用户名: 密码: 验证码:
穿越工程影响下既有地铁隧道变形监测与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在穿越工程施工过程中,对既有地铁隧道实施变形监测是确保地铁运营安全的重要措施之一。本文针对地铁运营环境和结构变形特征,研究穿越工程影响下地铁隧道及轨道结构变形监测和分析的理论、方法和技术。以“监测、辨险、预警”为主线,通过关键理论与技术的研究,实现对既有地铁隧道受近接施工扰动形变全过程的精密监控,达到“监测于变形”、“辨险于分析”、“预警于未然”,保障地铁的安全运营。
     论文在总结传统地铁隧道变形监测方法及其问题的基础上,对精密监测基准、智能变形预测、特征点全自动监测、地铁变形区整体监测等方面的理论和方法开展了深入的研究,解决了如何在变形复杂、环境干扰的地铁运营条件中实施准确全面监测的难题。主要研究内容与创新如下:
     1.结合穿越地铁工程实践,总结出运营地铁隧道受近接施工扰动变形的主要影响因素,以及监测数据呈现非线性和混沌特性,需要高精度监测等主要特点。在此基础上,重点研究了建立高精度三维监测基准的理论,构建了加权七参数空间三维坐标转换模型,并推导了精密测量定权和平差的数学模型。
     2.鉴于地铁监测基准点随着城市地面整体沉降的问题,研究出应用GPS动态监测改正地铁基准点沉降的方法。利用高频GPS坐标时间序列中噪声的自相关性构建了噪声自相关函数,提出基于分形算法的Kalman滤波消噪模型,实现GPS沉降变形的提取与基准点坐标的沉降改正。
     3.根据地铁监测基准需要高精度和实时动态的特点,研制了专用的测量标志,使激光跟踪仪、工业全站仪、GPS、地面三维激光扫描仪、测量机器人等多种高精尖仪器测量坐标一体化,实现了精密基准和GPS空间动态基准的统一,从而构建了地铁时空一体化精密监测基准。
     4.对当前地铁监测数据量大、变形分析困难、预测准确率低的技术难题,根据地铁受近接施工扰动变形数据的非线性与混沌特性,提出基于PBIL支持向量机的智能变形预测方法。用基于概率分析的PBIL算法对支持向量机的关键参数组合(C,σ,ε)进行设定。并根据变形方向和变形速度体现变形机理的特点,融合了粒子群算法中粒子飞行兼顾个体增益和群体增益的方向和速度的更新机制,精确设定最优参数组合。从而避免人为选择参数的盲目性,极大地提高了支持向量机的预测能力。通过广州地铁穿越工程变形监测数据预测的应用验证了该变形分析方法具有高精度预测能力和实用性。
     5.系统总结了用测量机器人对地铁变形特征点实施全自动监测的理论和方法。鉴于监测中存在地铁运营扰动的问题,研究了基于微动改正模型的自动监测技术。研发了测量机器人地铁全自动监测系统,实现了测量机器人监测行为的自动控制、监测数据的管理分析与智能预测。
     6.为实现提高辨识危险隐患能力、全面监测地铁变形的目的,提出了利用三维激光扫描技术进行地铁三维全景监测模式及基于NURBS曲面的点云数据变形提取模型,并用工程实验检验了模型的实效性。鉴于地铁监测的实时特点,在监测区域大或高采样率导致点云处理与变形提取的时间开销很大的情况下,研究出一种基于切片拟合技术的地铁隧道变形快速量测方法,可以用最短的时间确定变形超限的区域。
     论文的研究成果在北京地铁1号线、10号线、6号线,广州地铁2号线和深圳地铁1号线等既有地铁变形监测工程中得到测试、验证和应用。
During the traversing engineering, to monitor the existing subway tunnel deformation real-time is an important part of ensuring the safety of subway operation.The subway operation characteristics and the environment are considered the relevant theoretical approaches and key technologies about the subway tunnel structure deformation monitoring and deformation analysis are proposed where the subway tunnel is disturbed by the adjacent construction. Monitoring, identified risks and warning are the main research line. Though the key technology research subject the whole process of security control to the existing subway tunnel construction disturbance deformation is fulfilled. As a result we are successful in monitoring in the deformation, identifying risks on the analysis of key technologies, and early warning in the first place, which ensures the safe operation of the subway.
     The paper systematically summarizes the operating subway deformation theory and problems of monitoring and makes in-depth research on the benchmarks of precise monitoring, intelligent deformation prediction, automatic monitoring of feature points, subway deformation zone whole monitoring theory and methods. The research kernel and innovation of the paper are as follows.
     1. With the combination the traversing subway projects, the paper summed up that the disturbance deformation of operating subway caused by the adjacent construction is influenced by many factors, the monitoring data shows nonlinear and chaotic characteristics and it needs high-precision monitoring. On this basis, the paper focuses on the theory of building three-dimensional high-precision monitoring benchmark, and weighted seven-parameter space three-dimensional coordinate transformation model is constructed, and the mathematical model of precision monitoring the weight and adjustment is derived
     2. In view of the status that the subway monitoring reference point will have settlement with the whole urban ground subsidence the paper proposed the method to correct subway reference point settlement with the application of GPS dynamic monitoring. It constructs noise autocorrelation function with the use of noise autocorrelation in the high-frequency GPS coordinate time series, puts forward the Kalman filtering denoising model based on the fractal algorithm, and fulfills GPS subsidence deformation extract and the reference point coordinates settlement corrections.
     3. Because the subway benchmarks for monitoring needs high precision and real-time dynamic characteristics, a dedicated survey marks is developed. The coordinates of many sophisticated measure instruments are integrated such as laser tracking device, industrial total station, GPS, terrestrial3D laser scanner, measuring robots and so forth. A precision reference and the unity of the GPS space on a dynamic basis is achieved, and as a result the subway precise spatial and temporal integration benchmarks for monitoring is built.
     4. According to technical problems such as the subway monitoring data on the current is huge and the deformation analysis is difficult and the prediction has low accuracy, and according to the subway deformation data disturbed by adjacent construction is nonlinear and chaotic characteristics, the paper proposes the intelligent deformation prediction method based on the PBIL support vector machine (SVM). PBIL algorithm based on probability analysis is used to obtain the key parameters of support vector machine combinations (C,a,s). And in accordance with the characteristics of the deformation mechanism of the deformation direction and deformation rate, the particle swarm optimization (PSO) algorithm is introduced. Its update mechanism of both individual gain and groups'gain of the particle swarm optimization in particle flight direction and speed is used to guide the setting of optimal parameter combinations. Consequently the blindness of human choice of parameters is avoided and support vector machine prediction ability is improved. The deformation monitoring data of Guangzhou subway traversing project verifies that the deformation analysis has high accuracy predictive ability and practicability.
     5. The paper summarizes the theories and methods of using automatic monitoring measuring robot to the implementation the subway deformation characteristics points. View of the problem of disturbance in the subway monitoring, the principle of the automatic monitoring of the model based on micro corrections is put forward. Measuring robot subway automatic monitoring system is developed to achieve the automatic control of monitoring behavior, data management and intelligent forecast of monitoring data.
     6. To improve the identification of the threats and achieve the capability to fully monitoring subway deformation,3-D panoramic monitoring mode with the use of3D laser scanner is proposed. The panoramic three-dimensional monitoring station layout and scanning, the point cloud data processing principle are researched. The innovative point is the point cloud data deformation extraction model based on the NURBS surface, and engineering experiments are used to test the effectiveness of the model of deformation and extraction. View of the real-time characteristics of subway monitoring, either the large monitoring regional or the higher sampling rate will result in the huge time spending of point cloud processing and deformation extraction, this paper develops a subway tunnel safety and rapid assessment method based on slice-based fitting technique. It can use the shortest time to determine the area which has the overrun deformation, and the assessment of the subway tunnel safety can be implemented timely.
     The research results are applied on the existing subway tunnel deformation monitoring project such as Beijing subway line10, line1, line6and Guangzhou subway line2and Shenzhen subway line1, the validation, feasibility and high performance are fully proved.
引文
[1]张志昊,陈雷.城市轨道交通安全问题探究[J].安全生产与监督,2011,28(1),38-39
    [2]邱冬炜,杨松林.城市地铁施工监测系统的探讨[J].测绘科学,2007,32(4),175-176
    [3]陈晶晶.中国地铁进程[J].大江周刊,2008,10,24-25
    [4]任强.北京地铁盾构施工风险评价与控制技术研究[D].中国地质大学,2010,1-2
    [5]潘科,王洪德,石剑云.多级可拓评价方法在地铁运营安全评价中的应用[J].铁道学报,2011,(5),14-19
    [6]王如路.上海地铁盾构隧道纵向变形分析[J].地下工程与隧道,2009,(4),2-6
    [7]仇文革.地下工程近接施工力学原理与对策的研究[D].西南交通大学,2003,1-2
    [8]郭子红.地下立交近接隧道稳定性的理论分析与模拟研究[D].重庆大学,2010,1-2
    [9]朱海国,尹晖,陈雪丰.地铁变形监测中曲线拟合与自回归模型的综合应用[J].测绘与空间地理信息,2006,29(6),89-91
    [10]杨祝华.地铁变形监测[J].西部探矿工程,2006,120(4),165-166
    [11]尤相骏.徕卡新一代GeoMoS自动监测系统在城市地铁变形监测项目中的应用[J].测绘通报,2007,1,71-72
    [12]刘华夏,张献州.基于时间序列分析的地铁变形监测数据建模与预报研究[J].铁道勘察,2009,6,17-19
    [13]周小勇.全站仪在地铁变形监测技术中应用[J].科技资讯,2009,21,83
    [14]张正禄,孔宁,沈飞飞,卢凌燕.地铁变形监测方案设计与变形分析[J].测绘信息与工程,2010,35(6),25-27
    [15]Liu, S.T., Wang, Z.W. Deformation monitoring during construction of subway tunnels in soft ground [C]. Geotechnical Aspects of Underground Construction in Soft Ground-Proceedings of the 6th International Symposium, Shanghai,2008,427-432
    [16]Teparaksa, W. Prediction of ground deformation response for double tunnel Bangkok MRT subway [C]. GUnderground Space Use:Analysis of the Past and Lessons for the Future-Proceedings of the 31st ITA-AITES World Tunnel Congress, stanbul,2005,991-996
    [17]姜智平.地铁隧道开挖引起地层沉降的经验理论法预测及邻近立交桥上部异形板构件抗沉降特征分析[D].北京交通大学,2007,1-3
    [18]PECK R.B. Deep Excavations and Tunneling in Soft Ground. Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering [C]. Mexico City, [s. n.],1969,225-290
    [19]O'REILLY M.P., NEW B.M. Settlements above Tunnels in the United Kingdom:Their Magnitude and Prediction. Proceedings of Tunneling'82 Symposium [C]. London, Institution of Mining and Metallurgy,1982,173-181
    [20]MAIR R. J., TAYLOR R. N. Theme Lecture:Bored Tunneling in the Urban Environment [C].Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, [s. n.],1997,2353-2385
    [21]韩煊,李宁,STANDING J.R.地铁隧道施工引起地层位移规律的探讨[J].岩土力学,2007,28(3),609-613
    [22]魏纲.盾构隧道深层土体沉降槽宽度系数计算方法研究[J].公路交通科 技,2010,27(4),110-115
    [23]刘建航.上海地铁施工与邻近建筑施工的环境保护技术[J].上海建设科技,1999,2,11-14
    [24]阳军生,刘宝琛.城市隧道施工引起的地表移动及变形[M].北京:中国铁道出版社,2002.
    [25]韩煊.隧道施工引起地层位移预测模型的对比分析[J].岩石力学与工程学报,2007,26(3),594-600
    [26]周小文,吴宏伟.Analytical solution for estimating surface settlements induced by multiple tunnel excavation [J].岩土工程学报,2007,29(11),1703-1710
    [27]孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟[J].同济大学学报(自然科学版),2002,30(4),379-385
    [28]王尚伟.铁路施工、运营对下穿地铁区间的计算分析[J].工程建设与设计,2011,S1,83-86
    [29]李平,杨挺,刘汉龙.基坑开挖中既有下穿地铁隧道隆起变形分析[J].解放军理工大学学报(自然科学版),2011,12(5),480485
    [30]北京市交通委员会路政局.DB11/T 716-2010--2010.穿越既有交通基础设施工程技术要求.北京.北京市质量技术监督局.2010,4-5
    [31]况龙川.深基坑施工对地铁隧道的影响[J].岩土工程学报,2000,22(3),284-288
    [32]郭磊,方俊波.超浅埋、超近距离穿越运营地铁区间人行隧道施工技术[J].现代隧道技术,2001,38(3),34-39
    [33]邵华,张子新.盾构近距离穿越施工对已运营隧道的扰动影响分析[J].岩土力学,2004,25(11),545-549
    [34]高亚彬,罗富荣.新建地铁穿越既有轨道交通线路施工的风险控制[J].地质装备,2006,6,28-30
    [35]石明江.注浆法在盾构推进穿越已运营地铁隧道中的应用[J].西部探矿工程,2006,4,155-157
    [36]叶耀东,琚娟,王如路等.盾构穿越运营地铁隧道施工技术探讨[J].施工技术,2005,34(12),67-68
    [37]中国有色金属工业协会.GB50026—2007—2008--2008.工程测量规范.北京.中华人民共和国建设部.2008,88-91
    [38]北京市规划委员会.GB50308—2008--2008.城市轨道交通工程测量规范.北京.中国建筑工业出版社.2008,80-85
    [39]杨祝华.地铁变形监测[J].西部探矿工程,2006,120(4),165-166
    [40]郝迎吉,周国浩,王燕.一种隧道变形监测激光定位系统[J].煤矿机电,2003,6,25-27
    [41]杨松林,刘维宁,师红云.全站仪自由设站隧道围岩变形非接触监测理论和方法的研究[J].土木工程学报,2006,39(4),100-104
    [42]张书华,蒋瑞波.基于测量机器人的隧道变形自动监测系统的设计与实现[J].测绘科学,2009,34(3),192-194
    [43]邱冬炜,梁青槐,杨松林.北京地铁隧道结构整体变形监测的研究[J].测绘科学,2008,S1,20-25
    [44]侯海民.三维激光扫描仪在青岛胶州湾海底隧道的应用[J].隧道建设,2010,30(6),693-696
    [45]陶健伟,唐继民.自动化实时监测技术在地铁穿越工程中的应用[J].工程勘察,2009,2,575-579
    [46]陈久宇.用非线性参数估计分析混凝土坝原体的时效变形[J].水电自动化与大坝监测,1980,2,3-13
    [47]陈久宇,王寿泉.刘家峡主坝1715廊道水平位移观测资料的分析及其解释[J].水电自动化与大坝监测,1982,3,7-18
    [48]黄声享,尹晖,蒋征.变形监测数据处理[M].武汉.武汉出版社,2010
    [49]尹晖.时空变形分析与预报的理论和方法[M].北京.测绘出版社,2002
    [50]邓聚龙.灰色系统综述[J].世界科学,1983,7,1-5
    [51]侯建国,王腾军,周秋生.变形监测理论与应用M].北京.测绘出版社,2008
    [52]钱爱玲.复杂结构的时间序列数据挖掘与预测方法研究[D].华中科技大学,201 1,1-2
    [53]陈蕾,刘立龙,陈东银.自适应卡尔曼滤波法用于变形监测数据处理[J].测绘工程,2008,17(1),48-50
    [54]潘国荣.变形预测的指数平滑方法[J].铁路航测,1999,3,1-3
    [55]胡志刚,徐维祥.聚类分析在隧道开挖变形速率中的应用[J].公路交通科技,2011,28(2),97-102
    [56]周拥军.基于小波的运营地铁隧道自动化变形监测数据处理[J].勘察科学技术,2010,1,26-29
    [57]陈为化.基于风险的电力系统静态安全分析与预防控制[D].浙江大学,2007,2-3
    [58]包金玉.定量和定性风险评价方法分析[J].大连海事大学学报,2008,34(S2),5-8
    [59]杨泉.风险评估定量与定性的分析方法[J].信息网络安全,2006,4,54-55
    [60]薛秉亮.应用模糊数学对工程项目风险进行分析的方法[J].山西建筑,2010,36(36),201-202
    [61]李凤伟,杜修力,张明聚,高云昊.改进的层次分析法在明挖地铁车站施工风险辨识中的应用[J].北京工业大学学报,2012,38(2),167-172
    [62]郭明香,刘观云.蒙特卡洛法在水下隧道施工风险评价中的应用[J].浙江建筑,2010,27(9),50-53
    [63]曾丽君,申玉三,任一鑫.基于事故树分析法的风险评价指标的确定[J].中国科技信息,2010,1,225-226
    [64]张静,田丽娜.决策树分析法在风险决策中的应用[J].数学教学研究,2009,28(10),4649
    [65]郭陕云.对隧道及地下工程建设风险管理的认识[J].隧道建设,2011,31(6),648-651
    [66]侯艳娟,张顶立,张丙印.城市隧道施工穿越建(构)筑物风险管理体系[J].地下空间与工程学报,2011,7(5),989-995
    [67]欧尔峰,严松宏,梁庆国.岩体隧道施工安全风险模糊综合评判研究[J].兰州交通大学学报,2011,30(4),38-48
    [68]滕丽.智能风险管理系统在盾构法隧道工程中的应用[J].建筑施工,2011,33(8),742-745
    [69]宓荣三.基于网络模糊综合评价的铁路隧道塌方风险分析研究[J].中国铁路,2011,03,46-49
    [70]王志勇.星载雷达干涉测量技术在地面沉降监测中的应用[D].山东科技大学,2007,1-2
    [71]贺跃光.工程开挖引起的地表移动与变形模型及监测技术研究[D].中南大学,,2003,1-2
    [72]张阿根,魏子新.中国地面沉降[M].上海:上海科学技术出版社,2005,2-3
    [73]熊春宝,唐立刚,匡绍君,黄立.大范围地面沉降的差分GPS监测法[J].岩士力学,2003,24(6),931-934
    [74]刘国林,张连蓬,成枢,江涛.合成孔径雷达干涉测量与全球定位系统数据融合监测矿区地表沉降的可行性分析[J].测绘通报,2005(11),10-13
    [75]黄声享,刘经南.GPS变形监测系统中消除噪声的一种有效方法[J].测绘学报,2002, 31(2),104-107
    [76]Borre Kai,Strang Gilbert. Autocorrelation functions in GPS data processing:modeling aspects [C]. Proceedings of ION GPS,1997,2,1143-1150
    [77]Huber, M.. Ensuring globally the TanDEM-X height accuracy:Analysis of the reference data sets ICESat, SRTM and KGPS-tracks [C]. International Geoscience and Remote Sensing Symposium (IGARSS),2009,2,769-772
    [78]付梦印,邓志红,张继伟.动态Kalman滤波理论及其在导航系统中的应用[M].北京.科学出版社,2003,3-5
    [79]陈蕾,刘立龙,陈东银.自适应卡尔曼滤波法用于变形监测数据处理[J].测绘工程,2008,17(1),35-39
    [80]张福荣.自适应卡尔曼滤波在变形监测数据处理中的应用研究[D].长安大学,2009,48-54
    [81]K. R. Koch,Y. Yang. Robust Kalman filter for rank deficient observation models [J]. Journal of Geodesy,1998,72(8),436-441
    [82]杨元喜.动态系统的抗差Kalman滤波[J].解放军测绘学院学报,1997,14(2),79-84
    [83]余学祥,吕伟才.抗差卡尔曼滤波模型及其在GPS监测网中的应用[J].测绘学报,2001,30(1),28-31
    [84]Yang Y,He H,Xu G Adaptively robust filtering for Kinematic geodetic positioning [J]. Journal of Geodesy,2001,75(2),109-116
    [85]杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报,2001,30(4),293-298
    [86]Steinke Florian, Scholkopf Bernhard. Kernels, regularization and differential equations [J]. Pattern Recognition,2008,41(11),3271-3286
    [87]Vladimir N. Vapnik. The Nature of Statistical Learning Theory (Second Edition)[M]. Berlin: Springer.1999
    [88]边肇祺,张学工.模式识别[M].张学工译.北京.清华大学出版社,2000,284-304
    [89]O Chapelle, V Vapnik. Choosing multiple parameters for support vector machines[J]. Machine Learning,2002 (46),131-159
    [90]王鹏,朱小燕.基于RBF核的SVM的模型选择及其应用[J].计算机工程与应用,2003,39(24),72-73
    [91]Keerthi K,-Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation,2003,153(3),1667—1689
    [92]Vapnik V N.统计学习理论的本质[M].张学工译.北京:清华大学出版社,2000
    [93]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1),32-42
    [94]Amari S,Wu S. Improving support vector machine classi-fier by modifying kernel functions [J]. Neural Networks,1999,12(5),783-789
    [95]Cherkassy V,Yunqian Ma. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression [J]. Neural Networks,2004,17,113-126
    [96]李良敏,温广瑞,王生昌.基于遗传算法的回归型支持向量机参数选择法[J].计算机工程与应用,2008,44(7),23-26
    [97]Chapelle O,Vapnik V,Bousquet O. Choosing multiple parameters for support vector machines[J]. Machine Learming,2002,(46),131-159
    [98]杜京义,侯媛彬.基于遗传算法的支持向量回归机参数选取[J].系统工程及电子技术,2006,28(9),1431-1433.
    [99]邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(05),740-743
    [100]Ackley D H. A Connectionist Machine for Genetic Hill Climbing [M]. Boston. Kluwer Academic,1987,35-39
    [101]Baluja S. Population-based incremental learning:A method for integrating genetic search based function optimization and competitive learning [J]. Pittsburgh. School of Computer Science, Carnegie Mellon University, PA, USA,1994,1-9
    [102]Sukthankar R,Baluja S,Hancock J. Mutiple adaptive agents for tactical driving [J]. Applied Intelligence,1998, (9),7-23
    [103]Salustowicz R,Schmidhuber J. Probabilistic incremental program evolution [J]. Evolutionary Computation,1997,5(2),123-141
    [104]金丙尧,蔚承建,何振亚.一种用于优化搜索的学习算法[J].软件学报,2001,12(3),448-453
    [105]EBERHART R C,KENNEDY J. A new optimizer using particle swarm theory [C]. Proceedings of the sixth international symposium on micro machine and human science. Nagoya,1995,39-43
    [106]钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统工程理论与实践,2006,6(7),88-94
    [107]窦全胜,周春光,徐中宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2008,43(1),89-95
    [108]雷秀娟,史忠科,王来军.粒子群优化算法在多目标优化中的应用与仿真[J].计算机工程与应用,2006,2(3),28-30
    [109]Bergh FVD. An Analysis of Particle Swarm Optimizers[D].Pretoria,University of Pretoria,2001,15-19
    [110]赵建玉,贾磊,杨立才.基于粒子群优化的RBF神经网络交通流预测[J].公路交通科技,2006,23(7),116-118
    [111]Chrzanowski Adam,Szostak-Chrzanowski Anna. Alert-Deformation detection system [J]. Prace Naukowe Instytutu Gornictwa Politechniki Wroclawskiej,2009,129, p 57-66
    [112]Lavine Alexis 1,Gardner Jamie N.,Reneau Steven L. Total station geologic mapping:An innovative approach to analyzing surface-faulting hazards [J]. Engineering Geology,2003,70(1), 71-91
    [113]Qiu D.W., Zhou K.Q.,Ding Y.H.,Liang Q.H.,Yang S.L.3D deformation monitoring of subway tunnel [C]. Proceedings of the 6th International Symposium,2009,455-457
    [114]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉.武汉大学出版社,2003,107-117
    [115]杨松林,刘维宁,师红云.全站仪自由设站隧道围岩变形非接触监测理论和方法的研究[J].土木工程学报,2006,39(4),100-104
    [116]Liu Shaotang,Yang Xiaoming,Liang Yubao,Cui Xusheng. Applications of multimedia technology in deformation monitoring of subway tunnel [C].2010 International Conference on MultiMedia and Information Technology,2010, (2),47-50
    [117]Su Xiuting,Tao Liu,Sun Fufeng. Deformation monitoring and analysis and result analysis of in excavation engineering of Qingdao subway in Hexi station [C]. International Conference on Management and Service Science,2011,216-218
    [118]Qiu D.W.,Zhou K.Q.,Ding Y.H.,Liang Q.H,Yang S.L.3D deformation monitoring of subway tunnel [C]. Geotechnical Aspects of Underground Construction in Soft Ground-Proceedings of the 6th International Symposium,2008,455-457
    [119]李仲.地面摄影测量在井架变形监测中的应用研究[J].测绘科学,2010,35(1),139-142
    [120]项鑫,王艳利.近景摄影测量在边坡变形监测中的应用[J].中国煤炭地质,2010,22(6),66-69
    [121]杜培贞.基于近景摄影测量的建筑物变形监测研究[D].山东科技大学,2007,10-20
    [122]张正禄,孔宁,沈飞飞,卢凌燕.地铁变形监测方案设计与变形分析[J].测绘信息与工程,2010,35(6),25-27
    [123]邱冬炜,梁青槐,杨松林.北京地铁隧道结构整体变形监测的研究[J].测绘科学,2008,S1.16-17
    [124]Schurch Peter,Densmore Alexander,Rosser Nicholas,Lim Michael,Mcardel Brian. Detection of surface change in complex topography using terrestrial laser scanning:Application to the Illgraben debris-flow channel [J]. Earth Surface Processes and Landforms,2011,36(14),1847-1859
    [125]丁延辉;邱冬炜;王凤利;杨锐.基于地面三维激光扫描数据的建筑物三维模型重建[J].测绘通报,2010,3,55-57
    [126]Heinz Ruther,Michael Chazan,Ralph Schroeder. Laser scanning for conservation and research of African cultural heritage sites:the case study of Wonderwerk Cave, South Africa [J]. Journal of Archaeological Seience,2009,9,1847-1856
    [127]Ahmed Mahmoud,Guillemet Adrien,Shahi Arash,Haas Carl T.,West Jeffrey S.. Comparison of point-cloud acquisition from laser-scanning and photogrammetry based on field experimentation [J]. Proceedings Annual Conference-Canadian Society for Civil Engineering,2011,3,2328-2338
    [128]丁延辉,汤羽扬,周克勤,王凤利.基于地面三维激光技术的建筑物变形监测研究[J].北京测绘,2011,2,4-6
    [129]Paul J.Besl,Neil D.Mckay. A method for registration of 3D shapes [J]. IEEE transactions on pattern analysis and machine intelligence,1992,14(2),239-256
    [130]Burton Ma. Robust surface-based registration from sparse measurements [D]. the Queen's university,1998,13-30
    [131]杨现辉.基于对偶四元数的点云配准算法研究[D].南京航空航天大学,2010,18-31
    [132]张会霞.三维激光扫描点云数据组织与可视化研究[D].中国矿业大学,2010,27-30
    [133]Andrea Biasion, Leandro Bornaz,Fulvio Rinaudo. Laser scanning application on disaster management J]. Springer berlin heidelberg. Geo-information for disaster management,2005,39-45
    [134]Sotoodeh S.. Hierarchical clustered outlier detection in laser scanner point clouds [J]. ISPRS, 2007,36(3),383-388
    [135]罗德安,宋晓华.基于切片技术的激光点云粗差探测[J].测绘通报,2011,(5),14
    [136]戴华阳,廉旭刚,陈炎,蔡音飞,刘义新.测绘通报[J].测绘通报,2011,(11),4446
    [137]Hoppe H.,DeRose T.,Duchamp T.. Surface reconstruction from unorganized points [C]. SIGGRAPH 1992 Proceedings,26,71-78
    [138]Pied L.,Tiller W.. Curve and surface constructions using rational B-splines [J]. Computer-Aided Design,19(9),485-498
    [139]Piegl L,Tiller W. The NURBS book [M]. Springer,5-46
    [140]Zhou Baoxing,Yue Jianping,Jia Keyong. Automatic deformation acquisition using terrestrial laser scanner [J]. Applied Mechanics and Materials,2011,90-93,2811-2817
    [141]张会霞.基于八叉树的点云数据的组织与可视化[J].太原师范学院学报(自然科学版),2011,10(3),128-132
    [142]彭志,李传荣,周梅.基于最小二乘曲线拟合法的点云滤波算法研究[J].遥感信息,2011,5,86-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700