamal, M. Salehi, Multiple access channels with arbitrarily correlated sources, IEEE Trans. Info. Theory,1980,26(6):648-657.
    [120]T. M. Cover, C. S. K. Leung, An achievable rate region for the multiple-access channel with feed-back, IEEE Trans. Info. Theory, 1981,27(3):292-298.
    [121]D. Slepian, J. Wolf, Noiseless coding of correlated information sources, IEEE Trans. Info. Theory, 1973,19(4):471-480.
    [122]A. Wyner, J. Ziv, The rate-distortion function for source coding with side information at the decoder, IEEE Trans. Info. Theory,1976,22(1):1-10.
    [123]T. S. Han, M. H. M. Costa, Broadcast channels with arbitrarily correlated sources, IEEE Trans. Info. Theory,1987,33(5):641-650.
    [124]G. J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell System Technical Journal, 1996, 1(2):41-59.
    [125]V. Tarokh, H. Jafarkhani, A. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Info. Theory,1999,45(5):1456-1467.
    [126]V. Tarokh, N. Seshadri, A. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE Trans. Info. Theory,1998,44(2):744-765.
    [127]I. E. Telatar, Capacity of multi-antenna Gaussian channels, European Trans. Tel,1999, 10(6):585-595.
    [128]D. J. C. MacKay, Good error-correcting codes based on very sparse matrices, IEEE Trans. Info. Theory, 1999, 42(2):399-432.
    [129]J. N. Laneman, G. W. Wornell, Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks, IEEE Trans. Info. Theory, 2003,49(10):2415-2425.
    [130]A. Sendonaris, E. Erkip and B. Aazhang, User cooperation diversity-Part I:System description, IEEE Trans. Commun.,2003,51(11):1927-1938.
    [131]A. Sendonaris, E. Erkip, and B. Aazhang, User cooperation diversity-Part II:Implementation aspects and performance analysis, IEEE Trans. Commun.,2003,51(11):1939-1948.
    [132]M. Pischella, J.-C. Belfiore, Power control in distributed cooperative OFDMA cellular networks, IEEE Trans. Wireless Commun.,2008,7(5) Part 2:1900-1906.
    [133]F. Verde, D. Darsena, and A. Scaglione, Cooperative randomized MIMO-OFDM downlink for multi-cell networks:Design and analysis, IEEE Trans. Sig. Proc,2010,58(1):384-402.
    [134]Y. Song, H. Shin, and E. Hong, MIMO cooperative diversity with scalar-gain amplify-and-forward relaying, IEEE Trans. Commun.,2009, 57(7):1932-1938.
    [135]S.-W. Ko, J.-H. Kim, J.-S. Yoon, et al. Cooperative OFDM system for high throughput in wireless personal area networks, IEEE Trans. Consumer Electronics, 2010, 56(2):458-462.
    [136]S. K. Kang, Y. H. Kim, Macrocell, Cooperation for OFDM-based broadcast-packet data transmiss-ion in a cellular network, IEEE Trans. Veh. Technol,2008,57(2):1297-1302.
    [137]刘毅,张建华,李晓帆,刘泽民MIMO协作传输系统的中继选择及中断概率分析.北京邮电大学学报,2010,33(5):51-55.
    [138]殷勤业,张莹,丁乐,孟银阔.协作分集:一种新的空域分集技术.西安交通大学学报,2005,39(6):551-557.
    [139]X. Wang and Z. Zheng, Outage analysis of opportunistic multi-antenna relay selection in decode- and-forward relay networks, The Journal of China Universities of Posts and Telecommunications, 2010,17(4):6-12.
    [140]李洪星.无线协作通信中的关键技术研究.上海:上海交通大学博士学位论文,2010.
    [141]李屹.未来无线网络中协作通信算法研究.北京:北京邮电大学博士学位论文,2008.
    [142]张彬.无线中继网络中的协作方案与传输技术研究.北京:北京邮电大学博士学位论文,2010.
    [143]王飞飞.下一代无线通信系统中高效传输及协作通信关键技术的研究.北京:北京邮电大学博士学位论文,2010.
    [144]S. S. Ikki, M. H. Ahmed, Performance analysis of incremental-relaying cooperative-diversity net-works over Rayleigh fading channels, IETCommun.,2011,5(3):337-349.
    [145]S. Chen, W. Wang, and X. Zhang, Performance analysis of multiuser diversity in cooperative multi-relay networks under Rayleigh-fading channels, IEEE Trans. Wireless Commun.,2009,8(7):3415-3419.
    [146]S. S. Ikki, M. H. Ahmed, Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel, IEEE Commun. Lett.,2007,11(4):334-336.
    [147]W. Fang, L. Yang, L. Hanzo, Performance of DS-CDMA downlink using transmitter preprocessing and relay diversity over Nakagami-m fading channels, IEEE Trans. Wireless Commun.,2009, 8(2): 678-682.
    [148]L. Badia, M. Levorato, F. Librino, et al. Cooperation techniques for wireless systems from a net-working perspective, IEEE Wireless Commun.,2010, 17(2):89-96.
    [149]M. Safari, M. Uysal, Cooperative diversity over log-normal fading channels:Performance analysis and optimization, IEEE Trans. Wireless Commun.,2008, 7(5):1963-1972.
    [150]L. Wang, W. Xie, H. Chen, et al. Research on the low complexity adaptive power allocation algorithm in cooperative systems, The Journal of China Universities of Posts and Telecommunicat-ions,2010,17(6):13-17.
    [151]K. Zheng, L. Hu, D. Gu, et al. Performance analysis of amplify-and-forward relaying with hybrid-ARQ in Rayleigh fading channels, The Journal of China Universities of Posts and Telecommunicat-ions,2009,16(6):32-37.
    [152]宁元辉.无线通信系统协作中继技术研究.武汉:华中科技大学博士学位论文,2009.
    [153]龚萍.无线网络多用户协作传输关键技术研究.北京:北京邮电大学博士学位论文,2010.
    [154]T. Himsoon, W. P. Siriwongpairat, W. Su, et al. Differential modulations for multinode cooperative communications, IEEE Trans. Sig. Proc.,2008,56(7):2941-2956.
    [155]S. Berger, M. Kuhn, A. Wittneben, et al. Recent advances in amplify-and-forward two-hop relaying, IEEE Commun. Mag.,2009,47(7):50-56.
    [156]V. Mahinthan, J.W. Mark, X. Shen, Performance analysis and power allocation for M-QAM cooper-ative diversity systems, IEEE Trans. Wireless Commun.,2010, 9(3):1237-1247.
    [157]F. Lin, X. Liu, T. Luo, et al. Optimal power allocation to minimize SER for multinode amplify-and-forward cooperative communication systems, The Journal of China Universities of Posts and Telecommunications,2008,15(4):14-18.
    [158]啜钢,刘圣,温晓军.非对称信道下协作通信系统中断概率的研究.通信学报,2010,31(3):102-108.
    [159]啜钢,林立凡,温晓军等.对称信道条件下协作通信系统的中断概率.北京邮电大学学报.2009,32(2):75-79.
    [160]林霏,罗涛,乐光新.不同功率分配与中继位置下协同通信SER性能分析.中国电机工程学报,2008,28(19):101-105.
    [161]徐峰,岳殿武,严秋娜.基于机会中继和最大比合并下的协作通信系统.通信学报,2009,30(12):36-44.
    [162]陈凯.无线网络中协作中继通信关键技术的研究.北京:北京邮电大学博士学位论文,2010.
    [163]季薇.无线协作通信的若干关键问题研究.上海:上海交通大学博士学位论文,2008.
    [164]C. Wang, L. Li, P. Zhang, et al. Joint selection of adaptive relaying mode in cooperative transmit-ssion, The Journal of China Universities of Posts and Telecommunications, 2010, 17(2):30-35.
    [165]林霏,罗涛,路安琼等.协同通信系统中基于遍历容量的近似最优功率分配.通信学报,2009,30(6):26-32.
    [166]吴素文,王振,朱近康.基于信道特性的中继选择协作通信方法研究.中国科技大学学报.2009,39(11):1136-1140.
    [167]郭艳艳.协作中继高效性传输技术研究.北京:北京邮电大学博士学位论文,2010.
    [168]张鸿涛.无线网络多用户协作传输关键技术研究.北京:北京邮电大学博士学位论文,2008.
    [169]徐峰.无线网络中协作通信系统的性能分析.大连:大连海事大学博士学位论文,2009.
    [170]M. Di Renzo, F. Graziosi, F. Santucci, A unified framework for performance analysis of CSI-assisted cooperative communications over fading channels, IEEE Trans. Commun.,2009, 57(9): 2551-2557.
    [171]S. Ikki and M. H. Ahmed, Exact error probability and channel capacity of the best-relay cooperative-diversity networks, IEEE Sig. Proc. Lett.,2009, 16(12):1051-1054.
    [172]D. B. da Costa and S. Aissa, Capacity analysis of cooperative systems with relay selection in Nakagami-w fading, IEEE Commun. Lett.,2009, 13(9):637-639.
    [173]A. Adinoyi, Y. Fan, H. Yanikomeroglu, et al. Performance of selection relaying and cooperative diversity, IEEE Trans. Wireless Commun.,2009,8(12):5790-5795.
    [174]李国兵,朱世华,惠鏸佳.中继协作通信系统的功率分配算法.电子学报,2005,36(10):1944 -1948.
    [175]司江勃.无线协作传输及其在认知网络中的应用.西安:西安电子科技大学博士学位论文,2010.
    [176]A. Host-Madsen, J. Zhang, Capacity bounds and Power allocation for wireless relay channels, IEEE Trans. Info. Theory,2005,51(6):2020-04.
    [177]IEEE Standard 802.16J-2009:IEEE Standard for Local and Metropolitan Area Networks-Part 16: Air interface for broadband wireless access systems-ultihop relay specification (2009).
    [178]S. W. Peters, J. R. W. Heath, The future of WiMAX:Multihop relaying with IEEE 802.16J, IEEE Commun. Mag.,2009,47(1):104-111.
    [179]3GPP, 3rd General Partnership Project:Technical specification group radio access network: Further advancements for E-UTRA physical layer aspects (Release 9). Tech. Rep.36.814 (V9.0.0) (2010).
    [180]王竞,刘光毅LTE_Advanced系统中的Relay技术研究和标准化.电信科学,2010,12:138-143.
    [181]J. D. Gibson, The Mobile Communications Handbook, 2th ed. New York: CRC Press, 2002.
    [182]R. Ganesh and K. Pahlavan, Statistical modeling and computer simulation of indoor radio channel, IEEProc. I, Commun, Speech and Vision, 1991,138(3):153-161.
    [183]G. L. Stber, Principles of Mobile Communications (2nd ed.), MA:Kluwer Academic Publisher, 2001.
    [184]F. Molisch, J. R. Foerster and M. Pendergrass, Channel models for ultrawideband personal area networks, IEEE Wireless Commun.,2003,10(6):14-21.
    [185]A. F. Molisch, et al. IEEE 802. 15. 4a channel model-final report, IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a (TG4a), Tech. Rep., Nov. 2004.
    [186]K. Pawlikowski, H.-D. Jeong, and J.-S. Lee, On credibility of simulation studies of telecommuni-cation networks, IEEE Commun. Mag.,2002,40(1):132-139.
    [187]C. Newport, D. Kotz, Y. Yuan, et al. Experimental evaluation of wireless simulation assumption, Simulation,2007,83(8):643-661.
    [188]C. Bettstetter and C. Hartmann, Connectivity of wireless Multihop networks in a shadow fading environment, ACM/Springer Wireless Networks, 2005,11(5): 571-579.
    [189]P. Agrawal and N. Patwari, Correlated link shadow fading in multi-hop wireless networks, IEEE Trans. Wireless Commun.,2009,8(8):4024-4036.
    [190]F. Yilmaz and M.-S. Alouini, A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels. Availble online: http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.5317vl.pdf.
    [191]F. Heliot, M. Ghavami and M. R. Nakhai, An accurate closed-form approximation of the average probability of error over a log-normal fading channel. IEEE Trans. Wireless Commun., May 2008, 7(5):1495-1500.
    [192]M. O. Hasna and M.-S. Alouini, End-to-end outage probability of multihop transmission over lognormal shadowing channels. Arabian J. Science Engineering, 2003,28(2C):35-44.
    [193]M. Pratesi, F. Santucci and F. Graziosi, Generalized moment matching for the linear combination of lognormal RVs:Application to outage analysis in wireless systems, IEEE Trans. Wireless Commun., May 2006,5(5):1122-1132.
    [194]C. Abou-Rjeily and M. Bkassiny, On the achievable diversity orders over non-severely faded log-normal channels, IEEE Commun. Lett., Aug. 2010,14(8):695-697.
    [195]P. Karadimas, and S. A. Kotsopoulos, A simplified Wei bull-lognormal fading channel:Analysis, simulation and validation, IEEE Trans. Veh. Tech., April 2008,26(4):332-335.
    [196]M. Di Renzo, F. Graziosi, and F. Santucci, On the performance of CSI-assisted cooperative com-munications over generalized fading channels, in Proc. IEEE Int. Conf. Commun. (ICC 2008), Beijing, China, May 2008, vol.1,1001-1007.
    [197]M.-S. Alouini and M. K. Simon, Dual diversity over correlated log-normal fading channels. IEEE Trans. Commun.,50(12):1946-1959, Dec.2002.
    [198]J.-Y. Lee, R. A. Scholtz, Ranging in a dense multipath environment using an UWB radio link. IEEE J. Sel. Areas in Commun.,2002,20(9):1677-1683.
    [199]Yunxia Chen, Qing Zhao, On the lifetime of wireless sensor networks, IEEE Commun. Lett.,2005, 9(11):976-978.
    [200]M. Flury, J.-Y. Le Boudec, Interference mitigation by statistical interference modeling in an im-pulse radio UWB receiver, in Proc. IEEE International Conference on Ultra-Wideband (ICUWB 2006), Waltham, MA, Sep. 24-27,2006,393-398.
    [201]G. Giancola, M.-G. Di Benedetto, A novel approach for estimating multi-user interference in impulse radio UWB networks:the pulse collision model. EURASIP Signal Processing Journal, 2006,86(9):2185-2197.
    [202]F. Cuomo, C. Martello, A. Baiocchi, et al. Radio resource sharing for ad hoc networking with UWB, IEEEJ. Sel. Areas in Commun.,2002,20(9):1722-1732.
    [203]G. Durisi, G. Romano, On the validity of Gaussian approximation to characterize the multiuser capacity of UWB TH PPM, in Proc. IEEE Conference on Ultra Wideband Systems and Technolog-ies, Baltimore, Md, USA, May 2002,157-161.
    [204]H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor Networks, New York:John Wiley & Sons, 2005.
    [205]A. Laourine, A. Stephenne, and S. Affes, Estimating the ergodic capacity of log-normal channels, IEEE Commun. Lett.,2007,11(7):568-570.
    [206]A. Laourine, A. Stephenne, and S. Affes, Capacity of log-normal fading channels, in Proc. IWCMC'07, Honolulu, Hawaii, Aug. 2007, pp. 13-17.
    [207]A. Laourine, A. Stephenne, and S. Affes, On the capacity of log-normal fading channels, IEEE Trans. Commun.,2009,57(6):1603-1607.
    [208]F. Heliot, X. Chu, R. Hoshyar, et al. A tight closed-form approximation of the log-normal fading channel capacity, IEEE Trans. Wireless Commun.,2009, 8(6): 2842-2847.
    [209]H. Y. Kong and Vo N. Quoc Bao, Capacity analysis of opportunistic cooperative networks under adaptive transmission over Rayleigh fading channels, Wireless Personal Communication, published online (DOI:10.1007/s11277-010-0061-1), June 2010.
    [210]M.-S. Alouini and A. J. Goldsmith, Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques, IEEE Trans. Veh. TechnoL.,1999, 48(4):1165-1181.
    [211]M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover Press, 1972.
    [212]A. Adinoyi and H. Yanikomeroglu, Cooperative relaying in multiantenna fixed relay networks, IEEE Trans. Wireless Commun.,2007,6(2):533-544.
    [213]F. A. Onat, A. Adinoyi, Y. Fan, et al. Threshold selection for SNR-based selective digital relaying in cooperative wireless networks, IEEE Trans. Wireless Commun.,2008,7(11):4226-4237.
    [214]F.A. Onat, Y. Fan, H. Yanikomeroglu, et al. Asymptotic BER analysis of threshold digital relaying in cooperative wireless networks, IEEE Trans. Wireless Commun.,2008,7(12):4938-4947.
    [215]K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, New York:Chapman & Hall,2006.
    [216]M. Chiani, D. Dardari, and M. K. Simon, New exponential bounds and approximations for the computation of error probability in fading channels, IEEE Trans. Wireless Commun.,2003,2(4): 840-845.
    [217]M. Di Benedetto and G. Giancola, Understanding Ultra Wide Band Radio Fundamentals, New Jersey: Prentice Hall, 2004.
    [218]G. Naddafzadeh-Shirazi, P. Kong and C. K. Tham, Optimal cooperative relaying schemes in IR-UWB networks, IEEE Trans. Mob. Comput.,2010,9(7):969-981.
    [219]S. Zhu, K. Leung, A. G. Constantinides, Distributed cooperative data relaying for diversity in impulse-based UWB Ad-Hoc networks, IEEE Trans. Wireless Commun.,2009, 8(8):4037-4047.
    [220]Z. Zeinalpour-Yazdi, M. Nasiri-Kenari, B. Aazhang, Bit error probability analysis of UWB commu-nications with a relay node, IEEE Trans. Wireless Commun.,2010,9 (2):802-813.
    [221]I. Krikidis, J. S. Thompson, S. McLaughlin, et al. Max-min selection for legacy amplify-and-forward systems with interference, IEEE Trans. Wireless Commun.,2009, 8(6):3016-3027.
    [222]A. Bletsas, A. G. Dimitriou, and J. N. Sahalos, Interference-limited opportunistic relaying with reactive sensing, IEEE Trans. Wireless Commun.,2010,9(1):14-20.
    [223]H. A. Suraweera, H. K. Garg and A. Nallanathan, Performance analysis of two hop amplify-and-forward systems with interference at the relay, IEEE Commun. Lett.,2010, 14(8):500-502.
    [224]L. Fenton, The sum of log-normal probability distributions in scatter transmission systems, IRE Trans. Commun. Syst.,1960,8(3):57-67.
    [225]Y. Chen and N. C. Beaulieu, A simple polynomial approximation to the Gaussian Q-function and its application, IEEE Commun. Lett.,2009, 13(2):124-126.
    [226]T. Q. Duong and V. Bao, Performance analysis of selection decode-and-forward relay networks, Electron. Lett.,2008,44(20):1206-1207.
    [227]X. Rui, Performance of selective decode-and-forward relay networks with partial channel informa-tion, ETRI Journal, 2010,32(1):139-141.
    [228]T. Q. Duong, V. Bao, and H.-J. Zepernick, On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels, IEEE Commun. Lett.,2009, 13(3):172-174.
    [229]Peng Liu and ll-Min Kim, Average BER analysis for binary signallings in decode-and-forward dissimilar cooperative diversity networks, IEEE Trans. Wireless Commun.,2009, 8(8):3961-3968.
    [230]T. Wang, A. Cano, G. B. Giannakis, et al. High-performance cooperative demodulation with decode-and-forward relays, IEEE Trans. Commun.,2007,55(7):1427-1438.
    [231]IEEE Computer Society, Part 15.3:Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs), 2003.
    [232]IEEE Computer Society, Part 15.4:Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (WPANs),2006.
    [233]Federal Communications Commission, Revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems, first report and order, ET Docket 98-153, FCC 02-48, pp. 1-118, Febuary 14, 2002.
    [234]M. O. Hasna and M.-S. Alouini, A performance study of dual-hop transmissions with fixed gain relays, IEEE Trans. Wireless Commun.,2004,3(6):1963-1968.
    [235]I. Krikidis, et al. Amplify-and-forward with partial relay selection, IEEE Commun. Lett.,2008, 12(4):235-237.
    [236]Y. Wei, F.R. Yu, and M. Song, Distributed optimal relay selection in wireless cooperative networks with finite state Markov channels, IEEE Trans. Vehic. Tech.,2010,59(5):2149-2158.
    [237]R. Madan, N. Mehta, A. Molisch, et al. Energy-efficient cooperative relay-ing over fading channels with simple relay selection, IEEE Trans. Wireless Commun.,2008, 7(8):3013-3025.
    [238]Naddafzadeh, G, P. Kong, and C. K. Tham, Optimal cooperative relaying schemes in IR-UWB networks, IEEE Trans. Mob. Comput.,2010, 9(7):969-981.
    [239]J. Perez, J. Ibanez, L. Vielva, and I. Santamaria, Closed-form approximation for the outage capacity of orthogonal STBC, IEEE Commun. Lett.,2005,9(11):961-963.
    [240]K. Woradit, Tony Q. S. Quek, W. Suwansantisuk, et al. Outage behavior of selective relaying schemes, IEEE Trans. Wireless Commun.,2009,8(8):3890-3895.
    [241]A. del Coso, C. Ibars, Achievable rates for the AWGN channel with multiple parallel relays, IEEE Trans. Wireless Commun.,2009,8(5):2524-2523.
    [242]M. Gastpar and M. Vetterli, On the capacity of large Gaussian relay networks, IEEE Trans. Inf. Theory,2005,51(3):765-779.
    [243]S. Shrestha and KyungHi Chang, Closed-form solution of outage capacity for cooperative DF and AF relay network, Wireless Personal Communication, 2009, 54(4):651-665.
    [244]Z. Zeinalpour-Yazdi, M. Nasiri-Kenari, B. Aazhang, et al. Bounds on the delay-constrained capacity of UWB communication with a relay node, IEEE Trans. Wireless Commun.,2009, 8(5): 2265-2273.
    [245]A. Bletsas, A. Khisti, D. P. Reed, et al. A simple cooperative diversity method based on network path selection, IEEEJ. Sel. Areas in Commun.,2006, 24(3):659-672.
    [246]Z. Zhou, S. Zhou, J.-H. Cui, and S. Cui, Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks, IEEE Trans. Wireless Commun.,2008,7(8):3066-3078.
    [247]M. O. Hasna and M.-S. Alouini, End-to-end performance of transmission systems with relays over Rayleigh-fading channels, IEEE Trans. Wireless Commun.,2003,2(11):1126-1131.
    [248]V. Shah, N. B. Mehta, and R. Yim, Optimal timer based selection schemes, IEEE Trans. Commun., 2010,58(6):1814-1823.
    [249]A. Gupta and P. Mohapatra, A survey on ultra wide band medium access control schemes, Compu-ter Networks (Elsevier),2007,51(11):2976-2993.
    [250]I. E. Telatar, Capacity of multi-antenna Gaussian channels, European Trans. Tel,1999, 10(6):585-595.
    [251]W. Malik, C. Stevens, and D. Edwards, Multipath effects in ultrawideband rake reception, IEEE Trans. Antennas Propagat.,2008,56(2):507-514.
    [252]V. Kuhn, Wireless Communications over MIMO Channels: Applications to CDMA and Multiple Antenna Systems, Chichester, England:Wiley, 2006.
    [253]J. Boyer, D. D. Falconer, and H. Yanikomeroglu, Multihop diversity in wireless relaying channels, IEEE Trans. Commun.,2004,52(10):1820-1830.
    [254]J. Boyer, D. D. Falconer, H. Yanikomeroglu, Cooperative connectivity models for wireless relay networks, IEEE Trans. Wireless Commun.,2007,6(5):1992-2000.
    [255]O. Waqar, D. C. McLernon, and M. Ghogho, Exact evaluation of ergodic capacity for multihop variable gain relay networks:A unified framework for generalized fading channels, IEEE Trans. Veh. Technol,2010,59(8):4181-4187.
    [256]G. Farhadi and N.C. Beaulieu, Capacity of amplify-and-forward multi-hop relaying systems under adaptive transmission, IEEE Trans. Commun.,2010, 58(3):758-763.
    [257]G. Farhadi, N. C. Beaulieu, On the ergodic capacity of multihop wireless relaying systems, IEEE Trans. Wireless Commun., 2009,8(5):2286-2291.
    [258]M. O. Hasna, M.-S. Alouini, Outage probability of multihop transmission over Nakagami fading channels, IEEE Commun. Lett.,2003,7(5):216-218.
    [259]G. Amarasuriya, C. Tellambura and M. Ardakani, Asymptotically-exact performance bounds of AF multi-Hop relaying over Nakagami fading, IEEE Trans. Commun.,2011,59(4):962-967.
    [260]G. K. Karagiannidis, Performance bounds of multihop wireless communications with blind relays over generalized fading channels, IEEE Trans. Wireless Commun.,2006, 5(3):1498-1503.
    [261]G. Farhadi, N. C. Beaulieu, A general framework for symbol error probability analysis of wireless systems and its application in amplify-and-forward multi-hop relaying, IEEE Trans. Veh. Technol., 2010,59(3):1505-1511.
    [262]E. Morgado, I. Mora-Jimenez, J. J.Vinagre, et al. End-to-end average BER in multihop wireless networks over fading channels, IEEE Trans. Wireless Commun.,2010, 9(8):2478-2487.
    [263]A. Muller and J. Speidel, Achieving exponential diversity in wireless multihop systems with regene-rative relays, in Proc. IEEE International Conference on Communications (ICC'09), June 2009, pp. 1-6.
    [264]A. Ribeiro, X. Cai, and G. B. Giannakis, Symbol error probabilities for general cooperative link, IEEE Trans. Wireless Commun.,2006,4(3):1264-1273.
    [265]C. Conne, M.-C. Ju, Z. Yi, et al. SER analysis and PDF derivation for multi-hop amplify-and-forward relay systems, IEEE Trans. Commun.,2010, 58(8):2413-2424.
    [266]C. Conne, ll-Min Kim, Outage probability of multi-hop amplify-and-forward relay systems, IEEE Trans. Wireless Commun.,2010,9(3):1139-1149.
    [267]G. Farhadi, N. C. Beaulieu, On the performance of amplify-and-forward cooperative links with fix-ed gain relays, IEEE Trans. Wireless Commun.,2008,7(5):1851-1856.
    [268]P. Liu, ll-Min Kim, Average BER analysis for binary signaling in decode-and-forward dissimilar cooperative diversity networks, IEEE Trans. Wireless Commun., 2009, 8(8):3961-3968.
    [269]M. Di Renzo, F. Graziosi, and F. Santucci, A comprehensive framework for performance analysis of cooperative multi-hop wireless systems over log-normal fading channels, IEEE Trans. Commun., 2010,58(2):531-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700