基于非结构网格的直升机旋翼流场及噪声研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了一个适合于直升机旋翼流场和噪声计算的非结构自适应运动嵌套网格系统,发展了一套与该网格系统相对应的旋翼流场和噪声数值求解方法及程序。在此基础上,对直升机旋翼的流场和噪声特性进行了计算和分析,主要工作如下:
     作为背景和前提,首先论述了计算流体力学(CFD)方法在直升机流场和气动噪声等应用研究方面的发展概况,指出了开展旋翼流场和噪声研究的重要性以及计算网格对数值模拟的重要意义,提出了本文拟采用的研究方法和内容。
     在第二章,结合直升机流场的特征,综合分析了结构网格、非结构网格和直角网格(也可以认为是一种非结构网格)的特点,建立了一套新的适合于直升机流场计算的非结构自适应运动嵌套网格方法和相应贡献单元搜索策略,并分别给出了二维和三维情况下的自适应网格算例。在上一章建立的非结构网格基础上,发展了一套基于非结构网格的直升机悬停和前飞状态流场的数值模拟方法及程序。在求解N-S主控方程时空间方向上使用逆风单调守恒格式(MUSCL)与通量差分裂方法相结合来计算通量,并使用梯度重构的方法维持计算的精度;时间方向上采用双时间方法以计及旋翼流场的非定常特征,在伪时间方向上使用无矩阵存储的LU-SGS方法。应用发展的求解器,分别对旋翼的悬停和前飞情况下的桨叶表面压力、桨叶拉力和桨尖涡位置等进行了计算,验证了数值方法的有效性。
     第四章是直升机流场计算的应用研究。使用发展的网格系统和求解程序,深入讨论了旋翼在近地工作状态时的流场特性,计算了共轴式双旋翼在干扰状态下的气动力变化和涡轨迹位移,开展了直升机旋翼/机身组合流场的研究、分析了桨叶和机身空间相对位置变化及桨叶挥舞运动对流场特性的影响。在此基础上,得出了一些有意义的结论。
     在第五章,将所发展的基于非结构嵌套网格的流场计算方法和声场求解的Kirchhoff公式相结合,建立了一个适合于旋翼噪声数值计算的方法和求解程序,并给出了在非结构网格上建立各种不同积分面的方法。通过悬停和前飞状态的旋翼噪声算例计算,并与可得到的试验结果对比,验证了数值方法的可靠性。然后,以矩形桨尖作为参考依据,着重讨论了不同桨尖形式对旋翼高速噪声的影响。
     第六章是直升机旋翼噪声计算的应用研究。应用CFD/Kirchhoff方法对一种特殊的旋翼(尾桨)形式——剪刀式旋翼的噪声特性进行了分析,并对其气动力进行了相应的计算。在此基础上,研究了不同剪刀角、不同结构形式和工作状态组合情况下,剪刀式旋翼噪声的变化情况,得出了一些有实际意义的结果。
In this paper, an unstructured adaptive overset grid technique and corresponding numerical method which is suitable for solving the flowfield and noise of helicopter rotors has been developed. Based on the developed technique and method, the flowfield and acoustic characteristics of the helicopter rotor were simulated and analysed. The major contributions of the author’s research work are as follows:
     As the background of the work, the development and application of the CFD method in the rotor flowfield simulation and rotor noise analysis were described firstly, and then the importance of the mentioned research and the significant influence of the grid quality on calculated results were pointed out. Also, the methods which would be used in this paper were briefly introduced.
     In Chapter 2, after analysing the characteristics of the structured grid, the unstructured grid and the Cartesian grid (can also be regarded as a kind of unstructured grid), a new unstructured adaptive overset grid method which suits for the helicopter flowfield calculation was developed, and a corresponding“donor searching”strategy was presented. As numerical examples, the 2-dimension and 3-dimension illustrations of the grid system were given, respectively.
     Based on the developed unstructured grid system, a new numerical method and solver were established to solve the flowfield of helicopter rotors in hover and forward flight. In the solution of the N-S equations, the flux was calculated by combining the upwind scheme (MUSCL) with the flux-difference splitting scheme, and the gradients of the primitive variables were achieved by reconstruction technique so as to maintain the precision of computations. Meanwhile, the dual-time stepping method was used for simulating the unsteady phenomenon in helicopter flowfield and the Matrix-free LU-SGS method was used in every pseudo-time step. By the solver, the pressure on blade surface, the blade lift and the tip-vortex trajectory were calculated and the capability of the presented method was demonstrated.
     Chapter 4 is the application of the method and solver developed in above chapters to the helicopter flowfield simulation. The flowfield characteristics of the rotor which works in ground effects, the aerodynamic force and vortex trajectory of the co-axial twin rotors were studied, the flowfield of the rotor/fuselage combination was also simulated and the influence of the blade flapping motion and the location change among the blades and fuselage on the flowfield were discussed. On the basis of the above simulations, some meaningful conclusions were drawn.
     In Chapter 5, a solver which is used for simulating the helicopter rotor acoustic characteristic was established by combining the Kirchhoff method and the developed N-S equation solving method on unstructured embedded grid, and the different generation approaches of the integrated surface which were used for sound pressure calculations were given. By this noise solver, the acoustic pressures of the rotor in hover and forward flight were predicted, and the comparisons between the calculation results and the available experimental data were made in order to validate the solver. Taking the rectangular blade tip as the baseline tip, the high-speed impulse (HSI) noise of the rotors with different new blade-tips were calculated and the effects of the new tips on the acoustic characteristics of a rotor were discussed emphatically.
     Chapter 6 is the application of the noise solver to the helicopter rotor noise computations. The presented method was used for analysing the noise characteristics of a special-configuration rotor or tail rotor, i.e., the scissor rotor. The aerodynamic force was also calculated for the scissor rotor. The effects of the different scissor angles, configurations and operation conditions on the noise of the scissor rotor, and some new results are obtained.
引文
1. Mineck R. E., Gorton S. A.. Steady and periodic pressure measurements on a generic helicopter fuselage model in the presence of a rotor. NASA/TM 2000-210286, 2000.
    2. Caradonna F. X., Tung C.. Experimental and analytical studies of a model helicopter rotor in hover. Vertica, 1981, 5(1): 149-161.
    3.唐正飞,李峰,高正等.用三维激光多普勒测速仪对共轴双旋翼悬停流场的测定.流体力学实验技术与测量. 1998, 12(1): 81-87.
    4. Norman T. R., Light J. S.. Rotor tip vortex geometry measurements using the wide-field shadowgraph technique. Journal of the American Helicopter Society, 1987, 32(2): 40-50.
    5. Leishman J. G., Baker A., Coyne A.. Measurements of Rotor tip vortices using three-component laser Doppler velocitmetry. Journal of the American Helicopter Society, 1996, 41(4): 342-353.
    6.于世美,邓彦敏.共轴式双旋翼尾迹流场的水洞PIV测量.北京航空航天大学学报,2007, 33(6): 635-639.
    7. Boxwell D. A., Schmitz F. H., Splettstoesser W. R., et al. Helicopter model rotor-blade vortex interaction impulsive noise: Scalability and parametric variations. Presented at the 10th European Rotorcraft Forum, Netherlands, 1984.
    8. Pegg R. J., White R. P.. Some measured and calculated effects of a tip vortex modification device on impulsive noise. AIAA 77-1341, 1977.
    9. Lee A., Aravamudank S., Bauer P., et al. An experimental investigation of helicopter rotor high frequency broadband noise. AIAA 77-1339, 1977.
    10. Johnson W.. Helicopter theory. New Jersey: Princeton university press, 1980.
    11. Miller R. H.. Rotor hovering performance using the method of fast free wake analysis. AIAA 82-0094, 1982.
    12. Chen C. S., Velkoff H. R., Tung C.. Free-wake analysis of a rotor in hover. AIAA 87-1245, 1987.
    13.彭延辉.直升机旋翼桨-涡干扰气动噪声的研究.硕士学位论文.南京航空航天大学, 2004.
    14. Morvant R., Badcock K. J., Barakos G. N., et al. Aerofoil-vortex interaction simulation using the compressible vorticity confinement method. Presented at the 29th European Rotorcraft Forum, Germany, 2003.
    15. Castellin C.. Isolated rotor in vortex ring state aerodynamics using CFD: An investigation of the wind tunnel effect on vortex ring state aerodynamics. Presented at the 31th European RotorcraftForum, Italy, 2005.
    16. Benoit C., Jeanfaivre G., Canonne E.. Synthesis of ONERA chimera method developed in the frame of chance program. Presented at the 31th European Rotorcraft Forum, Italy, 2005.
    17. Kumar M., Murthy V. R.. Efficient rotor flow calculation using multi-blade coordinate transfromed CFD in frequency domain. AIAA 2008-408, 2008.
    18. Steijl R., Barakos G.. CFD analysis of rotor-fuselage interactional aerodynamics. AIAA 2007-1278, 2007.
    19.招启军.新型桨尖旋翼流场及噪声的数值模拟研究.博士学位论文.南京航空航天大学, 2005.
    20. Roberts T. W., Murman E. M.. Solution method for a hovering helicopter rotor using the Euler equations. AIAA 1985-0436, 1985.
    21. Strawn R. C., Barth T. J.. A finite volume Euler solver for computing rotary-wing aerodynamics on unstructured meshes. Journal of the American Helicopter Society, 1993, 38(2): 61-67.
    22. Duque E. P. N., Biswas R., Strawn R. C.. A solution adaptive structured/ unstructured overset grid flow solver with applications to helicopter rotor flows. AIAA 95-1766, 1995.
    23. Kang H. J., Kwon O. J.. Unstructured mesh Navier-Stokes calculations of the flowfield of a helicopter in hover. Journal of the American Helicopter Society, 2002, 47(2): 90-99.
    24.许和勇,叶正寅,王刚等.基于非结构嵌套网格的旋翼前飞流场计算.西北工业大学学报, 2006, 24(6): 763-767.
    25.许和勇,叶正寅,王刚等.聚合多重网格法在旋翼前飞流场计算中的应用.航空动力学报, 2007, 22(2): 251-256.
    26. Park Y. M., Kwon O. J.. Simulation of unsteady rotor flow field using unstructured adaptive sliding meshes. Journal of the American Helicopter Society, 2004, 49(4): 391-400.
    27.许和勇,叶正寅,王刚等.基于非结构运动对接网格的旋翼前飞流场数值模拟.空气动力学学报, 2007, 25(3): 325-329.
    28.叶靓,招启军,徐国华.基于非结构嵌套网格方法的旋翼地面效应数值模拟.航空学报, 2009, 30(5): 780-786.
    29. Agarwal R. K., Deese J. E.. An Euler solver for calculating the flowfield of a helicopter rotor in hover and forward flight. AIAA 87-1427, 1987.
    30. Chang I. C., Tung C.. Euler solution of the transonic flow for a helicopter rotor. AIAA 87-0523, 1987.
    31. Tadghighi H., Liu Z., Ramakrishnan S. V.. A pseudo grid-deformation approach for simulation ofunsteady flow past a helicopter in hover and forward flights. AIAA 2005-1361, 2005.
    32. Leishman J. G., Bi N.. Aerodynamic interactions between a rotor and a fuselage in forward flight. Journal of the American Helicopter Society, 1990, 35(3): 22-31.
    33. Lakshminarayan V., Baeder J. D.. Computational investigation of small scale coaxial rotor aerodynamics in hover. AIAA 2009-1069, 2009.
    34. Agarwal R. K., Deese J. E.. Euler calculations for flowfield of a helicopter rotor in hover. Journal of aircraft, 1987, 24(4): 231-238.
    35. Biava M., Bindolino G., Vigevano L.. Single blade computations of helicopter rotors in forward flight. AIAA 2003-52, 2003.
    36. Ruith M. R.. Unstructured, Multiplex rotor source model with thrust and moment trimming-fluent’s VBM model. AIAA 2005-5217, 2005.
    37. Fejtek I., Roberts L.. Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover. AIAA Journal, 1992, 30(11): 2595-2603.
    38.于子文,曹义华.前飞旋翼三维湍流场的数值模拟.北京航空航天大学学报, 2006, 32(7):751-755.
    39. Webster R. S., Chen J. P., Whitfield D. L.. Numerical simulation of a helicopter rotor in hover and forward flight. AIAA 95-0193, 1995.
    40. Meakin R. L.. On the spatial and temporal accuracy of overset grid methods for moving body problems. AIAA 95-1925, 1995.
    41. Ahmad J., Duque E. P. N.. Helicopter rotor blade computation in unsteady flows using moving overset grids. Journal of aircraft, 1996, 33(1): 54-60.
    42. Duque E. P. N., Srinivasan G. R.. Numerical simulation of a hovering rotor using embedded grids. Presented at the 48th Annual forum of the American Helicopter Society, Washington D. C., 1992.
    43. Boniface J. C., Mialon B., Sides J.. Numerical simulation of unsteady Euler flow around multibladed rotor in forward flight using a moving grid approach. Presented at the 51th Annual forum of the American Helicopter Society, Ft. Worth, TX, 1995.
    44. Rogers S. E., Suhs N. E., Dietz W. E.. Pegasus 5: An automated preprocessor for overset-grid computational fluid dynamics. AIAA Journal, 2003, 41(6): 1037-1045.
    45. Chiu I. T., Meakin R. L.. On automating domain connectivity for overset grids. AIAA 95-0854, 1995.
    46. Benoit C., Jeanfaivre G.. Three-dimensional inviscid isolated rotor calculations using chimera and automatic Cartesian partitioning methods. Journal of the American Helicopter Society, 2003,48(2): 128-138.
    47. Line A. J., Brown R. E.. High resolution wake modelling using a semi-Lagrangian adaptive grid formulation. Presented at the 29th European Rotorcraft Forum, Germany, 2003.
    48. Wang Z. J., CPhen R. F., Hariharan N., et al. A 2N tree based automated viscous Cartesian grid methodology for feature capturing. AIAA 99-3300, 1999.
    49. Wang Z. J.. A Quadtree-based adaptive Cartesian/quadgrid flow solver for Navier-Stokes equations. Computer & Fluids, 1998, 27(4): 529-549.
    50.董承栋,黄明恪.三维Euler方程的自适应八叉树结构直角网格算法.空气动力学报, 1999, 31(1): 12-17.
    51. Pember R. B., Bell J. B., Colella P., et al. An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. Journal of computational physics, 1995, 120(2): 278-304.
    52. Meakin R. L.. A new method for establishing intergrid communication among systems of overset grids. AIAA 91-1586, 1991.
    53.杨爱明.基于嵌套网格的直升机旋翼流场雷诺平均Navier-Stokes方程数值模拟.博士学位论文.西北工业大学, 2000.
    54. Lohner R., Sharov D., Luo H., et al. Overlapping unstructured grids. AIAA 01-0439, 2001.
    55. Nakahashi K., Togashi F.. An intergrid-boundary definition method for overset unstructured grid approach. AIAA 99-3304, 1999.
    56. Liao W., Cai J., Tsai H. M.. A parallel, Multigrid overset grid flow solver using implicit hole cutting. AIAA 2004-5072, 2004.
    57. Caradonna F. X., Isom M. P.. Subsonic and transonic potential flow over helicopter rotor blades. AIAA Journal, 1972, 10(12): 1606-1612.
    58. Caradonna F. X., Philippe J. J.. The flow over a helicopter blade tip in the transonic regime. Vertica, 1978, 2(3): 43-60.
    59. Arieli R., Tauber M. E.. Computation of subsonic and transonic flow about lifting rotor blades. AIAA 79-1667, 1979.
    60. Ramachandran K., Schlechtriem S., Caradonna F. X., et al. The application of vorticity embedding to the computation of advancing rotor flows. Presented at the 49th Annual forum of the American Helicopter Society, St. Louis, MO, 1993.
    61. Rosen A.. Approximate actuator disk model of a rotor in hover or axial flow based on potential flow equation. Journal of the American Helicopter Society, 2004, 49(1): 80-92.
    62. Sankar N. L., Wake B. E., Lekoudis S. G.. Solution of the unsteady Euler equations for fixed androtor wing configurations. AIAA 85-0120, 1985.
    63. Bottasso C. L., Shephard M. S.. A parallel adaptive finite element Euler flow solver for rotary wing aerodynamics. AIAA 95-1661, 1995.
    64. Wake B. E., Sankar N. L., Lekoudis S. G.. Computation of rotor blade flows using the Euler equations. AIAA 1985-5010, 1985.
    65.曹义华,康凯. Euler方程数值模拟绕悬停旋翼桨叶的流动.北京航空航天大学学报,1999, 25(1): 57-59.
    66. Hansen M. O. L., Sorensen J. N., Michelsen J. A., et al. A global Navier-Stokes rotor prediction model. AIAA 97-0970, 1997.
    67. Tsung F. L., Loellbach J., Hah C.. Development of an unsteady unstructured Navier-Stokes solver for stator-rotor interaction. AIAA 96-2668, 1996.
    68. Tong Z. L., Sun M.. Flow analysis of twin-rotor configurations by Navier-Stokes simulation. Journal of the American Helicopter Society, 2000, 45(2): 97-105.
    69.杨爱明,乔志德,翁培奋.用Newton子迭代方法计算前飞旋翼粘性绕流.空气动力学学报, 2002, 20(1): 57-63.
    70. Berkman M. E., Sankar N. L., Berezin C. R., et al. A Navier-Stokes/full potential/free wake method for advancing multi-bladed rotors. Presented at the 53th Annual forum of the American Helicopter Society, Virginia Beach, VA, 1997.
    71. Yang Z., Sanka L. N., Smith M. J., et al. Recent improvements to a hybrid method for rotors in forward flight. Journal of Aircraft, 2002, 39(5): 804-812.
    72.招启军,徐国华.基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法.空气动力学学报,2006, 24(1): 15-21.
    73.杨爱明,刘金花,翁培奋.基于重叠网格技术和多重网格算法的悬停旋翼粘性绕流数值模拟.空气动力学学报,2009, 27(1): 5-10.
    74. HU H.. Development of a rotary wing multigrid Navier-Stokes CFD code based on TLNS3D code. AIAA 95-1712, 1995.
    75. Ekici K., Lyrintzis A. S.. Parallel Newton-Krylov methods for rotorcraft aerodynamics. AIAA 2001-2587, 2001.
    76. Luo H., Baum J. D.. A fast, matrix-free implicit method for computing low mach number flows on unstructured grids. AIAA 99-3315, 1999.
    77.肖中云.旋翼流场数值模拟方法研究.博士学位论文.中国空气动力研究与发展中心, 2007.
    78.韩忠华.旋翼绕流的高校数值计算方法及主动流动控制研究.博士学位论文.西北工业大学,2007.
    79.招启军,徐国华.使用高阶逆风通量差分裂格式的旋翼悬停流场数值模拟.航空动力学报,2005,20(2):186-191.
    80. Ekaterinaris J. A., Chou H. S. Y.. Development of high-order accurate implicit methods for rotor aerodynamics. AIAA 2002-0964, 2002.
    81. Strawn R., Garceau M., Biswas R.. Unstructured adaptive mesh computations of rotorcraft high-speed impulsive noise. AIAA 93-4359, 1993.
    82. Ganesh B., Komerath N.. Study of ground vortex structure of rotorcraft in ground effect at low advance ratios. AIAA 2006-3475, 2006.
    83. Kang N., Sun M.. Simulated flowfields in near-ground operation of single-and twin-rotor configurations. Journal of Aircraft, 2000, 37(2): 214-220.
    84. Xu G. H., Zhao Q. J., Gao Z., et al. Prediction of aerodynamic interactions of helicopter rotor on its fuselage. Chinese Journal of Aeronautics, 2002, 15(1): 12-17.
    85. Hayden J. S.. The effect of the ground on helicopter hovering power required. Presented at the 32th Annual forum of the American Helicopter Society, Washington D. C., 1976.
    86. Curtiss H. C., Sun M., Putman W. F., et al. Rotor aerodynamics in ground effect at low advance ratios. Journal of the American Helicopter Society, 1984, 29(1): 48-55.
    87. Light J. S.. Tip vortex geometry of a hovering helicopter rotor in ground effect. Journal of the American Helicopter Society, 1993, 38(2): 34-42.
    88. Cheeseman I., Bennett W.. The effect of the ground on a helicopter rotor in forward flight. ARC R & M 3021, 1955.
    89.何承健,高正.贴地飞行的旋翼尾迹研究.航空学报, 1986, l7(4): 325-331.
    90. Bhattacharyya S., Conlisk A. T.. The structure of the rotor wake in ground effect. AIAA 2003-1255, 2003.
    91.陈铭,胡继忠,曹义华.共轴双旋翼前飞气动特性固定尾迹分析.北京航空航天大学学报,2004,30(1): 74-78.
    92. Wachspress D. A., Quackenbush T. R.. Impact of rotor design on coaxial rotor performance, wake geometry and noise. Presented at the 62th Annual forum of the American Helicopter Society, Phoenix, AZ, 2006.
    93. Ruzicka G. C., Strawn R. C.. Computational fluid dynamics analysis of a coaxial rotor using overset grids. Presented at the AHS specialist’s conference on aeromechanics, San Francisco, CA, 2008.
    94. Berry J., Bettschart N.. Rotor-fuselage interaction: Analysis and validation with experiment. Presented at the 53th Annual forum of the American Helicopter Society, Virginia Beach, VA, 1997.
    95. Jr D. D. B., Barnwell R. W., Gorton S. A.. A computational model for rotor-fuselage interactional aerodynamics. AIAA 2000-0256, 2000.
    96.江雄,肖中云,陈作斌等.旋翼/机身气动干扰的数值模拟.直升机技术, 2007, 151(3): 4-10.
    97. Polacsek C., Zibi J., Rouzaud O., et al. Helicopter rotor noise prediction using ONERA and DLR Euler/Kirchhoff methods. Journal of the American Helicopter Society, 1999, 44(2): 121-131.
    98. Xue Y., Lyrintzis A. S.. Rotating Kirchhoff method for three-dimensional transonic blade-vortex interaction hover noise. AIAA Journal, 1994, 32(7): 1350-1359.
    99.陈本现,仲唯贵,王华明.剪刀式孤立尾桨的旋转噪声分析.第20届全国直升机年会学术论文集,四川宜宾,2004.
    100. Schmitz F. H., Boxwell D. A., Splettstoesser W. R., et al. Model-rotor high-speed impulsive noise: full-scale comparisons and parametric variations. Vertica, 1984, 8(4): 395-422.
    101. Lele S. G.. Computational aeroacoustics: A review. AIAA 97-0018, 1997.
    102.韩忠华,宋文萍,乔志德. Kirchhoff方法在旋翼前飞噪声预测中的应用研究.空气动力学学报, 2004, 22(2): 47-51.
    103.韩忠华,宋文萍,乔志德.基于FW-H方程的旋翼气动声学计算研究.航空学报, 2003, 24(5): 400-404.
    104.招启军,徐国华,王适存.基于CFD/Kirchhoff方法的直升机旋翼高速脉冲噪声模拟分析.计算物理, 2006, 23(2): 137-143.
    105. Baeder J. D., Gallman J. M., Yu Y. H.. A computational study of the aeroacoustics of rotors in hover. AIAA 93-4450, 1993.
    106. Muller R. H. G., Pengel K., Wall B. G. V. D.. Blade deflection measurement at the low noise ERATO rotor. Presented at the 26th European Rotorcraft Forum, Netherlands, 2000.
    107.宋文萍,韩忠华,王立群等.旋翼桨尖几何形状对旋翼气动噪声影响的定量计算分析.计算物理, 2001, 18(6): 569-572.
    108. Brentner K., Edwards B. D., Riley R., et al. Predicted noise for a main rotor with modulated blade spacing. Journal of the American Helicopter Society, 2005, 50(1): 18-25.
    109. Sullivan B. M., Edwards B. D., Brentner K., et al. A subjective test of modulated blade spacing for helicopter main rotors. Journal of the American Helicopter Society, 2005, 50(1): 26-32.
    110.邵松,朱清华,张呈林等.混沌理论在尾桨气动噪声信号分析中的应用.南京航空航天大学学报, 2006, 38(4): 427-432.
    111.王华明,张强,胡章伟等. AS350B2直升机飞行噪声的试验研究.声学学报,2003, 28(2):177-181.
    112. Xu G. H., Wang S. C., Zhao J. G.. Experimental and analytical investigation on aerodynamic characteristics of helicopter scissors tail rotor. Chinese Journal of Aeronautics, 2001, 14(4): 193-199.
    113. Prouty R. W., Amer K. B.. The YAH-64 empennage and tail rotor-A technical history. Presented at the 38th Annual forum of the American Helicopter Society, Anaheim, CA, 1982.
    114. Liu Y., Zhang C. L., Liao W. Q.. Researches on acoustics characteristics of scissors tail rotor, Presented at the 2th international basic research conference on rotorcraft technology, China, 2005.
    115. Rozhdestvensky M. G.. Scissors rotor concept: New results obtained, Presented at the 52th Annual forum of the American Helicopter Society, Washington, D. C., 1996.
    116. Xu G. H., Zhao Q. J., Peng Y. H.. Study on the induced velocity and noise characteristics of a scissors rotor. Journal of Aircraft, 2007, 44(3): 806-811.
    117.陶文铨.计算传热学的近代发展,科学出版社, 2001.
    118. Thompson J. F., Warsi Z. U. A., Mastin C. W.. Numerical grid generation. North-Holland, 1985.
    119. Steijl R., Barakos G. N., Badcock K. J.. A CFD framework for analysis of helicopter rotors, AIAA 2005-5124, 2005.
    120. Baldwin B., Lomax H.. Thin-layer approximation and algebraic model for separated turbulent flows. AIAA 78-257, 1978.
    121. Roe P. L.. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 1981, 43(2):357-372.
    122. Barth T. J.. Recent developments in high order K-exact reconstruction on unstructured meshs. AIAA 93-0668, 1993.
    123. Zhang X. D., Trepanier J. Y., Camarero R.. A space-time reconstruction algorithm for steady and unsteady Euler equations. AIAA 96-0529, 1996.
    124. Venkatakrishnan V.. On the accuracy of limiters and convergence to steady state solutions. AIAA 93-0880, 1993.
    125. Sharov D., Nakahashi K.. Reordering of 3-D hybrid unstructured grids for vectorized LU-SGS Navier-Stokes computations. AIAA 97-2102, 1997.
    126. Strawn R. C., Ahmad J.. Computational modeling of hovering rotors and wakes. AIAA 2000-0110, 2000.
    127. Caradonna F. X., Laub G. H., Tung C.. An experimental investigation of the parallel blade-vortexinteraction. NASA/TM 86005, 1984.
    128.李洪昌,邓彦敏.共轴式双旋翼尾迹形态的水洞实验研究.飞机设计,2004,(2):1-5.
    129. Leishman J. G., Ananthan S.. Aerodynamic optimization of a coaxial proprotor. Presented at the 62th Annual forum of the American Helicopter Society, Phoenix, AZ, 2006.
    130.周国仪,胡继忠,曹义华等.共轴式直升机双旋翼载荷计算模型研究.航空动力学报, 2003, 18(3): 343-347.
    131. Freeman C. E., Mineck R. E.. Fuselage measurement of a helicopter wind-tunnel model with a 3.15-mete diameter single rotor. NASA/TM 80051, 1979.
    132. Ruffin S. M., O’Brien D., Smith M. J., et al. Comparison of rotor-airframe interaction utilizing overset and unstructured grid techniques. AIAA 2004-0046, 2004.
    133. Lee J. D., Ruffin S. M.. Application of a turbulent viscous Cartesian-grid methodology to flowfield with rotor-fuselage interaction. AIAA 2007-1280, 2007.
    134. Prieur J., Rahier G.. Comparison of Ffowcs Williams-Hawkings and Kirchhoff rotor noise calculations. AIAA 98-2376, 1998.
    135.宋文萍,韩忠华,杨爱明等.旋翼跨声速流动气动噪声的一种高效算法.西北工业大学学报, 2001, 19(4): 515-519.
    136.王立群,宋文萍.旋翼桨尖形状对噪声影响量级的研究.航空学报,2000, 21(1):48-51.
    137.段广站,陈平剑.基于CFD的直升机旋翼噪声计算,空气动力学学报, 2009, 27(3):314-319.
    138. Farassata F., Myers M. K.. Extension of Kirchhoff’s formula to radiation from moving surface. Journal of sound vibration, 1988, 123(3): 451-460.
    139. Boxwell D. A., Yu Y. H., Schmitz F. H.. Hovering impulsive noise. Some measured and calculate results. Vertica, 1979, 3(1):35-45.
    140. Kuntz M.. Rotor noise predictions in hover and forward flight using different aeroacoustic methods. AIAA 96-1695, 1996.
    141. Martin P. B., Pugliese G. J., Leishman J. G.. Laser Doppler velocimetry uncertainty analysis for rotor blade tip vortex measurements. AIAA 2000-0263, 2000.
    142.林永峰,陈平剑,招启军.抛物线后掠桨尖旋翼悬停气动特性试验及理论分析研究.直升机技术, 2008, 155(3): 69-73.
    143. Sommeborn W. G. O., Dress J. M.. The scissors rotor. Presented at the 30th Annual forum of the American Helicopter Society, Washington, D. C., 1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700