基于TCP的实时流媒体自适应传输策略及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实时流媒体是下一代网络的主要传输对象,将极大地影响人们日常生活。使用TCP传输实时流媒体具有对网络状况反应迅速、TCP友好、易于为防火墙所接受、便于实现与维护等优点,但同时也存在着发送速率无法自适应网络可用带宽的波动、TCP重传易增加媒体包的延时抖动和乱序等问题,这些都大幅降低了实时流媒体的服务质量。为解决上述问题,本文从TCP实时流媒体传输性能分析、延时预测模型、自适应传输策略及其应用等方面开展研究,取得的创新型研究成果如下。
     (1) TCP实时流媒体传输具有可接受播放性能的条件
     通过深入分析TCP实时流媒体传输过程,指出使用TCP在Internet上传输实时音频时,具有可接受播放性能的条件:TCP最大报文段的大小应设置为单个语音帧的大小,但这将使得TCP的传输效率非常低下,不适用于Internet应用。指出实时视频传输具有可接受播放性能的条件:视频帧的发送延时应小于播放缓冲延时与网络往返延时一半的差值。模拟结果表明了所指出条件的合理性。
     (2)影响TCP实时视频端到端延时的关键因素
     通过推导和模拟实验剖析了实时视频的端到端延时,指出等待延时是实时视频端到端延时的主要构成,发送延时则是影响端到端延时的关键因素,提出可以通过减少等待延时和减少发送延时的方式,来减少视频帧端到端延时抖动。由于发送延时由TCP协议栈管理,应用程序无法对其进行控制,提出了一种对发送延时进行预测判断的方法:预测视频帧的发送延时,若发送延时不满足实时视频传输的条件,则选择性丢弃该视频帧,从而确保了所有被传输的视频帧都具有较小的发送延时。模拟结果表明使用该方法可以有效减少实时视频的端到端延时。
     (3)两种实时视频发送延时预测模型
     针对Internet上两种使用最为广泛的路由器丢包机制,即尾部丢包(DropTail)和随机早期丢包(RED)机制,分别建立了两种实时视频发送延时预测模型。
     1)分阶随机预测模型。从微观角度分别考虑视频帧在传输过程中处于TCP各个阶段的概率,特别是DropTail机制下易出现的慢开始和RTO阶段,以帧大小、丢包率、拥塞窗口大小、网络往返时间和TCP初始重传计时器时间作为输入参数,以视频帧发送延时的期望值作为预测值。
     2)递阶式马尔科夫预测模型。从宏观角度将RED机制下整个传输过程的拥塞窗口变化作为一个离散时间离散状态的马尔科夫链;设计了一个递阶式马尔科夫预测算法,算法以窗口大小、网络往返时延和丢包率作为状态转移矩阵函数的输入参数,以拥塞窗口大小作为增益矩阵函数的输入参数,以各个状态拥塞窗口大小之和大于等于视频帧大小为递阶结束条件,对视频帧发送延时进行预测。
     模拟结果表明两种模型的预测精度符合要求,预测值可以被用于视频帧的预测判断方法中。
     (4)两种实时视频自适应传输策略
     从减少等待延时和发送延时入手,建立了两种实时视频自适应传输策略:
     1)基于多缓冲区调度的自适应策略。设计了一个多缓冲区调度模型,通过建立一个具有延时级别的应用层发送缓冲区,对实时视频帧在该缓冲区、TCP发送缓冲区和播放缓冲区之间进行调度,使用基于缓冲区延时级别的选择性丢弃视频帧的方法,将所有视频帧的等待延时减少为最大仅为编码延时的两倍,同时根据丢弃率的变化对视频帧率和播放缓冲大小进行自动调整。
     2)基于发送延时预测模型的自适应策略。在视频帧被发送以前,首先利用发送延时预测模型对发送延时进行预测,然后使用预测判断的方法,对达不到可接受播放性能的视频帧进行选择性丢弃,确保了所有被传输的视频帧都具有较小的发送延时,并将所有视频帧的等待延时减少为最大仅为编码延时的一倍,同时以丢弃率为约束条件对视频帧率和播放缓冲大小进行自动调整。
     模拟结果表明,与直接使用TCP或UDP传输相比,两类自适应策略都能够大幅度减少端到端延时抖动,并使得发送速率自适应网络拥塞状况,有效避免关键帧的丢失。基于发送延时预测模型的策略在减少端到端延时上具有更好的性能,但要求预知瓶颈路由器的丢包机制。
     (5)自适应传输策略在基于3G的实时通信系统中的应用与实现
     采用自适应传输策略,利用面向对象设计方法、IO完成端口、原始套接字和TCP防火墙穿透等技术,设计并实现了一种新型的基于3G的实时通信系统3G-VIM,系统实现了IP网内的PC和3G网内的3G手机之间的双向实时通信。系统运行结果表明,所提出的实时视频自适应传输策略能够明显提高实时视频的视觉质量。
Real-time multimedia streaming will be the main transmission objective on the next generation network, which could have large effect on our lives. There exist many advantages such as reliable transmission, rapid reaction to network congestion, TCP friendliness, acceptableness to fire walls, convenient for implementation and maintenance and so on while using TCP to transmitting real-time multimedia streaming. However, on the other hand, the disadvantages are obvious as follows. The sending rate is unable to be adaptive to the available network bandwidth. The retransmission arisen from TCP would likely increase the delay jitter and confusion of multimedia packet. These disadvantages decrease notablely the quality of service of real-time multimedia streaming. Amied at the above problems, performance analysis of real-time multimedia streaming transmission, sending-delays prediction model, rate adaptive transmitting scheme and its application are researched in this thesis and the main creative achievements included are the following five aspects.
     (1) Requirement for transmitting real-time multimedia streaming via TCP with acceptable playing performance
     The process of transmitting real-time multimedia via TCP is deeply analyzed and then the requirement of transmitting real-time audio with acceptable playing performance via TCP is pointed as that the TCP MSS should be equal with the size of a audio frame. However, the transmitting efficiency of TCP will be very low under this condition so that it is infeasible in the Internet. The requirement of transmitting real-time video is also pointed as that the video frame sending-delays should be less than the results that play out buffer delays subtract half of the round trip time (RTT). The simulation results show that the requirement presended is reasonable.
     (2) The critical factor impacting on the end-to-end delays of real-time video transmitted via TCP
     The end-to-end delays of real-time video are dissected by deriving and simulating, and it is discoveried that the waiting-delays are the main part of end-to-end delays of real-time video and the sending-delays are the critical factor impacting on the end-to-end delays. Two ways to decrease the end-to-end delays and jitters are presented, which are reducing the waiting-delays and cutting donw the sending-delays. Since the sending-delays are straightly and rigidly managed by the TCP stack, it is impossible for applications to control it. Therefore, a method to decrease the end-to-end delays by predicting and judging the sending-delays is proposed as follows. Predict the sending-delays of a video frame and if it can not achieve the requirement mentioned above, then the video frame will be selectively discarded. Utilizing the method of predicting and judging, the sending-delays of all the video frames deliveried are little. The simulation results show that the end-to-end delays of real-time video can be cut down notablely by using the method.
     (3) two real-time video sending-delays prediction models
     Aimed to the two widely-used router loss strategies, DropTail and RED, two real-time video sending-delays prediction model are established in the thesis.
     1) The well-phased stochastic prediction model. The model microscopically considers the probability of video frame placed in diverse phases, especially the slow starting and RTO phases, which happen more easily while using DropTail strategy. The model's input parameters include frame size, loss ratio, congestion windows size, RTT, RTO time and so on. The mathematic expectation of sending-delays is looked as the prediction value of sending-delays.
     2) The recursive Markov prediction model. The model macroscopically treats the variation of TCP congestion windows during the whole TCP transmitting process as a Markov chain with discrete time and state. A recursive Markov prediction algrithm is presented, in which current congestion window size, RTT and loss ratio are input as the parameters of the state jumping matrix function, and congestion window size is input as the parameters of the reward matrix function. The recursive process of algrithm ends while the summations of prediction values are larger than the video frame sizes, and then outputs the prediction value of sending-delays.
     The simulation results show that the accuracy of both the prediction model are acceptable and the prediction values can be used in the method of predicting and judging mentioned above.
     (4) two real-time video rate adaptive transmission scheme
     Considering the two way of decreasing the end-to-end delays pointed above, two real-time video rate adaptive transmission scheme are established.
     1) Rate adaptive transmission scheme based on multi-buffer scheduling. A sending buffer on application layer with delays level is set up to schedule real-time video frames between the sending buffer, TCP sender buffer, and play out buffer. Using the method of selectively discard video frames based on buffer delays level, the waiting-delays of each video frame is decreased to be only less than twice of encoding delays. Simultaneously, the video frame rate and sizes of play out buffer can be adjusted automaticly according the fluctuation of discarding ratio.
     2) Rate adaptive transmission scheme based on the sending-delays prediction model. Firstly, the sending-delays of video frame are predicted before it is sended using the sending-delays prediction model. Afterwards, the method of predicting and judging is ultilized to selectively discard the video frames without the acceptable playing performance. Therefore, the sending-delays of each video frame transmitted can be little and the waiting-delays of each video frame is cut down to be only less than encoding delays. At the same time, the video frame rate and sizes of play out buffer can be regulated automaticly according the fluctuation of discarding ratio.
     The simulation results show that compared with UDP and TCP, using either the adaptive schemes established in this thesis, the end-to-end delays and jitters can be reduced to a larger extent, the sending rate can be adaptive to the network congestion condition, and the key video frames can be avoided to be discarded. Moreover, the rate adaptive transmission scheme based on the sending-delays prediction model is better to decrease the end-to-end delays, howerver, it requires to get the loss strategy of bottleneck router, which brings forth some limitations.
     (5) Application and implementation of the rate adaptive transmission scheme in the real-time communication system based on 3G network
     Using the rate adaptive transmitting scheme based on TCP and utilizing the methods and techniques of object-oriented design, database optimization access, IO completion port, raw socket, and TCP NAT penetrating, a novel real-time communication system based on 3G network is designed and implemented. The system realizes the two-way real-time audio and video communication between PC in IP network and 3G phone in 3G network with the requirement of quality of service. The running results of system show that the visual quality of video can be improved obviously after using the rate adaptive transmission schemes proposed in the thesis.
引文
[1]刘梦娟.异构网络环境下流媒体传输机制的研究[D].合肥:中国科学技术大学,2007.
    [2]R.Jain,K.Ramakrishnan,Chiu,Dah-Ming.Congestion avoidance in computer networks with a connectionless network layer.Technology Report,DEC-TR-506,Digital Equipment Corporation,1988.
    [3]VoIP基本概念(1):发展简史.Technology Report[EB/OL],http://www.net130.com/CMS/Pub/special/special_voip/222056.htm,2004.
    [4]Xiaojun Hei,Yong Liu,K.W.Ross.IPTV over P2P streaming networks:the mesh-pull approach[J].IEEE Communications Magazine,2008,46(2):86-92.
    [5]Meng-Ting Lu,Jui-Chieh Wu,Kuan-Jen Peng,Huang,et al.Design and Evaluation of a P2P IPTV System for Heterogeneous Networks[J].IEEE Transactions on Multimedia,2007,9(8):1568-1579.
    [6]Changqiao Xu,G.-M.Muntean,E.Fallon,A.Hanley.A Balanced Tree-Based Strategy for Unstructured Media Distribution in P2P Networks[C].Proc.of IEEE International Conference on Communications(ICC),2008:1797-1801.
    [7]Xin-yan ZHANG,Jiang-chuan LIU,Bo LI,et al.Coolstreaming/DONet:a data-driven overlay network for peer-to-peer live media streaming[C].Proc.of IEEE INFOCOM,Miami,2005:2102-2111.
    [8]Lei Wang.EPMD:A 3G Faced P2P E-Commerce Platform for Mobile Devices [C].Proc.of International Colloquium on Computing,Communication,Control,and Management,2008(3):186-190.
    [9]Shuping Liu,Weirong Jiang,Jinpei Li.Architecture and Performance Evaluation for P2P Application in 3G Mobile Cellular Systems[C].International Conference on Wireless Communications,Networking and Mobile Computing,2007:914-917.
    [10]Liu Chunlei.Multimedia Over IP:RSVP,RTP,RTCP,RTSP.Technology Report [EB/OL],http://www.cse.wustl.edu/~jain/cis788-97/ftp/ip_multimedia.pdf,2006,5.
    [11]G.Conklin,G.Greenbaum,K.Lillevold,A.Lippman,and Y.Reznik,Video Coding for Streaming Media Delivery on the Internet[J].IEEE Transactions on Circuits and Systems for Video Technology,2001,11(3):269-281.
    [12]Dong Nguyen,Tuan Tran,Tuan Pham,Viet Le.Internet Media Streaming Using Network Coding and Path Diversity[C].Proc.of IEEE International Conference on Global Telecommunications,2008:1-5.
    [13]S.Madhani,S.Shah.A.Gutierrez.Optimized Adaptive Jitter Buffer Design for Wireless Internet Telephony[C].Proc.of IEEE International Conference on Global Telecommunications,2007:5248-5253.
    [14]HuaZhu,GuoPingZeng,I.Chlamtac.Control seheme analysis for multimedia inter-and intra-stream synehronization[C].Proc.of IEEE International conference on communications(ICC).2003:7-11.
    [15]Yang Xiaogang,Shan Baosong,Yang Yaping.A Rate Control Protocol for High Speed Streaming Video[C].Proc.of IEEE/ACIS International Conference on Computer and Information Science,2008:7-12.
    [16]R.Braden,D.Clark,and S.Shenker.Integrated services in the Internet architecture:An overview[S].IETF RFC 1633,1994.
    [17]D.Clark,S.Shenker,and L.Zhang.Supporting real-time applications in an integrated services packet network:Architecture and mechanisms[C].Proc.of ACM SIGCOMM'92,Baltimore,1992.
    [18]S.Shenker,C.Partridge,and R.Guerin.Specification of guaranteed quality of service[S].IETF RFC 2212,1997.
    [19]R.Braden,L.Zhang,S.Berson,S.Herzog,S.Jamin.Resource ReSerVation Protocol(RSVP)--Version 1 Functional Specification[S].IETF RFC 2205,1997.
    [20]K.Kompella,J.Lang.Procedures for Modifying the Resource reSerVation Protocol(RSVP)[S].IETF RFC 3936,2004.
    [21]Hyunjae Yoo,Junho Yoon,Sooyong Lee,Hyelim Park,et al.A Mobile Reservation Protocol For Video Streaming[C].Proc.of IEEE International Conference on Advanced Communication Technology,2008,(3):1842-1845.
    [22]S.Blake,D.Black,M.Carlson,and et al.An architecture for differentiated services[S].IETF RFC 2475,1998.
    [23]V.Jacobson,K.Nichols,and K.Poduri.An expedited forwarding PHB[S].IETF RFC 2598,1999.
    [24]K.Nichols,V.Jacobson,and L.Zhang.A two-bit differentiated services architecture for the Internet IS].IETF RFC 2638,1999.
    [25]张顺亮.端到端的网络拥塞控制及服[24]务质量研究[D].杭州:浙江大学, 2004.
    [26]高奎.实时流媒体系统若干关键技术的研究[D].北京:中国科学院计算技术研究所,2005.
    [27]D.Wu,Y.T.Hou,W.Zhu,H.-J.Lee,T.Chiang,Y.-Q.Zhang,and H.J.Chao.On end-to-end architecture for transporting MPEG-4 video over the Internet[J].IEEE Transactions on Circuits and Systems for Video Technology,2000,(10):923-941.
    [28]T.Turletti and C.Huitema.Videoconferencing on the Internet[J].IEEE/ACM Transactions on Networking,1996,(4):340-351.
    [29]S.Floyd,M.Handley,J.Padhye,and J.Widmer.Equation-based congestion control for unicast applications[C].Proc.of ACM SIGCOMM,Stockholm,Sweden,2000:43-56.
    [30]Ghazali,Osman,Hassan,Suhaidi.TCP-friendly layered multicast protocol for multimedia streaming[C].Proc.of IEEE International Conference on Electronic Design,2008:1-6.
    [31]CAI Lin,SHEN Xue-min,PSN Jian-ping,et al.Performance analysis of TCP-friendly AIMD algorithms for multimedia applications[J].IEEE Transactions on Multimedia,2005,7(2):339-355.
    [32]陈志刚,邓晓衡,张连明,等.无线网络中TCP友好流媒体传输改进机制[J].通信学报(Journal on Communications),2007,8(5):22-29.
    [33]龚建国,曾昶.一种报文大小可变的TFRC改进算法[J].计算机仿真(Computer Simulation),2005,22(6):79-81.
    [34]J.Sjoberg,M.Westerlund,A.Lakaniemi,and Q.Xie.RTP Payload Format and File Storage Format for the AMR and AMR-WB Audio Codecs[S].IETF RFC 3267,2002.
    [35]C.Bormann,L.Cline,G.Deisher,T.Gardos,C.Maciocco,D.Newell.RTP Payload Format for the 1998 Version of ITU-T Rec.H.263 Video(H.263+)[S].IETF RFC 2429,1998.
    [36]S.Ahmad,N.D.Gohar,A.Kamal.A Dynamic Congestion Control Mechanism for Real Time Streams over RTP[C].Proc.of The 9th International Conference on Advanced Communication Technology,2007,(2):961-966.
    [37]张延军,杨静飞.自组织网中的IP/UDP/RTP头压缩算法[J].华中科技大学学报增刊(自然科学版),2003,(31):5-7.
    [38]H.Jin,R.Hsu,Jun Wang.Performance Comparison of Header Compression Schemes for RTP/UDP/IP Packets[C].Proc.of IEEE WCNC.2004,(3):1691-1695.
    [39]H.Gharavi,K.Ban,and J.Cambiotis.RTCP-Based Frame-Synchronized Feedback Control for IP-Video Communications over Multipath Fading Channels [C].Proc.of IEEE ICC.2004,(3):1512-1516.
    [40]G.Conklin,G.Greenbaum,K.Lillevold,et al.Video coding for streaming media delivery on the Internet[J].IEEE Trans.Circuits Syst.Video Technol.,2001,11(3):269-281.
    [41]Wu D,T Y,W Hou,et al.On end-to-end architecture for transporting MPEG-4video over the Internet[J].IEEE Transactions on Circuits and Systems for Video Technology,2000,10(2):923-941.
    [42]M.Shoaib,M.Waheed.Streaming Video in Cellular Networks Using Scalable Video Coding Extension of H.264-AVC[C].Proc.of IEEE 4th International Conference on Wireless Communications,Networking and Mobile Computing,2008:1-4.
    [43]Qian ZHANG,Qu-ji GUO,Qiang NI,et al.Sender-adaptive and receiver-driven layered multicast for scalable video over the Internet[J].IEEE Transactions on Circuits and Systems for Video Technology,2005,15(4):482-495.
    [44]R.Rejaie,M.Handley,D.Estrin.Quality adaptation for congestion controlled video playback over the internet[C].Proc.of ACM SIGCOMM,Massachusetts,1999:189-200.
    [45]Yong-hua XIONG,Min WU,Wei-jia JIA.Rate adaptive real-time video transmission scheme over TCP using multi-buffer scheduling[C].Proc.of IEEE ICYCS'08,Zhangjiajie,2008:354-361.
    [46]J-C.Bolot,A.Vega-Garcia.The case for FEC-based error control for packet audio in the Internet.ACM Multimedia Systems[J],1997.
    [47]张亮.提高VoIP音频质量的技术关键[J].电声技术,2005,(7):63-74.
    [48]崔建平.IP电话语音质量的测试[EB/OL].http://www.c114.net/technic/technicread.asp,2004.
    [49]袁琦.IP电话语音质量评价与分析[EB/OL].http://www.ctiforum.com/technology/voip/voip1217.htm,2002.
    [50]J.Rosenberg,H.Schulzrinne.An RTP payload format for generic forward err correction[EB/OL].http://www.faqs.org/rfcs/frc2733.html,1998
    [51]韦岗.一种高效的Internet上语音包丢失恢复[49]技术[J].通信学报,2004, 5(8): 102-108.
    [52] J. C. Bolot, A. Vega-garcia. The case for FEC-based error control for packet audio in the Internet [EB/OL]. http://ee.mokwon.ac.kr/~music/references/paper/96_audio_fec.ps, 1997
    [53] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan. Priority encoding transmission [J]. IEEE Trans. Inform. Theory, 1996, (42): 1737-1744.
    [54] J.-C. Bolot and T. Turletti. Adaptive error control for packet video in the Internet [C]. Proc. of IEEE Int. Conf. Image Processing (ICIP'96), Lausanne, Switzerland, 1996:25-28.
    [55] Shengli Zhang, Yu Zhu, Soung-Chang Liew, Khaled Ben Letaief. Joint Design of Network Coding and Channel Decoding for Wireless Networks [C]. Proc. of IEEE Conference on Wireless Communications and Networking (WCNC), 2007: 779 -784.
    [56] J. Radic, D. Begusic, N. Rozic. Joint SourceChannel, Space Time Turbo Channel Decoding [C]. Proc. of IEEE 9th International Conference on Telecommunications, 2007:173-178.
    [57] P. A. Chou. Joint source/channel coding: a position paper [C]. Proc. of NSF Workshop on Source-Channel Coding. SanDiego, CA,1999.
    [58] G. Davis and J. Danskin. Joint source and channel coding for Internet image transmission [C]. Proc. of SPIE Conf. Wavelet Applications of Digital Image Processing XIX, Denver, 1996.
    [59] G. Fairhurst, L. Wood. Advice to link designers on link Automatic Repeat reQuest (ARQ) [S]. IETF RFC 3366, 2002.
    [60] S.G. Sitharaman, K.M. Anantharaman. Impact of Retransmission Delays on Multilayer Video Streaming over IEEE 802.1le Wireless Networks [C]. Proc. of IEEE International Conference on Communication Systems Software and Middleware, 2007: 1-12.
    [61] A. Huszak, S. Imre. Source Controlled and Delay Sensitive Selective Retransmission Scheme for Multimedia Streaming [C]. Proc. of IEEE Symposium on Computers and Communications, 2007: 191-196.
    [62] Bong-Jin Oh, Yu-Seok Bae, Kyeong-Deok Moon, Kwan-Jong Yoo. Efficient Retransmission Architecture of Digital Broadcast Services over IPTV Networks [J]. IEEE Transactions on Consumer Electronics, 2008, 54(1): 65-70.
    [63] V. Paxson, M. Allman. Computing TCP's Retransmission Timer [S]. IETF RFC2988,2000.
    [64]W.Stevens.TCP Slow Start,Congestion Avoidance,Fast Retransmit,and Fast Recovery Algorithms IS].IETF RFC 2001,1997.
    [65]D.Loguinov,H.Radha.On retransmission schemes for real-time streaming in the Internet[C].Proc.of IEEE INFOCOM,Alaska,2001:1310-1319.
    [66]S.Keshav and S.P.Morgan.SMART retransmission:performance with overload and random loss[C].Proc.of IEEE INFOCOM,Kobe,1997.
    [67]赵增华,无线网络视频传输技术与可伸缩视频编码[D].天津:天津大学,2006.
    [68]Chih-Ming Chen,Chia-Wen Lin,Yung-Chang Chen.Adaptive Error-Resilience Transcoding and Fairness Grouping for Video Multicast Over Wireless Networks [C].Proc.of IEEE International Conference on Communications,2007:1661-1666.
    [69]Mengyao Ma.Error Resilience and Concealment Techniques for Packet Video Transmission[D].Hong Kong:The Hong Kong University of Science and Technology,2009.
    [70]王炳锡,王洪.变速率语音编码[M].西安:西安电子科技大学出版社,2007.
    [71]QCELP简介[EB/OL].http://www.cnblogs.com/huaping-audio/archive/2008/07/01/1233539.html.
    [72]A.Li.RTP Payload Format for Enhanced Variable Rate Codecs(EVRC) and Selectable Mode Vocoders[S].IETF RFC3558,2003.
    [73]TS 26.171,Speech codec speech processing functions;Adaptive Multi-Rate-Wideband (AMR-WB) speech codec;General description,Technology Report,[EB/OL].http://www.3gpp.org/ftp/Specs/html-info/26-series.htm,2004
    [74]SMV[EB/OL].http://baike.baidu.com/view/241602.html?goodTagLemma,2005
    [75]马宇峰,魏维,杨科利.视频通信中的错误隐藏技术[M].北京:国防工业出版社,2007.
    [76]V.Jacobson.Congestion avoidance and control[J].ACM Computer Communication Review,1998,18(4):314-329.
    [77]D.Chiu and R.Jain.Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks[J].Computer Networks and ISDN System,1989,(17):1-14.
    [78]K.Claffy,Greg Miller,and Kevin Thompson.The Nature of the Beast:Recent Traffic Measurements from an Internet Backbone[C].Proc.of IEEE 1NET, 1998.
    [79] Chuck Fraleigh and et. al. Packet-Level Traffic Measurements from a Tier-1 IP Backbone. ATL Technical Report, TR01-ATL-110101, Sprint, 2001.
    [80] Sean McCreary and Kc Claffy. Trends in Wide Area IP Traffic Patterns: A View from Ames Internet Exchange [C]. Proc. of the 13th ITC Specialist Seminar on Measurement and Modeling of IP Traffic, Monterey, CA, 2000.
    [81] K. Thompson, G. Miller and R. Wilder. Wide-Area Internet Traffic Patterns and Characteristics [J]. IEEE Network, 1997, 11(6): 10-23.
    [82] S. Baset, A. Schulzrinne, H. G. An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol [C]. Proc. of IEEE INFOCOM, Barcelona, Spain, 2006: 1-11.
    [83] F. Nemeth, S. Molnar, P. Tarjan, R. Szabo. TCP Limit: A Streaming Friendly Transport Protocol [J]. Next Generation Internet Networks, 2008:139-145.
    [84] S. Liang, D. Cheriton. TCP-SMO: Extending TCP to Support Medium-Scale Multicast Applications [C]. Proc. of IEEE INFOCOM, 2002, (3): 1356-1365.
    [85] P.-H. Hsiao, H. T. Kung, and K.-S. Tan. Active Delay Control for TCP [C]. Proc. of IEEE Globecom. San Antonio, TX, 2001.
    [86] Biswaroop Mukherjee, Tim Brecht. Time-lined TCP for the TCP-friendly Delivery of Streaming Media [C]. Proc. of IEEE ICNP, 2000.
    [87] S. Cen, C. Pu, and J. Walpole. Flow and Congestion Control for Internet Media Streaming Applications [C]. Proc. of Multimedia Computing and Networking, 1998.
    [88] R.Stewart, Q.Xie, et al. Stream Control Transmission Protocol [S]. IETF RFC2960, 2000.
    [89] Jia-Ru Li, Sungwon Ha, Vaduvur Bharghavan. HPF: A Transport Protocol for Supporting Heterogeneous Packet Flows in the Internet [C]. Proc. of IEEE INFOCOM, 1999.
    [90] K. Evensen, A. Petlund, C. Griwodz, P. Halvorsen. Redundant bundling in TCP to reduce perceived latency for time-dependent thin streams [J]. IEEE Communications Letters, 2008,12(4): 324-326.
    [91] S. Bohacek. A stochastic model of TCP and fair video transmission [C]. Proc. of IEEE INFOCOM, San Francisco, USA, 2003. 1134-1144
    [92] WANG Bing, Kurose Jim, Shenoy Prashant. A model for TCP-based video streaming. Technical Report Amherst: Deptarment of Computer Science, University of Massachusetts, 2007.
    [93]Taehyun Kim, N. Avadhanam, S. Subramanian. Dimensioning Receiver Buffer Requirement for Unidirectional VBR Video Streaming over TCP [C]. Proc. of 2006 IEEE International Conference on Image Processing, 2006:3061-3064.
    [94]S. Tullimas, T. Nguyen, R. Edgecomb, S. C. Cheung, Multimedia streaming using multiple TCP connections [J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2008, (4): 1-20.
    [95]Jack Brassil and Puneet Sharma. Streaming Media via TCP: Approaches to Bandwidth Sharing and Rate Adjustment [EB/OL]. www.hpl.hp.com/research/mmsl/publications/net/lanman02.pdf, 2004.
    [96]Ju-Won Park, Jong Won Kim, R.P. Karrer. TCP-ROME: A Transport-Layer Approach to Enhance Quality of Experience for Online Media Streaming [C]. Proc. of 16th International Workshop on Quality of Service, 2008: 249-258.
    [97]Seelam N, Sethi P, Feng W C. A hysteresis based approach for quality, frame rate, and buffer management for video streaming using TCP [C]. Proc. of the Management of Multimedia Networks and Services, Heidelberg, Germany, 2001. 1-15.
    [98]C. Krasic, J. Walpole. Priority-progress streaming for quality-adaptive multimedia [C]. Proc. of ACM Multimedia, Ottawa, 2001: 463 -464.
    [99]E.A. Jammeh, M. Fleury, M. Ghanbari. Rate-adaptive video streaming through packet dispersion feedback [J]. IEEE Transactions on Communications, 2009, 3(1): 25-37.
    [100]P. de Cuetos and K.W. Ross. Adaptive rate control for streaming stored fine-grained scalable video [C]. Proc. of IEEE NOSSDAV, 2002.
    [101]P. de Cuetos, P. Guillotel, K. W. Ross, and D. Thoreau. Implementation of adaptive streaming of stored MPEG-4 FGS video over TCP [C]. Proc. of IEEE International Conference on Multimedia and Expo (ICME02), 2002.
    [102]S. Hasan, L. Lefevre, P. Huang, P. Werstein. Cross Layer Protocol Support for Live Streaming Media [C]. Proc. of IEEE 22nd International Conference on Advanced Information Networking and Applications, 2008: 319-326.
    [103]Bajic I V, Tickoo O, Balan A, et al. Integrated end-to-end buffer management and congestion control for scalable video communications [C]. Proc. of IEEE International Conference on Image Processing, Barcelona, Spain, 2003: 14-17.
    [104]P. Mehra, De Vleesc. Receiver-Driven Bandwidth Sharing for TCP and its Application to Video Streaming [J] IEEE Transactions on Multimedia, 2005, (7): 740-752.
    [105] Anshul Sehgul, Olivier Verscheure, Puscnl Frossurd, Distortion-buffer optimized TCP Video Streaming [C]. Proc. of IEEE International Conference on Image Processing (ICIP), 2004: 2083-2086.
    [106] R.P. Karrer. TCP Prediction for Adaptive Applications [C]. Proc. of 32nd IEEE Conference on Local Computer Networks, 2007: 989 - 996.
    [107] A. Antonios. Improving the performance of TCP wireless video streaming with a novel playback adaptation algorithm [C]. Proc. of IEEE International Conference on Multimedia and Expo, Toronto, Canada, 2006: 1169-1172.
    [108] Song Ci, S.W. Turner, H.R. Sharif. A Novel Scheme for Improving Good Throughput Performance in Wireless Local Networks [C]. Proc. of IEEE Vehicular Technology Conference, 2003, (2): 1387-1390.
    [109] E. Halepovic, Qian Wu, C. Williamson, M. Ghaderi. TCP over WiMAX: A Measurement Study [C]. Proc. of IEEE International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems, 2008:1 -10.
    [110] Chai Ying, Ye Dejian. The Design and Implementation of a Scalable Wireless Video Streaming System Adopting TCP Transmission Mode [C]. Proc. of 7th IEEE International Conference on Computer and Information Technology, 2007: 534-538.
    [111] K. Yamamoto, H. Suzuki, N. Ishikawa, M. Miyake, H. Inamura. A TCP Flow Control Scheme for 3G Mobile Communication Networks [C]. Proc. of IEEE International Conference on Computer Communications and Networks, 2006: 229 -236.
    [112] TAO Shu, XU Kua. Improving VoIP quality through path switching [C]. Proc. of IEEE INFOCOM. Miami, 2005: 2268- 2278.
    [113] Hirannaiah, R. M, A. Jasti, et al. Influence of codecs on adaptive jitter buffer algorithm [C]. Proc. of IEEE VTC. Baltimore, 2007: 2015-2019.
    [114] McNeill, K. M, M. Liu, et al. Adaptive jitter buffer play-out scheme to improve VoIP quality in wireless networks [C]. Proc. of IEEE MILCOM. Washington, 2006:1-5.
    [115] Oklander, Boris, Sidi, et al. Jitter buffer analysis [C]. Proc. of IEEE ICCCN. St. Thomas U.S. Virgin Islands, 2008: 1-6.
    [116] N.A. Junejo, E. Ahmed, A. Shah. Implementing ITU-T G.723.1 speech coding standard,observation and results[C].Proc.of INMIC,2003.
    [117]ITU-T Recommendation G.729,Coding of Speech at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited Linear Prediction(CS-ACELP)[S],1996.
    [118]I.Varga,R.D.De Lacovo,P.Usai.AMR Standardization of the AMR wideband speech codec in 3GPP and ITU-T[J].IEEE Communications Magazine,2006,44(5):66-73.
    [119]谦君.3G移动语音编码标准介绍.Technology Report[EB/OL],http://www.compotech.com.cn/articleinfo.php?id=4678,2006.
    [120]ITU-T Recommendation H.261,Video Codec for Audiovisual Services at px64kbit/s[S],1990.
    [121]ITU-T Recommendation H.263,Video Coding for Low Bit Rate Communication[S],1998.
    [122]ITU-T Recommendation H.264,Advanced video coding for generic audiovisual services IS],2005.
    [123]ISO/IEC JTC1/SC29/WGll Recommendation MPEG-1,Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s--Part 1:Systems[S],1996.
    [124]ISO/IEC JTC1/SC29/WG11 Recommendation MPEG-2,Generic coding of moving pictures and associated audio information[S],2000.
    [125]ISO/IEC JTC 1/SC29/WG11 Recommendation MPEG-4,MPEG-4 Overview[S],2002.
    [126]朱剑.基于WCDMA的移动多媒体解决方案.Technology Report[EB/OL],http://www.c114.net/3g/383/a215611.html,2006.
    [127]H.Schulzrinne,S.Casner,R.Frederick,V.Jacobson.RTP:A Transport Protocol for Real-Time Applications[S].IETF RFC 1889,1996.
    [128]H.Schulzrinne,S.Casner,R.Frederick,V.Jacobson.RTP:A Transport Protocol for Real-Time Applications[S].IETF RFC 3550,2003.
    [129]MMS:Microsoft Media Server [EB/OL],http://en.wikipedia.org/wiki/Microsoft_Media_Services,2005.
    [130]RTSP:Real Time Streaming Protocol [EB/OL],http://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol,2005.
    [131]姜明.TCP协议的拥塞控制策略及改进.Technology Report[EB/OL],http://tech.ccidnet.com/art/930/20030402/42351_3.html,2003.
    [132]J.Mo,R.J.La,V.Anantharam,J.Walrand.Analysis and Comparison of TCP Reno and Vegas[C].Proc.of INFOCOM,New York,1999,(3):1556-1563.
    [133]S.Floyd,T.Henderson.The NewReno Modification to TCP's Fast Recovery Algorithm[S].IETF RFC 2582,1999.
    [134]M.Mathis,J.Mahdavi,S.Floyd,A.Romanow.TCP Selective Acknowledgement Options[S].IETF RFC 2018,1996.
    [135]L.S.Brakmo,L.L.Peterson.TCP Vegas:End to End Congestion Avoidance on A Global Internet[J].IEEE Journal on Selected Areas in Communications,1995,13(8):1465-1480.
    [136]S.Lawrence,Brakmo,W.O.Sean,Mally,Larry Peterson.TCP Vegas:New Techniques for Congestion Detection and Aviodance[J].IEEE/ACM Transactions on Networking,1994:1024-35.
    [137]孟川杰.TCPVegas的拥塞控制算法研究[D].成都:四川大学,2006.
    [138]Colin Perkins.RTP:Audio and Video for the Internet[M].Boston,USA:Addison-Wesley Professional,2003.
    [139]B.Braden,D.Clark,J.Crowcroft,B.Davie,S.and et al.Recommendations on Queue Management and Congestion Avoidance in the Internet[S],IETF RFC 2309,1998.
    [140]S.Liang,D.Cheriton.TCP-RTM:Using TCP for real time multimedia applications[C].Proc.of IEEE International Conference on Network Protocols.Paris,2002.
    [141]The Network Simulator-ns-2.3.4[EB/OL].http://isi.edu/nsnam/ns/,2008.
    [142]FHP.Fitzek,M.Reisslein.MPEG-4 and H.263 Video Traces for Network Performance Evaluation[J].IEEE Network,2001,15:40-54.
    [143]杨晓萍,陈虹,翟双.基于路由器的RED和Droptail算法比较[J].吉林大学学报,2005,23(10).
    [144]Da-peng WU,Yiweo Thomas Hou,Ya-Qin ZHANG.Streaming video over the Internet:approaches and directions[J].IEEE Transactions on Circuits and Systems for Video Technology,2001,11(3):282-300.
    [145]Dong Zheng,G.Y.Lazarou,R.Hu.A stochastic model for short-lived TCP flows[C].Proc.of IEEE International Conference on Communications,2003,(1):76-81.
    [146]J.Padhye,V.Firoiu,D.Towsley,et al.Modeling TCP Reno performance:a simple model and its empirical validation[J].IEEE/ACM Transactions on networking,2000,8(2):133-145.
    [147]N.Cardwell,S.Savage,T.Anderson.Modeling TCP latency[C].Proc.of IEEE INFOCOM,2000,(3):1742-1751.
    [148]J.Padhye,V.Firoiu,D.Towsley,Jim Kurose.Modeling TCP Throughput:A Simple Model and its Empirical Validation[C].Proc.of ACM SIGCOMM Computer Communication Review,1998,28(4):303-314.
    [149]林元烈.应用随机过程[M].北京:清华大学出版社,2002.
    [150]吕国晗.TCP窗口变化过程的嵌入式马尔可夫模型研究[D].北京:清华大学,2004.
    [151]K.Daehyon,G.Aura.Architecture for 3G and 802.16 wireless networks integration with qoS support[C].Procs.of the Second IEEE International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks,Washington DC,2005.28-31.
    [152]熊永华,吴敏,贾维嘉.一种基于3G的新型实时通信系统的设计与实现[J].信息与控制,2008,37(3):257-262
    [153]D.C.Dowden,R.D.Gitlin,R.L.Martin.Next-generation networks[J].Bell Labs Technical Journal,1998,3(4):3-14.
    [154]M.Buddhikot,G.Chandranmenon,S.Han,et al.Integration of 802.11 and third-generation wireless data networks[C].Procs.of IEEE INFOCOM.Piscataway,NJ,2003.503-512.
    [155]XIONG Yong-hua,WU Min,JIA Wei-jia,ZHANG Li-zhuo.Design and Implementation of Instant Message System Based on 3G[C].Procs.of the 26th Chinese Control Conference,2007,(5):656-660.
    [156]J.Rosenberg,H.Schulzrinne,G.Camarillo,A.Johnston,et al.SIP:Session Initiation Protocol IS].IETF RFC 3261,2002.
    [157]ITU-T Recommendation H.324,Terminal for low bit-rate multimedia communication[S],2002.
    [158]ITU-T Recommendation H.245,Control protocol for multimedia communication[S],2005.
    [159]ITU-T Recommendation H.223,Multiplexing protocol for low Bit rates multimedia communication[S],1998.
    [160]http://www.itu.int/WORLD2006/,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700