MIMO无线通信系统的跨层设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来无线通信系统需要在保证业务服务质量(QoS)的同时,在有限的频带内提供更高的数据速率和频谱效率。多输入多输出(MIMO)技术充分开发空域资源,可以在不额外增加带宽和功率的条件下,成倍增加传输速率和大幅改善链路质量,它也因此被很多无线通信系统标准采纳,例如微波存取全球互通(WiMAX)和3GPP长期演进(LTE)。传统的分层设计方法难以适应动态变化的无线环境,很难保证用户多样和可变的QoS,针对该问题,论文重点对MIMO系统中的跨层设计进行了研究,主要包括以下几部分内容:
     首先,对引入自适应调制编码(AMC)技术的MIMO系统的跨层设计进行了研究。分析在业务随机到达以及链路层缓冲区长度有限的条件下,MIMO-AMC系统的分组排队特性。提出了一种以系统总丢包率最小化为目标的跨层设计。该跨层设计将问题的求解建模为马尔科夫决策过程,利用线性规划推导出最优的自适应传输策略。相对于传统AMC策略,所提跨层设计可以显著降低系统总丢包率。
     其次,将自动重传请求(ARQ)技术引入到MIMO-AMC系统的跨层设计中。在讨论传统跨层设计的基础上,分析了信道估计误差等实际系统限制条件对系统性能的影响,通过马尔科夫链稳态概率推导出系统吞吐量、丢包率以及平均时延的闭式解,提出了一种适用于实际MIMO系统的跨层设计。该跨层设计能够在满足业务QoS要求的基础上,最大化系统有效吞吐量。仿真结果验证了推导结果的准确性,并且相对于传统跨层设计,能够有效改善系统吞吐量。
     然后,针对无线通信系统实际上只能提供统计意义QoS保证的问题,利用有效带宽和有效容量理论,分析了物理层传输服务过程和链路层分组排队过程对MIMO系统中分组时延QoS的联合作用,推导出分组时延QoS违反概率的表达式。基于该表达式,提出一种MIMO系统中保证业务时延QoS条件下,最大化系统有效吞吐量的跨层设计。仿真结果表明,该跨层设计在系统信噪比较低时能显著改善系统性能。
     最后,对存在信道估计误差时MIMO系统中的自适应资源分配问题进行了研究。针对迫零接收MIMO系统,在给定系统错包率和发送总功率受限条件下,结合传统的空域注水定理和比特分配算法,提出了一种以系统有效吞吐量最大化为目标的功率分配与自适应调制算法,仿真结果证明,获得的系统总速率逼近于最优值,并且算法运算量适中;针对迫零发送MIMO系统,提出一种跨层自适应资源分配算法(Cross-layer Adaptive Resource Allocation Algorithm, CLARA),该算法在最大化系统有效吞吐量的同时还考虑了用户间的公平性。仿真结果表明,相对于传统的资源分配算法,CLARA能显著改善实际MIMO系统的有效吞吐量和用户间的公平性。
     论文最后总结了全文关于MIMO系统跨层设计的研究工作,指出了今后的研究方向。
Future wireless communication systems face the great challenges of providing higher data rates and spectral efficiency with the limited frequency bandwidth, while guaranteeing quality of service (QoS). By adequately exploiting spatial resource, the multiple input multiple output (MIMO) technology has been shown to be able to multiply improve data transmission rate and significantly enhance link quality without additional bandwidth and power. MIMO has been adopted by a variety of wireless communication system standards, such as worldwide interoperability for microwave access (WiMAX) and 3GPP long time evolution (LTE). However, due to the dynamic-varying wireless communication environment, traditional hierarchical design is difficult to guarantee the diversity and variable QoS requirements of users. This problem entails the research focuses of this dissertation on the cross layer design in MIMO wireless communication systems. The main context includes following aspects:
     First, the cross-layer design for MIMO-AMC systems is studied on. The queuing characteristics of the MIMO-AMC systems under the conditions of unsaturated traffic and finite-length buffer are investigated. An optimal cross-layer design aiming at minimizing the overall packet loss rate (PLR) is proposed. The solution to the cross-layer design is modeled as a Markov decision process and utilizes the linear programming method to obtain the optimal adaptive transmission policy. Simulation results show the great decreasing of the system PLR compared with the traditional AMC scheme.
     Second, the automatic repeat request (ARQ) technology is introduced into the cross-layer design for MIMO-AMC systems. Based on the traditional cross-layer design, a novel cross-layer design applied for the actual MIMO systems is proposed. With the presence of imperfect CSI and other actual constraints, the cross-layer design uses Markov-chain-based analytical framework to investigate the performance of the systems and derive the close form expressions for the throughput, PLR and average delay, from which the overall system throughput is maximized under the specified QoS constraints. Simulation results demonstrate the verification of the performance analysis and show the extremely improvement of system throughput compared with the traditional cross-layer design.
     Third, aiming at the problem that wireless communication system can only guarantee statistical QoS, the combined effects of the physical layer transmission and the link layer packet queuing on the packet delay QoS of the MIMO systems are investigated. The analysis based on the effective bandwidth and effective capacity theory obtains the expression of the packet delay-bound QoS violation probability. Based on the expression, a novel cross-layer design is proposed to maximize the system effective throughput with the guarantees of the service delay QoS. Simulation results show that the proposed cross-layer design significantly improves the system performance in the condition of lower signal to noise ratio.
     Finally, the adaptive resource allocation problem for the MIMO systems in the presence of channel estimation error is analyzed. For the MIMO zero-forcing receivers, a novel algorithm of power allocation and adaptive modulation combining spatial water-filling theorem and bit allocation algorithm is proposed to maximize the system effective throughput in the conditions of the prescribed system packet error rate and limited transmit power. The numerical results show that the system effective throughput of the proposed algorithm is near optimal with acceptable implementation complexity. For the MIMO zero-forcing transmitter, a cross-layer adaptive resource allocation algorithm (CLARA) is proposed. The algorithm is effective in maximizing the system throughput, while also takes into account the fairness between users. Numerical results show the greatly improvement of the system effective throughput and guarantees of the users'fairness compared with the traditional resource allocation policy.
     A summarization about the cross-layer designs in MIMO systems is made in the end of this dissertation in which the future direction of the study is pointed out.
引文
[1-1]蔡涛,李旭,杜振民,无线通信原理与应用,电子工业出版社,1999,pp.1-2。
    [1-2]张平,王卫东,陶小峰等,WCDMA移动通信系统,第二版,人民邮电出版社,2004,pp.2-3。
    [1-3]朱旭红,宽带CDMA:第三代移动通信技术,人民邮电出版社,2000。
    [1-4]3GPP 25.308 V9.1.0, UTRA High Speed Downlink Packet Access (HSDPA): Overall Description, Stage 2.
    [1-5]尤肖虎,FuTURE B3G研究开发及关键技术进展,移动通信,2006年第6期,pp.18-22.
    [1-6]X. Yu, G Chen, M. Chen, et al. Toward Beyond 3G:The FUTURE Project in China [J], IEEE Communication Magazine, Vol.43, Mar.2005, pp.61-68.
    [1-7]Glisic S., Makela J. P., Advanced wireless networks:4G technologies. Spread Spectrum Techniques and Applications,2006 IEEE Ninth International Symposium, Manaus, Aug.2006, pp.442-446
    [1-8]Mirchandani V., Kibria M. R., Jamalipour A., An open-system 4G/B3G network architecture.2005 ICC Conference, Seoul, May 2005, pp.1357-1361.
    [1-9]沈嘉,IMT-Advanced无线空中接口关键技术,电信科学,Vol.,2007.9,pp.45-48
    [1-10]吴伟陵,牛凯,移动通信原理,第二版,电子工业出版社,2009,pp.4-5。
    [1-11]Telatar I., Capacity of multi-antenna Gaussian channel, European Transactions on Telecommunications, Vol.10(6), Dec.1999, pp.585-595.
    [1-12]Foschini G, Gans M. On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas, Wireless Personal Communications, Vol.1, Jun.1998, pp.311-335.
    [1-13]Raleigh GG,Cioffi J.M., Spatio-temporal coding for wireless communication. IEEE Transactions on Communications, Vol.46(3), Mar.1998, pp.357-366.
    [1-14]Foschini G, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J., Vol.1, 1996, pp.41-59.
    [1-15]Wolniansky P., Foschini G., Golgen G, V-Blast:an architecture for realizing very high data rates over the rich-scattering wireless channel. in:Conference Proceedings of the International Symposium on Signals, Systems and Electronics, 1998, pp.295-300.
    [1-16]Tarokh V., Seshadri N., Calderbank A.R., Space-time codes for high data rate wireless communication:performance criterion and code construction, IEEE Transactions on Information Theory, Vol.44(2), Mar.1998, pp.744~765.
    [1-17]Alamouti S.M., A simple transmit diversity technique for wireless communications, IEEE Journal on Selected Areas in Communications, Vol.16(8), Oct.1998, pp.1451~1458.
    [1-18]Tarokh V., Jafarkhani H., Calderbank A.R., Space-time block codes from orthogonal designs, IEEE Transactions on Information Theory, Vol.45(5), Jul.1999, pp.1456~1467.
    [1-19]Yi G., Ben Letaief K., Concatenated space-time block coding with trellis coded modulation in fading channels, IEEE Transactions on Wireless Communications, Vol. 1(4), Oct.2002, pp.580~590.
    [1-20]Zheng L.Z., Tse D.N.C.Diversity and multiplexing:a fundamental tradeoff in multiple-antenna channels, IEEE Transactions on Information Theory, Vol.49(5), 2003, pp.1073-1096.
    [1-21]3GPP TS 36.211 V8.6.0. Evolved Universal Terrestrial Radio Access (E-UTRA), Physical channels and modulation.
    [1-22]Maaref A., Aissa S., Capacity of space-time block codes in MIMO rayleigh fading channels with adaptive transmission and estimation errors, IEEE Transactions on Wireless Communications, Vol.4(5), Sep.2005, pp.2568-2578.
    [1-23]Harsini J. S., Lahouti F., Queuing with adaptive modulation over MIMO wireless links for deadline contrained traffic:cross-layer analysis and design, Proc. of IEEE ICC'07., Glasgow, Jun.2007, pp.235-240.
    [1-24]Hui S.Y., Yeung K.H., Challenges in the migration to 4G mobile systems, IEEE Communications Magazine, Vol.41(12), Dec.2003, pp.54-59.
    [2-1]Foschini G. J, Gans M, On limits of wireless communications in a fading environment when using multiple antennas, IEEE Wireless Personal Communications, Vol.1, Mar.1998, pp.204-210.
    [2-2]Telatar E, Capacity of Multi-antenna Gaussian channels, European Trans. On Communs., Vol.39, Nov.1999, pp.585-595
    [2-3]Foschini G. J, Layered space-time architecture wireless communication in a fading environment when using multi-element antennas, Bell Labs Tech J, Vol.1, 1996, pp.41-59.
    [2-4]Z. Pan, K. K. Wong, and T. S. Ng, Generalized Multiuser Orthogonal Space-Division Multiplexing, IEEE Trans. on Wireless Communications, Vol.3(6), Nov.2004, pp.1969-1973.
    [2-5]Spencer Q. H, Haardt M, Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels, IEEE Trans. On signal processing, Vol.52(2), Feb.2004, pp.461-471.
    [2-6]Costa M, Writing on dirty paper, IEEE Trans. Inform. Theory, Vol. IT-29, May 1983, pp.439-441.
    [2-7]Tang Jia, Zhang Xi, Cross-layer modeling for quality of service guarantees over wireless links, IEEE Trans. On Wireless Commun., Vol.6(12), Dec.2007, pp.4504-4512.
    [2-8]Srivastava. V, Motani. M, Cross-layer design:a survey and the road ahead, IEEE Communication Magazine, Vol.43(12), Dec.2005, pp.112-119.
    [2-9]Shakkottai S, Rappaport T, Karlsson P. Cross-layer design optimizations in wireless protocol stacks, Computer Communications,2004,27(8), pp.720-724.
    [2-10]Qi Wang, Abu-Rgheff M. A., Cross-layer signaling for next-generation wireless systems, IEEE WCNC 2003, Mar.2003, Vol.2, pp.1084-1089.
    [2-11]Liu Q, Zhou S, and Giannakis. G.. B, Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links, IEEE Trans. on Wireless Communications, vol.3, no.5, pp.1746-1755, Sept.2004.
    [2-12]Liu Q, Zhou S, and Giannakis. G.. B, Queuing with adptive modulation and coding over wireless links:cross-layer analysis and design, IEEE Trans. on Wireless Communications, Vol.4(3), May.2005, pp.1142-1153.
    [2-13]Anton-Haro. C, Svedman. P, Bengtsson. M, Alexiou. A, and Gameiro. A, Cross-layer scheduling for multiuser MIMO systems, IEEE Communication Magazine, Vol.44(9), Sept.2006, pp.39-45.
    [2-14]Letaief. K. B, and Zhang. Y, Dynamic multiuser resource allocation and adaptation for wireless systems, IEEE Wireless Communications, vol.13(4), Aug.2006, pp.38-47.
    [2-15]Jiang H, Zhuang W, and Shen X, Cross-layer design for resource allocation in 3G wireless networks and beyond, IEEE Communications Magazine, vol.43(12), Dec.2005, pp.120-126.
    [2-16]Zhang X, Tang J, et.al, Cross-Layer-Based Modeling for Quality of Service Guarantees in Mobile Wireless Networks, IEEE Communications Magazine, Vol.44(1), Jan.2006, pp.100-106.
    [2-17]Tang J, Zhang X. Cross-Layer Modeling for Quality of Service Guarantees Over Wireless Links. IEEE Transaction on wireless communications, Vol.6(12), Dec.2007, pp.4504-4512.
    [2-18]Zhou S, Zhang K, Niu Z and Yang Y, Queuing analysis on MIMO systems with adaptive modulation and coding, Proc. of IEEE ICC'08, Beijing, China, Jun. 2008, pp.3400-3405.
    [2-19]Angela Doufexi, Simon Armour, Michael Butler, A comparison of the HIPERLAN2 and IEEE 802.11a wireless LAN Standards, IEEE Communications Magazine, Vol.40(5), May 2002, pp.172-180.
    [2-20]Simon M. K., Alouini M, Digital Communication over Fading Channels:A Unified Approach to Performance Analysis, John Wiley & Sons, Inc.,2000.
    [2-21]Goldsmith A. J, Chua S. G, Variable-rate Variable-power MQAM for fading channels, IEEE Trans. on Communication, Vol.45(10), Oct.1997, pp.1218-1230.
    [2-22]Goldsmith A. J, Chua S. G, Adaptive coded modulation for fading channels, IEEE Trans. on Communication, Vol.46(5), May 1998, pp.595-602.
    [2-23]Catreux S, Erceg V, et.al, Adaptive modulation and MIMO coding for broadband wireless data networks, IEEE Communications Magazine, Vol.40(6), Jun.2002, pp.108-115.
    [2-24]Zhou Zhengdong, Vucetic B, Dohler M, et.al, MIMO systems with adaptive modulation, IEEE Transactions on Vehicular Technology, Vol.54(5), Sept.2005, pp.1828-1842.
    [2-25]Minn H, Zeng M, Bhargava V K, On ARQ scheme with adaptive error control, IEEE Trans. Veh. Technol, Vol.50(6), Nov.2001, pp.1426-1436.
    [2-26]Malkamaki E, Leih H, Performance of truncated type-II hybrid ARQ schemes with noisy feedback over block fading channels, IEEE Trans. Communication, Vol.48(9), Sept.2000, pp.1477-1487.
    [2-27]Malkamaki E, Mathew D, Hamalainen S, Performance of hybrid ARQ techniques for WCDMA high data rates, Vehicular Technology Conf 2001-Spring. Greece,2001, pp.2720-2724.
    [2-28]Karmokar A. K, Djonin D. V, and Bhargava V. K, Delay constrained rate and power adaptation over correlated fading channels, IEEE Global Telecommunications Conference, Nov 2004, Vol.6, pp.3448-3453.
    [2-29]M. Assaad and D. Zeghlache, Cross-Layer design in HSDPA system to reduce the TCP effect, IEEE Journal on Selected Areas in Communications, Vol.24, Mar. 2006, pp.614-625.
    [2-30]C. Fan, L. J. Su, M. Y. Chen, and D. C. Yang, A Markov Based Method for Modulation and Coding Scheme (MCS) selection with Hybrid ARQ Retransmission, Wireless and Optical Communications Networks,2006 IFIP International Conference on, Bangalore, April 2006, pp.1-5.
    [2-31]Wang R, Vincent K. N, Combined Cross layer design and HARQ for TDD multiuser systems with outdated CSIT, IEEE Globecom 2007, Washington D.C., Nov. 2007, pp.3358-3362.
    [3-1]V. Tarokh, H. Jafarkhani, A. R. Caldebank, Space-time codes from orthogonal designs, IEEE Trans. Inform. Therory, Vol.45(5), Jul.1999, pp.1456-1467
    [3-2]M.-S. Alouini, A. J. Goldsmith, Adaptive modulation over Nakagami fading channels, Kluwer J. Wireless Commun., Vol.13(1-2), May 2000, pp.119-143.
    [3-3]Q. Liu, S. Zhou, G. B. Giannakis, Queuing with adaptive modulation and coding over wireless links:cross-layer analysis and design, IEEE Trans. on Wireless Communications, Vol.4(3), May 2005, pp.1142-1153.
    [3-4]S. Zhou, K. Zhang, Z. Niu and Y. Yang, et al., Queuing analysis on MIMO systems with adaptive modulation and coding, Proc. of IEEE ICC'08, Beijing, China,Jun.2008, pp.3400-3405.
    [3-5]A. Maaref, S. Aissa, Adaptive modulation using orthogonal STBC in MIMO Nakagami fading channels, in Proc. IEEE ISSSTA'04, Sydney, Australia, Sep.2004, pp.145-149.
    [3-6]J. Razavilar, K. J. R. Liu, S. I. Marcus, Jointly optimized bit-rate/delay control policy for wireless packet networks with fading channels, IEEE Trans.on commun., Vol.50(3), Mar.2002, pp.484-494.
    [3-7]Hong W, Nader M, Finite-state markov channel-a useful model for radio communication channels. IEEE Transactions on Vehicle Technology, Vol.44(1), Feb.1995, pp.163-171
    [3-8]A. Ronald. Howard Dynamic Programming and Markov Processes, The M.I.T. Press,1960
    [3-9]Sheldom M.Ross著,龚光鲁译,应用随机过程概率模型导论,人民邮电出版社,2007,pp.194-197.
    [4-1]Liu Qingwen, Zhou Shengli, Giannakis G B, Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links, IEEE Trans. On Wireless Communications, Vol.3(5), Sep.2004, pp.1746-1755
    [4-2]Q. Liu, S. Zhou, G. B. Giannakis, Queuing with adaptive modulation and coding over wireless links:cross-layer analysis and design, IEEE Trans. on Wireless Communications, Vol.4(3), May 2005, pp.1142-1153.
    [4-3]A. Maaref, S. Aissa, Capacity of space-time block codes in MIMO rayleigh fading channels with adaptive transmission and estimation errors, IEEE Trans. on Wireless Communications, Vol.4(5), Sep.2005, pp.2568-2578.
    [4-4]J. S. Harsini, F. Lahouti, Queuing with adaptive modulation over MIMO wireless links for deadline contrained traffic:cross-layer analysis and design, Proc. of IEEE ICC'07., Glasgow, Scotland, Jun.2007, pp.235-240.
    [4-5]S. Zhou, K. Zhang, Z. Niu, et al., Queuing analysis on MIMO systems with adaptive modulation and coding, Proc. of IEEE ICC'08, Beijing, China, Jun.2008, pp.3400-3405.
    [4-6]C. Wang, E. K. S. Au, R. D. Murch, et al., On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error, IEEE Trans. on Wireless Communications, Vol.6(3), Mar.2007, pp.805-810.
    [4-7]R. Wang, V. K. N. Lau, Cross layer design of downlink multi-antenna OFDMA systems with imperfect CSIT for slow fading channels, IEEE Trans. on Wireless Communications, Vol.6(7), Jul.2007, pp.2417-2421.
    [4-8]Jiang F, Wang Y, Fang X, et al., Cross-layer design for MIMO system with zero-forcing receiver in the presence of channel estimation error, IEEE ICC, Beijing, May 2008, pp.3868-3872
    [4-9]Liu Q., Zhou S., Giannakis G. B., Queuing with adaptive modulation and coding over wireless links:cross-layer analysis and design, IEEE Trans. on Wireless Communications, Vol.4(3), May 2005, pp.1142-1153.
    [4-10]L. Kleinrock, Queueing Systems. Vol.1:Theory. John Wiley & Sons, New York, 1975.
    [5-1]L. Li, A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels-Part Ⅰ:ergodic capacity, IEEE Transactions on Information Theory, Vol.47(3), Mar.2001, pp.1083-1102.
    [5-2]L. Li and A. Goldsmith, Capacity and optimal resource allocation for fading broadcast channels-Part Ⅱ:outage capacity, IEEE Transactions on Information Theory, Vol.47(3), Mar.2001, pp.1103-1127.
    [5-3]Abbas Jamalipour, The Wireless Mobile Internet:Architectures, Protocols and Services, Wiley, Feb.2003
    [5-4]Tjelta T., Nordbotten A., Annoni M., et al, Future broadband radio access systems for integrated services with flexible resource management, IEEE Communications Magazine, Vol.39(8), Aug.2001, pp.56-63.
    [5-5]Q. Liu, S. Zhou, G. B. Giannakis, Queuing with adaptive modulation and coding over wireless link:cross-layer analysis and design, IEEE Transactions on Wireless Communications, Vol.4(3), May 2005, pp.1142-1153.
    [5-6]D. Rajan, A. Sabharwal, B. Aazhang, Delay bounded packet scheduling of bursty traffic over wireless channels, IEEE Transactions on Information Theory, Vol.50(1), Jan.2004, pp.125-144.
    [5-7]Q. Liu, S. Zhou, G. B. Giannakis, Cross-layer modeling of adaptive wireless link for QoS support in heterogeneous wired-wireless networks,ACM/Kluwer Journal of Wireless Networks (WINET), Vol.12,2006, pp.427-437,
    [5-8]C.-S. Chang, Performance Guarantees in Communication Networks, Berlin, Germany:Springer-Verlag,2000
    [5-9]G. Kesidis, J. Walrand, C.-S. Chang, Effective bandwidths for multiclass Markov fluids and other ATM sources, IEEE/ACM Transactions on Networking, vol. 1(4), Aug.1993, pp.424-428.
    [5-10]Tang J, Zhang X., Cross-layer modeling for quality of service guarantees over wireless links. IEEE Trans. Wireless Commun, Vol.12(6), Dec.2007, pp.4504-4512.
    [5-11]Wang C, Au E K S, Murch R D, et al., On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error, IEEE Trans. Wireless Commun, Vol.6(3), Mar.2007, pp.805-810.
    [5-12]Wu D, Negi R, Effective capacity:a wireless link model for support of quality of service. IEEE Trans. Wireless Commun, Vol.2(4), Jul.2003, pp.630-643.
    [6-1]Choi Y. J., Kim J., Bahk S., Downlink scheduling with fairness and optimal antenna assignment for MIMO cellular systems, GLOBECOM 2004. Dallas:IEEE Press,2004, pp.3165-3169.
    [6-2]Wang C., Murch R., Adaptive cross-layer resource allocation for downlink multi-user MIMO wireless system, VTC 2005-Spring. Stockholm:IEEE Press,2005, pp.1628-1632.
    [6-3]Zhang Y. J., Letaief K. B., An efficient resource-allocation scheme for spatial multiuser access in MIMO/OFDM systems, IEEE Transactions on Communications, Vol.53(1), Jan.2005, pp.107-116.
    [6-4]E. Baccarelli, M. Biagi, C. Pelizzoni, On the information throughput and optimized power allocation for MIMO wireless systems with imperfect channel estimation, IEEE Trans. Signal Process, Vol.53(7), Jul.2005, pp.2335-2347.
    [6-5]Y. (G.) Li, A. C. K. Soong, Y. G. Du, et al., Beamforming with imperfect CSI, Proc. IEEE Wireless Commun. Networking Conf, Mar.2007, pp.1156-1160,.
    [6-6]C. Wang, E. K. S. Au, R. D. Murch, On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error, IEEE Trans. Wireless Commun, Vol.6(3), Mar.2007, pp.805-810.
    [6-7]Hu G N, Jiang F, Wang Y, et al., On the performance of a multi-user multi-antenna system with transmit zero-forcing beamforming and feedback delay, WCNC 2008. Las Vegas:IEEE Press,2008, pp.1821-1825.
    [6-8]Li Y, Soong A. C. K., Du Y. G, et al., Beamforming with imperfect CSI, WCNC 2007. Hong Kong:IEEE Press, Mar.2007, pp.1157-1161.
    [6-9]Wang R, Lau V K N., Cross layer design of downlink multi-antenna OFDMA systems with imperfect CSIT for slow fading channels. IEEE Transactions on Wireless Communications, Vol.6(7), Jul.2007, pp.2417-2421.
    [6-10]Jiang F, Wang Y, Fang X, et al., Cross-layer design for MIMO system with zero-forcing receiver in the presence of channel estimation error, IEEE ICC, Beijing, May 2008, pp.3868-3872
    [6-11]Goldsmith A. J, Chua S., Variable-rate variable-power MQAM for fading channels, IEEE Trans. on Communication, Vol.45(10), Oct.1997, pp.1218-1230.
    [6-12]Khalighi M A, Raoof K, Jourdain G, Capacity of wireless communication systems employing antenna arrays, a tutorial study, Wireless Personal Communication, Vol.13(1),2002, pp.1-30.
    [6-13]Sharif M, Hassibi B, A comparison of time-sharing, DPC, and beamforming for MIMO broadcast channels with many users, IEEE Trans. On communications, Vol 55(1), Jan,2007, pp.11-15.
    [6-14]S. Vishwanath, N. Jindal, A. Goldsmith, Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels, IEEE Trans. Inf. Theory, Vol.49(10), Oct.2003, pp.2658-2668.
    [6-15]Yoo T, Goldsmith, On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming, IEEE Journal on Selected Areas in Communications, Vol.24(3), Mar.2006, pp.528-541.
    [7-1]C. Anton-Haro, P. Svedman, M. Bengtsson, et al., Cross-layer scheduling for multiuser MIMO systems, IEEE Communication Magazine, Sept.2006, Vol.44(9), pp.39-45.
    [7-2]Letaief K. B., Zhang Y. J., Dynamic multiuser resource allocation and adaptation for wireless systems. IEEE Wireless Communications, Vol.13(4), Aug.2006, pp.38-47.
    [7-3]S. Vishwanath, N. Jindal, A. Goldsmith, Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels, IEEE Trans. Inform. Theory, Vol.49(10), Oct.2003, pp.2658-2668.
    [7-4]H.SamPath, S.Talwar, J.Tellado, et al., A fourth-generation MIMO-OFDM broadband wireless system:design, performance, and field tria lresults, IEEE Communication Magazine, Vol.40(9), Sep.2002, pp.143-149.
    [7-5]S. Hara, R. Prasad, Multicarrier techniques for 4G mobile communications. Boston, Mass:Artech House,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700