MIMO技术在无线Ad hoc网络中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线Ad hoc网络是一种非常具有发展前景的自组织网络,尤其是在战术应用和宽带无线接入系统中。而MIMO技术是未来无线通信设备的核心技术,其技术特点将为无线Ad hoc网络带来网络容量、时延、公平性、覆盖距离和可靠性等性能的大幅提升,尤其是共道干扰下的MIMO并行通信能力和多包接收能力,可以通过物理层的方法增加邻域内同时通信的链路,因此在战术通信中具有重要的应用价值,甚至可以改变现役通装设备的通信体制。本文在分析总结了MIMO技术在Ad hoc网络中应用的现状和亟待解决的关键问题的基础上,针对目前在无线Ad hoc网络中应用MIMO的共道干扰抑制能力、空间分集和空间复用等重要问题,进行了深入的研究和大量的仿真实验,取得了以下几个方面的研究成果:
     1.提出了一种改进的并行通信MIMO Ad hoc网络容量模型;
     由于通过MIMO干扰抑制的方法可以增加无线Ad hoc网络邻域内同时通信的链路,因此共道干扰抑制下的并行传输模式在战术Ad hoc网络中具有重要的应用价值。目前仅有一个容量模型对所有节点装配了MIMO系统并工作在并行传输模式的Ad hoc网络进行了网络容量分析,但是其网络模型模糊,缺少必要的物理传播模型和一些实际的网络参数约束。本文提出了一种改进的网络容量数学模型,引入经典电波传播模型来分析收发节点间距离以及期望节点与干扰节点间距离对网络容量的影响,首次将网络大小、网络节点分布密度、节点间距离和接收机解包功率门限等重要网络参数纳入网络容量数学模型,使网络容量模型能反映物理信道和网络的变化,提高了模型的准确性。
     2.剖析了MIMO空间分集对无线Ad hoc网络隐藏和暴露终端问题的影响,并获取了在不同网络运行参数下不同性能选择的最佳分集应用模式;
     现在大多数对MIMO空间分集的研究都集中在物理层上,而没有考虑到复杂的网络层面。本文研究MIMO空间分集对于移动Ad hoc网络带来的性能提升,包括速率、时延、覆盖范围、路由效率和吞吐量等指标,首次分析了空间分集的应用对分布式Ad hoc网络隐藏终端和暴露终端问题的影响;探讨了使用空间分集增益来增加覆盖范围与提高速率这两者之间的折中,我们使用Ad hoc网络经典的MAC协议和路由协议来进行仿真研究,获取了在不同网络运行参数下不同性能选择的最佳应用模式,这些结论将为MIMO Ad hoc网络运行模式和自适应传输策略的设计提供有益的指导,具有很好的实际参考价值。
     3.提出了一种利用MIMO多包接收能力的多天线MAC协议;
     目前无线Ad hoc网络的单信道MAC协议都被设计成在同一时刻一跳范围内只能允许一对用户通信,而MIMO空间复用技术在Ad hoc网络中的应用,为其MAC层协议设计提供了新的思路。本文提出了一种的利用MIMO多包接收能力的多天线MAC新协议(MAMA协议),给出了基于该协议的物理层考虑,协议的帧结构和运行过程,对协议的吞吐量、时延和公平性进行了理论分析和仿真。新协议实现了邻域内多点对点的同时通信,提供了一种新的通信模式,加快了战场态势信息的收集和传递速度。
     4.提出了一种解决OFDM系统帧同步方差问题的方法;
     在利用并行通信能力和多包接收能力的MAC协议运行过程中,收发机的信号同步是保证MIMO信号可以被成功检测的前提。因此为了研究分布式Ad hoc网络中MIMO-OFDM收发机的定时同步技术,本文首先从OFDM系统的定时同步问题入手,针对传统OFDM定时同步算法中的方差问题,利用度量函数几何特征提出了一种解决OFDM帧同步方差问题的新方法,引入了无穷小因子,使定时同步性能在多径信道下得到较大的提高。
     5.提出了一种基于正交变周期训练序列的分布式MIMO-OFDM定时同步算法;
     针对MIMO-OFDM收发机在分布式Ad hoc网络中的应用,提出了一种基于正交变周期训练序列的分布式Ad hoc网络MIMO-OFDM定时同步算法(OVPSP),该算法提出了一种新的多天线定时同步训练序列设计方法,每根发射天线的训练序列取自彼此正交的序列母本,且不同天线采用不同的序列周期。由于这种方法可以有效对抗多径衰落和天线间干扰,因此新算法显著提高了定时同步在多径信道下的性能,解决了传统分布式MIMO-OFDM系统定时同步算法在多径信道下精确符号同步估计正确率低的问题。
Wireless Ad hoc networks have found wide application in wireless communication systems, especially in military communication and broadband wireless communication systems. On the other hand, Multi input Multi output (MIMO) is one of core technologies in future wireless communication system. Its main features can greatly improve the performance of wireless Ad hoc networks, such as network throughput, delay, fairness, coverage, reliability and so on. Especially the capabilities of parallel transmission and multi-packet reception,MIMO can increase the number of communication links by the PHY way. Therefore, it is significant to the tactical communication. Even it may change the communication modes of communication equipments in active service. In this thesis, we firstly make a summary of the main ways to obtain the performance improvement of Ad hoc network by MIMO and show the primary questions needed to be answered and the key technologies applying MIMO to Ad hoc networks. We investigate the problems of utilizing spatial diversity, spatial multiplexing and interference suppression of MIMO in Ad hoc networks. Through in-depth study and a mass of simulations, we achieved the following contributions and innovations:
     1. Proposes and verifies an improved capacity model of MIMO Ad hoc network with parallel communiating
     MIMO can increase the number of communication links by interference suppression in a neighbor of wireless Ad hoc networks. It makes the parallel transmission of MIMO a promising candidate for wide use in tactical Ad hoc networks. Up to now there is only one model analyzing the network capacity operating on parallel transmission mode equipped with MIMO allover the network. But its network model is ambiguous. It is lack of the necessary propagation model and constraints of actual networks. This thesis proposes an improved mathematic model of network capacity, in which we introduce a classical propagation model to analysis the effect of the distance between transmitter and receiver and the distance between excepted receive node and interference node on the network capacity. This is the first model which considers the effect of the total area of the network, average density of nodes, distance between nodes and power threshold of receiving successive packet. These considered factors enable the new model to reflect the changes of channels and networks. By the way, the veracity of capacity model is improved significantly.
     2. Evaluates the effects of diversity gain on hidden terminal and exposed terminal problem in Ad hoc network for the first time and achieves the optimal application modes for different performance choices
     At present, most of the researches on spatial diversity are focused on the physical layer without taking into consideration the intricacies of a network-wide deployment. The thesis analyzes the improvement of main performance index of mobile Ad hoc networks (MANET) by diversity gain including transmission bit rates, delay, coverage, routing efficiency and throughput. The effects of diversity gain on hidden terminal and exposed terminal problem in Ad hoc network are evaluated for the first time. We discuss the trade-offs between coverage and bit rates improved by the diversity gain of MIMO. Simulation of the total network is performed with employing traditional MAC and route protocols. The optimal application modes for different performance choices are achieved from the simulation results employing different network parameters. These conclusions can provide helpful guidance in designing operation scheduler of network and adaptive transmission strategy.
     3. Proposes a novel MAC protocol employing the multi-packet reception (MPR) of MIMO
     Traditional MAC protocols allow only one pair of communicating nodes in a neighborhood of single-channel Ad hoc networks. Now the SM of MIMO provides a new way for MAC design. We propose a novel MAC protocol employing the multi-packet reception (MPR) of MIMO. In this protocol, exchanges of RTS/SCTS control packets are used to reserve the physical channel. The channel reserve, finite state machine and operation of this protocol are introduced in detail. Furthermore, we present the theory models of normalized saturation throughput for the new protocol. Multipoint-to-point communication is realized in a neighborhood of Ad hoc networks. This is a new communication mode which can speed up the collection and transfer of battlefield information in tactical Ad hoc networks.
     4. Proposes a novel method to slove the variance problem of coarse timing synchronization for OFDM systems
     During the implementation of protocols utilizing the parallel communication and MPR of MIMO, the timing synchronization is a prerequisite for successfully detecting. For the study on timing synchronization of MIMO-OFDM used in the distributed Ad hoc networks, this thesis begins with the timing synchronization of OFDM system. With consideration of the timing variance problem, we propose a new method to reduce the variance based on geometry character of synchronization metric. Because of the introducing of an infinitesimal, this method significantly improves the performance of timing synchronization in multi-path channel.
     5. Proposes a timing synchronization algorithm based on orthogonal variable- period sequences for MIMO-OFDM system in distributed Ad hoc networks
     For the application of MIMO-OFDM transceiver in distributed Ad hoc networks, we propose a timing synchronization algorithm which presents a novel design method of timing synchronization training sequences, so called“orthogonal variable-period sequences”. The training sequence structure of every transmitting antenna is formed with several variable-period modulatable sequences which are taken from different orthogonal sequences. This method can effectively eliminate multi-path fading and Multiple Antennas Interference (MAI) and greatly improves the performance of timing synchronization in multi-path channel. The proposed algorithm solves the problem of very low probability of correct fine timing in traditional synchronization algorithm under multi-path channel.
引文
[1] B. M. Leiner, D. L. Nielson and F. A. Tobagi. Issues in packet radio network design[J]. Proceedings of IEEE, 1987, Vol.75 No.1: 6-20.
    [2] J. Jubin and J.D. Tornow. The DARPA packet radio network protocols[J]. Proceedings of IEEE, 1987, Vol.75 No.1: 21-32.
    [3] J. Freebersyser and B. Leiner. A DoD perspective on mobile ad hoc networks[J]. In C. Perkins, eds. Ad Hoc Networking, 2001, pp. 29-51.
    [4] Bangnan Xu and Sven Hischke,“The Role of Ad hoc Networking in Future Wireless Communications[A]”,International Conference on Communication Technology Proceedings 2003,ICCT 2003,April 2003,vol.2,pp.1353-1358.
    [5] M.Frodigh, P.Johansson,et al.,“Wireless Ad hoc Networking-the Art of Networking without a Network[J],”Ericsson REVIEW magazine,2000,no.4, pp.248-263.
    [6] Jun Yang,Jiandong Li and Min Sheng,“Mac protocol for mobile ad hoc network with smart antennas[J],”IEE Electronics Letters,March 2003,vol.39,no.6,pp.555-557.
    [7] Shad, F.Todd,T.D.,“Capacity of S-ALOHA protocols using a smart antenna at the base station[A]”, Personal,.The Ninth IEEE International Symposium on Indoor and Mobile Radio Communications, 8-11 Sept.1998, vol.3, pp.1101-1105.
    [8] R.J. Mailloux, Phased Array Antenna Handbook [M]. Artech House, 1993.
    [9] K-H. Li, M.A. Ingram, and E.O. Rausch,“Multibeam Antennas for Indoor Wireless Communications[J],”IEEE Trans. Comm., vol. 50,no. 2, pp. 192-194, Feb. 2002.
    [10] D. Gesbert, M. Shafi, D. Shiu, P.J. Smith, and A. Naguib,“From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems[J],”IEEE J. Selcted Areas in Comm., vol. 21, no. 3, pp. 281-301, Apr. 2003.
    [11] K.Sundaresan, R.Sivalumar, M.A.Ingram and T.-Y.Chang,“Medium Access Control in Ad Hoc Networks with MIMO Links: Optimization Considerations and Algorithms [J],”IEEE Trans.On Mobile Computing, vol.3, no.4, pp.350-365, Oct-Dec.2004.
    [12] J.H. Winters and M.J. Gans,“The Range Increase of Adaptive versus Phased Arrays in Mobile Radio Systems[J],”IEEE Trans. Vehicular Technology, vol. 48, no. 2, pp. 353-362, Mar. 1999.
    [13] G.J. Foschini and M.J. Gans,“On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas [J],”Wireless Personal Comm., vol. 6, pp. 311-335, 1998.
    [14] V.tarokh, N.Seshadri, and A.R.Calderbank,“Space-time codes for high data rate wireless communication: Performance criterion and code construction[J],”IEEE Trans. Inform. Theory, vol.44, Mar. 1998, pp.744-765.
    [15] G.J. Foschini,“Layered Space-Time Architecture for Wireless Communication[J],”Bell Labs Technical J., vol. 6, 1998, pp. 311-335.
    [16] IEEE Std. 802-11.1997, IEEE Standard for Wireless LAN medium access control (MAC) and physical layer (PHY) specification[S]. 1997 Edition.
    [17] IEEE Std.802.16TM-2004,IEEE Standard for Local and Metropolitan Area Networks——Part 16:Air Interface for Fixed Broadband Wireless Access Systems[S], 2004.6.
    [18] S. Alamouti,“A simple transmit diversity technique for wireless communications[J],”IEEE J. Select. Areas Commun., vol. 16, pp. 1451–1458, Oct. 1998.
    [19] G. Golden, C. Foschini, R.Valenzuela, and P. Wolniansky,“Detection Algorithm and Initial Laboratory Results Using V-BLAST Space-Time Communication Architecture[J],”Electron. Lett., vol. 35, no. 1, Jan. 1999, pp. 14–15.
    [20] Rick S. Blum,“MIMO Capacity With Interference[J],”IEEE Journal on Selected Areas in Commnications, VOL. 21, NO. 5, JUNE 2003, pp: 793-801.
    [21] M.F.Dcmirkol and M.A.Ingram,“Power-controlled capacity for interfering MIMO links[A]”, Vehicular Technology conference,vol.1, Oct.2001, pp:187-191.
    [22] Gartner, M.E. Bolcskei, H. Multiuser Space-Time/Frequency Code Design[A], 2006 IEEE International Symposium on Information Theory, 9-14 July 2006 On page(s): 2819-2823.
    [23] KF Lee, DB Williams“A space-frequency transmitter diversity technique for OFDM systems[A],”in Proc. IEEE Global Communications Conf., vol. 3, 2000, pp. 1473–1477.
    [24] J.H. Winters, J. Salz, and R.D. Gitlin,“The Impact of Antenna Diversity on the Capacity of Wireless Communication Systems[J],”IEEE Trans. Comm., vol. 42, no. 2, 1994, On page(s): 1740– 1751.
    [25] K. Sundaresan and R. Sivakumar,“Routing in ad-hoc networks with MIMO links[A]”. In IEEE ICNP, 2005, pp. 85-98.
    [26] L. Zheng and D. Tse,“Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels[J],”IEEE Trans. Information Theory, vol. 49, no. 5, May 2003, pp. 1073-1096.
    [27]R.R. Choudhury, X. Yang, R. Ramanathan, and N.H. Vaidya,“Using Directional Antennas for Medium Access Control in Ad Hoc Networks[J],”Proc. ACM MOBICOM,Sept. 2002.
    [28]J.H. Winters,“Optimum Combining in Digital Mobile Radio with Cochannel Interference [J],”IEEE J. Selected Areas in Comm., vol. 2, July 1984, pp. 528-539.
    [29] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel[A], in IEEE Proc. ISSSE, Pisa, Italy, September 1998, pp. 295-300.
    [30] C. Windpassinger and R. F. H. Fischer, Low-Complexity Near- Maximum-Likelihood Detection and Precoding for MIMO Systems using Lattice Reduction[A], IEEE Proc. ITW, Paris, France, March 2003, pp345-348.
    [31]M.F. Demirkol and M.A. Ingram,“Stream Control in Networks with Interfering MIMO Links[A],”Proc. IEEE Wireless Comm. And Networking Conf., Mar. 2003, pp343-348.
    [32] M.F. Demirkol and M.A. Ingram,“Control Using Capacity Constraints for Interfering MIMO Links[A],”Proc. Int’l Symp. Personal, Indoor, and Mobile Radio Comm., vol. 3, Sept. 2002, pp. 1032-1036.
    [33] J.-S. Jiang, M.F. Demirkol, and M.A. Ingram,“Measured Capacities at 5.8 GHz of Indoor MIMO Systems with MIMO Interference[A],”Proc. IEEE Fall Vehicular Technology Conf., Oct. 2003, pp. 388-393.
    [34] D. A. Gore, R. W. Heath, Jr., and A. J. Paulraj,“Transmit Selection in Spatial Multiplexing Systems[J],”IEEE Commun. Lett., vol. 6, no. 11, Nov. 2002, pp. 491–493.
    [35] Minyoung Park, Robert W. Heath Jr.,“Improving Throughput and Fairness for MIMO Ad Hoc Networks Using Antenna Selection Diversity[J]”, IEEE Communications Society Globecom 2004. pp. 3363-3367.
    [36] J.B. Anderson,“Antenna Arrays in Mobile Communications: Gain, Diversity, and Channel Capacity[J],”IEEE Antennas and Propagation Magazine, vol. 42, Apr. 2000, pp. 12-16.
    [37] D. Shiu, G.J. Foschini, M.J. Gans, and J.M. Kahn,“Fading Correlation and Its Effect on the Capacity of Multiple-Element Antennas[J],”IEEE Trans. Comm., vol. 48, Mar. 2000, pp. 502-513.
    [38] R.W. Heath, Jr. and A. Paulraj,“Switching between spatial multiplexing and transmit diversity based on constellation distance[A],”Allerton Conf. Comm. Cont. and Comp., Oct. 2000.
    [39] S. Catreux, L. J. Greenstein, and P. F. Dressen,“Simulation results for aninterference-limited multiple-input multiple-output cellular system[J],”Commun. Lett., vol. 4, Nov. 2000, pp. 334–336.
    [40] Webb, M.; Beach, M.; Nix, A. Capacity limits of MIMO channels with co-channel interference [A], IEEE 59th Vehicular Technology Conference, 2004 , Page(s): 703– 707.
    [41] I. E. Telatar,“Capacity of Multi-antenna Gaussian Channels[J],”European Transactions on Telecommunications, Nov./Dec. 1999, pp. 585-595.
    [42] Gaur, S., Jeng-Shiann Jiang, Ingram, M.A.; Demirkol, M.F.“Interfering MIMO links with stream control and optimal antenna selection[A],”IEEE Global Telecommunications Conference, 2004. GLOBECOM.Volume 5, Issue, 29 Nov.-3 Dec. 2004 Page(s): 3138 - 3142.
    [43] S. Ye and R.S. Blum,“On rate regions for wireless MIMO ad hoc networks[A],”in Proc. IEEE Vehicular Technology Conference 2004-Fall, Los Angeles, CA, Sep. 2004, Page(s): 1648 - 1652 Vol. 3.
    [44] Mody.A.N, Stuber.G.L.“Synchronization for MIMO-OFDM systems[A],”Global Telecomm., Conference, 2001.IEEE.Volume:1,25-29 Nov.2001 Pages:509-513.
    [45]张建华等.用于MIMO OFDM系统的定时同步算法[J],北京邮电大学学报,第32卷第1期, 2009.2, 118-121.
    [46] Sridhar Nandula. Robust timing synchronization for OFDM based wireless LAN system[A], TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region Volume 4, 15-17 Oct. 2003:1558-1561.
    [47] Timothy M. Schmidl, Robust Frequency and Timing Synchronization for OFDM[J]. IEEE Trans Communication, 1997, 45(12): 1613-1621.
    [48] B.K.Ng and E.S.Sousa. On bandwidth-efficient multiuser-space-time signal design and detection[J],”IEEE J. Select. Areas Commun., Feb. 2002, vol. 20: 320–329.
    [49] Chengkang Pan, Yueming Cai, Youyun Xu. Multipacket Reception in MIMO-OFDM Systems[A]. Proceedings of ISCIT, 2005, pp:1118-1121.
    [50] IEEE Std.802.11,“Wireless LAN Media Access Control (MAC) and Physical Layer (Phy) Specification[S],”IEEE Std.1999.
    [51]N.Aramson,“The Aloha System—Another Alternative for Computer Communications [A],”Proc. Fall Joint Comput. Conf., AFIPS Conf., pp.37
    [52] L.G. Roberts,“Aloha Packet System with and without Slots and Capture”(ASS Note 8). Stanford, CA: Stanford Research Institute, Advanced Research Projects Agency,Network Information Center.
    [53]F.A. Tobagi, L. Kleinrock, Packet switching in radio channels: Part I-Carrier sense multiple-access modes and their throughput-delay characteristics[J], IEEE Transactions on Communications, vol.23, no.12, Dec.1975, pp.1400-1416.
    [54] I. Chlamtac, A. D. Myers, V. R. Syrotiuk, G. Zaruba,“An adaptive medium access control (MAC) protocol for reliable broadcast in wireless networks[A],”in Proc. IEEE ICC’2000, New Orleans, Jun.2000, pp.1692-1696.
    [55] C. Zhu and M. S. Corson. QoS routing for mobile ad hoc networks[A]. In Proc. of the Twenty First International Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), New York, USA, 2002. Vol.2: 958– 967.
    [56]C. R. Lin and J.S. Liu. QoS routing in ad hoc wireless networks[J], IEEE J. Selected Areas inCommunications, 1999, Vol.17, No.8: 1426-1438.
    [57]S. Chen and K. Nahrstedt. Distributed quality of service routing in ad-hoc networks[J]. IEEEJ. Selected Areas in Communications, 1999, Vol. 17, No.8: 1488-1505.
    [58]B. R. Smith, S. Murphy, and J. J. Garcia-Luna-aceves. Securing distance-vector routing protocols[A]. In Proceedings of Symposium on Network and Distributed System Security, Los Alamitos, CA, 1997, pp. 85-92.
    [59]Hongmei Deng, Wei.Li.“Routing security in wireless ad hoc networks[J],”IEEE Communication Magazine, 2002. Vol.40, No.10: 70– 75.
    [60]L. Zhou and Z. J. Haas.“Securing ad hoc networks[J]”. IEEE Networks, 1999, Vol.13, No.6, pp: 24-30
    [61]R. Sivakumar, P. Sinha, and V. Bharghavan. CEDAR: A core-extraction distributed ad hoc routing algorithm[J]. IEEE J. Selected Areas in Communications, Special Issue on Ad Hoc Networks, 1999, Vol.17, No.8: 1454-1465.
    [62]S. H. Shah, and K. Nahrstedt. Predictive location-based QoS routing in mobile ad hoc networks[A]. In Proceedings of IEEE International Conference on Communications (ICC 2002), New York, NY, 2002, Vol.2: 1022– 1027.
    [63] K. Chandran et al. A feedback based scheme for improving TCP performance in ad hoc networks[J]. IEEE Personal Communication Systems (PCS) Magazine Special issue on Ad Hoc Networks, 2001, Vol.8 No.1: 34-39.
    [64]DK Kim, CK Toh, and Y. Choi. TCP-bus: Improving TCP performance in wireless ad hoc networks[J]. J. Communications and Networks, 2001, Vol.3 No.2: 175-186.
    [65]R. Ramanathan and R. Rosales-Hain. Topology control of multihop wireless networks using transmit power adjustment[A]. Proc. IEEE Infocom 2000, 2000, Vol.3: 404-413.
    [66]L. Bao and J. J. Garcia-Luna-Aceves. Topology management in ad hoc networks[J]. Proc. MobiHoc 2003, 2003, pp. 129-140.
    [67]Zygmunt J. Haas, Ben Liang. Ad hoc mobility management with uniform quorum systems[J]. IEEE/ACM Transactions on Networking (TON), 1999, Vol.7 No.2: 228 -240.
    [68] R.Garces, J.J. Garcia-Luna-Aceves,“Collision avoidance and resolution multiple access for multichannel wireless networks[A],”in Proc. IEEE INFOCOM’2000, Tel Aviv, Israel, Mar.2000, pp.595-602.
    [69] Aruna Jayasuriya, et al,“Hidden vs. Exposed Terminal Problem in Ad hoc Networks[A]”, Proc. of Australian Telecommunication Networks and Applications Conference, Dec 2004. http://www.itr.unisa.edu.au/ sgordon/doc/jayasuriya2004-hidden.pdf.
    [70] J. Moy. OSPF version 2. RFC 1583, March 1994.
    [71]G. Malkin. RIP version 2. RFC 2453, November, 1998.
    [72]S. Singh, M. Woo, C. S. Raghavendra. Power-aware routing in mobile ad hoc networks [A]. In Proc. Conf. Mobile Computing, MOBICOM, 1998, pp.181-190.
    [73]Stojmenovic, X. Lin. Power-aware localized routing in wireless networks[J]. IEEE transactions on parallel and distributed systems, 2001, Vol.12, No.11: 1122-1133.
    [74]C.-K. Toh. Maximum battery life routing to support ubiquitous mobile computing in wireless ad hoc networks[J]. IEEE Communications Magazine, 2001, Vol. 39, No. 6: 138-147.
    [75]Perkins, Royer. Multicast ad hoc on-demand distance vector routing (MAODV). IETF draft, July 2000.
    [76]K. Chen and K. Nahrstedt. Effective location - guided tree construction algorithm for small group multicast in MANET[A]. In Proceedings of IEEE Infocom'02, 2002, Vol3: 1180-1189.
    [77]C.-K. Toh, Guillermo Guichala, and Santithorn Bunchua. ABAM: On-demand associativity-based multicast routing for ad hoc mobile networks[A]. In Proceedings of IEEE Vehicular Technology Conference, VTC 2000, 2000, vol.3: 987-993.
    [78]Julien Cartigny, David Simplot, Ivan Stojmenovic. Localized minimum-energy broadcasting in ad-hoc networks[J]. IEEE Infocom 2003, 2003, Vol.3: 2210- 2217.
    [79] [加]Simon Haykin Michael Moher.西蒙·赫金.现代无线通信[M].电子工业出版社, 2006.
    [80] W. Zhang and K.B. Letaief. A systematic design of multiuser space-frequency codes for MIMO-OFDM systems[A], in Proc. IEEE International Conference on Communications(ICC 2007), Glasgow, Scotland, UK, June 24-28, 2007:1054-1058.
    [81] S. Ghez, S. Verdu and S. Schwartz, Stability properties of slotted ALOHA with multipacket reception capability[J], IEEE Trans. Automat.Cont. Jul.1988, vol.33 (7):640-649.
    [82] H. B¨olcskei,“Space-frequency codes for broadband fading channels[A],”in Proc. IEEE ISIT, Washington, DC, June 24-29, 2001, pp. 219.
    [83] Y. Gong and K. B. Letaief,“An efficient space-frequency coded OFDM system for broadband wireless communications[J],”IEEE Trans. Commun., vol. 51, Dec. 2003, pp. 2019-2029.
    [84] W. Su, Z. Safar, and K. J. R. Liu,“Full-rate full-diversity space-frequency codes with optimum coding advantage[J],”IEEE Trans. Inf. Theory, vol. 51, Jan. 2005, pp. 229–249.
    [85]吕侠,肖丽萍,马凌宇.空时/频编码在OFDM系统中的应用[J].无线电通信技术, 2007,Vol.33 No.6:27-29.
    [86]李青云.多用户MIMO上行关键技术研究.电子科技大学硕士学位论文[D],2009,6.
    [87] Biao Chen; Gans, M.J.“MIMO communications in ad hoc networks[J],”IEEE Transactions on Signal Processing, Volume 54, Issue 7, July 2006 Page(s):2773– 2783.
    [88] Z.D. Bai and Y.Q. Yin,“Limit of the smallest eigenvalue of a large dimensional sample covariance matrix,”Ann. Probab., vol. 21, no. 3, 1993, pp. 1275–1294.
    [89] I.M. Johnstone,“On the distribution of the largest eigenvalue in principle components analysis,”Ann. Statist., vol. 29, no. 2, 2001, pp. 295–327.
    [90] A.B. Carleial,“Interference Channels[J],”IEEE Trans. Inform. Theory, vol. 24, Jan. 1978, pp. 60–70.
    [91] M.H.M. Costa,“On the Gaussian interference channel[J],”IEEE Trans. Inform. Theory, vol. 31, Sept. 1985, pp. 607–615.
    [92] D. S. Shiu, Wireless Communication Using Dual Antenna Arrays[M]. Kluwer Academicm Publishers, 2000.
    [93] R.W. Heath Jr and A. Paulraj. Multiplexing Versus Diversity in MIMO Antenna Svtems[J]. IEEE Transactions on Comm. 2003. 49(1): 2331-2345.
    [94] Leiner, B; Ruth, R; Sastry. A goals and challenges of the DARPA GloMo program[J]. IEEE Personal Communications, 1996, Vol.3 No.6: 34-43.
    [95] R. Ramanathan and M. Steenstrup. Hierarchically-organized, multihop mobile wireless networks for quality-of-service support[J]. Mobile Networks and Applications, 1998,Vol.3 No.1:101-119.
    [96] R.Ramaswami,K.K.Parhi,“Distributed scheduling of broadcasts in a radio networks[A],”in IEEE INFOCOM’89,Ottawa,Ont.,Canada,Apr.1989 pp.497-504.
    [97]I.Joe,S.G.Batsell,”Reservation CSMA/CA for multimedia traffic over mobile ad hoc networks[A],”in Proc.IEEE ICC’2000,New Orleans,Lousiana,Jun.2000, pp.1714-1718.
    [98] Ming Hu, Junshan Zhang,“MIMO Ad Hoc Networks with Spatial Diversity: Medium Access Control and Saturation Throughput[A]”, 43rd IEEE Conference on Decision and Control December 14-17, 2004. pp. 3301-3306.
    [99] Rossetto, F. Zorzi, M. A low-delay MAC solution for MIMO ad hoc networks[J], IEEE Transactions on Wireless Communications, Volume 8, Issue 1, Jan. 2009 Page(s):130 -135.
    [100] ElBatt, T. Cross-Layer Diversity and Scheduling Optimization for Interference-Limited MIMO Ad Hoc Networks[A], Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. Nov. 30 2008-Dec. 4, 2008, On page(s): 1-6.
    [101] J.L. Sobrinho, A.S. Krishnakumar,“Quality-of-Service in ad hoc carrier sense multiple access wireless networks[J],”IEEE Journal on Selected Areas in Communications, vol.17, no.8,Aug.1999,pp.1353-1368.
    [102] P.Karn,“MACA–A new channel access method for packet radio[A]”, ARRL/CRRL Amateur Radio 9th Computer Networking Conf., ARRL, Sept.1990, pp.134-140.
    [103] V.Bharghavan, A.Demers, S.Shenker, and L.Zhang, MACAW:A Media Access Protocol for Wireless LANs[A], in Proc.ACM SIGCOMM’94,London,UK,Aug. 1994, pp.212-225.
    [104] C.L.Fullmer and J.J.Garcia-Luna-Aceves,“Floor acquisition multiple access (FAMA) for packet-radio networks[A]”, in Proc.of ACM SIGCOMM’95, Cambridge, MA, Aug.1995, pp.262-273.
    [105] F.A. Tobagi, L. Kleinrock,“Packet switching in radio channels: Part II—The hidden terminal problem in carrier sense multiple-access and the busy-tone solution[J]”, IEEE Transactions on Communications, Vol.COM-23,No.12,Dec. 1975, pp.1417-1433.
    [106] J. Deng and Z.J.Haas,“Dual Busy Tone Multiple Access (DBTMA): A New Medium Access Control for Packet Radio Networks[A]”, IEEE ICUPC'98, Florence, Italy, October 5-9, 1998, pp. 975-985.
    [107] S.-L.Wu, Y.-C. Tseng, and J.-P. Sheu,“Intelligent medium access for mobile ad hoc networks with busy tones and power control[J]”, IEEE Journal of Selected Areas in Communications, Vol.18, No.9, Sept.2000, pp.1647-1657
    [108] Chen W, Jain N, Singh S. ANMP,“Ad Hoc Network Management Protocol[J],”IEEE J Select Areas Commun , 1999 , 12(8), pp. 1506-1531.
    [109] Hu L,“Topology Control for Multihop Packet Radio Networks[J],”IEEE Trans on Commun , 1993 , 41(10) , pp. 1474-1481.
    [110] Gerla M, Tsai TC.“Multicluster Mobile Multimedia Radio Network[J],”ACM2Baltzer J Wireless Networks, 1995, 1(3), pp. 255-265.
    [111]DanDan Wang, Uf Tureli,“Cross Layer Design for Broadband Ad Hoc Network with MLMO-OFDM[A]”, 2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, pp. 630-634.
    [112] Casari, P. et al., MAC/PHY Cross Layer Design of MIMO Ad Hoc Networks with Layered Multiuser Detection, Wireless Communications[J], IEEE Transactions on, Volume 7, Issue 11, Part 2, November 2008 Page(s):4596– 4607.
    [113]李建东,张光辉等.“多跳Ad Hoc网络中支持MIMO的广播传输调度算法”,西安电子科技大学学报(自然科学版)[J], 2006年8月,第33卷,第4期, pp. 580-583.
    [114] G.J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multi element antennas[J], Bell Labs Technical Journal, Autumn 1996. 41-59.
    [115] G. Bianchi,“Performance Analysis of the IEEE 802.11 Distributed Co-ordination Function[J],”IEEE Journal on Selected Area in Communications V18, N3, 2000: 535-547.
    [116] Zhifei Li et al., Performance Analysis of IEEE 802.11 DCF: Throughput, Delay, and Fairness, http://www.cs.jhu.edu/~zfli/analysisof80211.pdf. 2009.
    [117] R. Jain, D. Chiu, W. Hawe,“A Quantiative Measure of Fairness and Discrimination for Resouce Allocation in Shared Computer System,”DEC Technical Report, 1984..
    [118] F. Cali, M. Conti, E. Gregori,“Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit[J],”IEEE/ACM Transactions on Networking, December 2000, pp.785-799.
    [119] A, van Zelst, TC.W. Schenk, "Implementation of a MIMO OFDM-based wireless LAN system[J]," IEEE Transactions on Signal Processing, vo1.52, no.2, Feb. 2004, pp.483-494.
    [120] Richard van Nee and Ramjee Prasad. OFDM for Wireless Multimedia Communications, Boston: Artech House, 2000.
    [121]张杰,廖桂生,王珏.基于载波间干扰自抵消的OFDM频率同步[J],电波科学学报,第21卷第1期, 2006.2, pp. 98-103.
    [122] Feng Lu, Ohseki, T. etc.“On Symbol Timing for OFDM based Mobile Communication Systems[A]”, IEEE Global Telecommunications Conference, 2002, Volume 1, 17-21 Nov. pp. 273-277.
    [123]吴赟,罗汉文,宋文涛.瑞利衰落信道下改进的OFDM符号定时算法[J],电波科学学报,第21卷第6期, 2006.12, pp. 825-829.
    [124] Schenk. TC. W, Ze1st.A.V,“Frequency Synchronization for MIMO OFDM Wireless LAN Systems[A],”Vehicular Technology Conference 2003, IEEE 58th, vol. 2, Oct 2003, pp. 781-785.
    [125] Yik-Chung Wu, Shing-ChovY Chan, Erchin Serpedin,“Symbol-Timing Estimation in Space-Timing Coding Systems based on Orthogonal Training Sequences[J],”Wireless Communications, IEEE Transactions on, vol.. 4, Issue 2, March 2005, pp.603-613.
    [126] Guo Feng, Li Dong and Yang Hongwei.“A novel timing synchronization method for distributed MIMO-OFDM system[A],”IEEE Vehicular Technology Conference, Melbourne, Australia, 2006, 4, pp. 1933-1936.
    [127]许魁,沈越泓.分布式MIMO-OFDM系统的同步捕获算法[J],电子与信息学报,第30卷第9期, 2008.9, pp. 2207-2210.
    [128] Shidong Zhou and Ming Zhao.“Distributed wireless communication system: a new archltectore for future Publie wireless aceess[J],”IEEE Commun Mag., March 2003, 41:108-113.
    [129] Kerpez KJ.“A radio access system with distributed antennas[J],”IEEE Trans.Veh. Technol., May 1996, 45:265-275.
    [130]Saleh A, RustakoA, Roman R.“Distributed antennas for indoor radio communications [J],”IEEE Trans. Commun., Dec l987, 35:1245-1251.
    [131] Chong Feng,“A Novel Timing Synchronization Method for MIMO OFDM Systems [A]”IEEE Vehicular Technology Conference, 2008. VTC Spring 2008. 11-14 May 2008 On page(s): 913-917.
    [132] M.A. McKeown, D.G.M. Cruickshank, "Carrier frequency offset estimation in BLAST MIMO systems[J]," Electronics Letters, vol.. 39, lssue:24, Nov 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700