大型建筑物实时形变监测系统理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,我国建筑业得到迅猛发展,各种高、大、特、新的建筑物不断涌现。众所周知,建筑物从施工开始起,就会由于自然和人为的因素产生各种变形。了解变形状况,分析形变原因,预报未来变形,对于预防事故,保证建筑物正常使用是非常重要的。随着人们对建筑物形变监测重要性认识的不断深入,以及国家相关法律法规的实施,建筑物的形变监测已越来越广泛地应用于实际工程中,开发大型建筑物形变监测系统也越发显得重要。本文针对大型建筑物形变监测中的热点和难点问题进行了研究,主要研究内容和创新点如下:
     1.介绍了建筑物形变监测系统的研究意义和现状,研究了监测系统的总体方案设计、系统的软硬件平台以及系统的通讯及远程控制方法,并阐述了TPS数据采集器关键部件与其功能,对系统的通讯及控制系统也进行了详细的分类,并指出了各自的优缺点与适用环境。
     2.分析了测量误差的来源、分类和处理方法,综合讨论了对监测数据进行预处理以保证数据可靠性的意义。
     3.对目前粗差处理的理论和方法进行了系统的分类总结,对常用的几种粗差探测方法进行分析比较,得出一些有益的结论。并对关联分析法探测粗差提出了一种简单的多项式模型,实例表明,该方法简单易行,检验结果的可靠性高。
     4.应用过程突变理论建立了监测数据的动态检验模型,具有计算量小,速度快的特点,在监测点较多的监测项目中十分有效。在实际应用中,结合关联分析检验法,可以有效地解决自动化监测系统对监测数据真实性的识别问题,从而提高了自动化监测系统的实用性。
     5.详细讨论了人工神经网络的基本原理和建立监控模型的具体方法,对BP神经网络存在的问题进行了分析讨论,并引入了采用非线性规则化函数对原始数据序列进行预处理以及记忆初始权值、阈值的方法,大大提高了BP模型的收敛速度,并防止了模型陷入局部极小值,提高了模型拟合的精度。
     6.分析了系统误差产生的原因,介绍了系统误差的常用的几种检验方法,指出了各种检验方法的优点与其不适用性。
     7.针对极坐标测量中存在的系统误差,提出了多重实时差分的测量方案,对该方法的精度进行了理论分析,推导了3维坐标的中误差公式。分析了球气差系数的内涵,表明其主要是由大气垂直折光系数决定的。
     8.介绍了灰色系统理论中的GM(1,N)灰关联模型,并提出了应用灰色关联度来选择显著自变量,以提高模型拟合度的改进方法,并给出了改进的灰关联模型的解算流程。
     9.研究并建立了各观测方向折光系数的灰关联模型,根据灰关联模型快速求解所观测方向的折光系数,对观测的高差进行实时改正,在较大程度上有效地减弱了折光的影响。据此,首次提出了改进的极坐标实时差分测量方案,实际试验结果表明,该方案对大气垂直折光的改正效果较好,实际使用也较为方便,有效地提高了单向三角高程的测量精度。
     10.对经典卡尔曼滤波与扩展卡尔曼滤波(EKF)的算法模型与求解步骤进行了分析研究,讨论了各自的优缺点与适用范围。
     11.在建筑物形变监测领域首次引入了Sigma点卡尔曼滤波(SPKF)方法。在介绍Sigma点变换算法及分析其精度的基础上,详细推导了SPKF算法流程,并且通过实例说明了SPKF较之EKF方法的优点:不需要计算雅可比矩阵,提高了计算的效率,预报精度较高,性能更为稳定,不易造成滤波发散。
     12.首次提出了神经网络SPKF方法,并将其应用于建筑物形变监控这一非线性系统的建模预报中。这种方法解决了BP神经网络训练时间长,对初值依赖大、容易陷入局部极值的缺限,也将神经网络具有逼近任意连续函数和非线性映射能力的优点通过SPKF得以顺利实现。算例结果证明了这一思路和方法的可行性和有效性。
     13.通过作者近几年完成的几个有代表性监测项目的介绍,说明了形变监测系统理论在实际中的应用情况。首次全面分析了监测房玻璃折射对观测方向及观测距离的影响,对监测方案的设计具有指导意义。对于建筑物规模较大,监测区域较广的情况,首次设计了多测站实时形变监测系统,开发了相应的软件与数据库系统。
     14.对于特殊监测条件比如地铁,组建了多测站组成的监测网络系统,并提出了实时动态基准对向导线测量的创新方法,有效地解决了监测中的车挡目标、大气湍流、地基振动、多目标干扰等问题,填补了国内地铁结构变形监测领域的空白。通过实际应用表明,监测精度达到了项目要求。
With the development of social economy, the building industry is growing significantly and as a result, high, large, unique and novel buildings emerge like mushrooms. As is well known, buildings undergo deformations due to natural and man induced causes from the start of ground-breaking, and therefore, it is very important to find out deformation status, analyze causations, and predict deformation trends for preventing incidents and ensure the normal use. As there is a deeper knowledge of the importance of deformation monitoring, and with the implementation of relative laws and regulations, the deformation monitoring of buildings has been applied in engineering practices more and more widely, which makes the development of deformation monitoring system for large buildings more and more important. The dissertation is aimed at some hot and difficult issues in the deformation monitoring of large buildings, and the main work is as follows:
     1. The significance and status of the research of deformation monitoring of buildings were introduced. Study was made on the integral structure of monitoring system, software and hardware of such systems, the design of system communication as well as remote control methods. Special attention was given to the key part as well as the function of TPS data collector. The system communication and control system were illustrated in detail and their advantages as well as shortcomings and applicable environment were discussed.
     2. The origins, categorization and processing methods of surveying errors were analyzed. The sense of pre-processing of monitoring data to ensure data reliability was discussed from a general viewpoint.
     3. Systematic categorization and summing-up was made for current theory and methods of outliers processing. Analysis and comparisons were made on some commonly used outlier detection and some beneficial conclusions were drawn. Especially, a simple polynomial model was proposed for outlier detection based on correlation analysis method, and example shows that the method is easy to use and reliable in detection.
     4. Process Mutation Theory was applied for establishing the dynamic verification model of monitoring data, which is characterized by low computation workload and fast calculation. The model was proved effective in monitoring projects that involves a lot of points. In applications, the model combined with correlation analysis verification method can perform the identification of automated monitoring system for the authenticity of monitoring data and therefore improves the applicability of automated monitoring system.
     5. Specific focus is put on the principle of Artificial Neural Network (ANN) and the method used in constructing monitoring model. For the problems with BP Neural Network, analysis was made and solutions were put forward to solve the problems. The dissertation proposed the method that applies nonlinear regularization function in the preprocessing of original data series and memorizing initial weight and valve values, which greatly improves the converging rate of BP model and prevents the model from reaching local minimum and thus raises the fitting accuracy of the model.
     6. The reasons why systematic errors are generated were analyzed. Several inspection methods of systematic errors were introduced. For the methods, their advantages and inapplicability situations were pointed out.
     7. For the systematic error hiding in polar coordinates measurement, a surveying scheme based on multi real time differencing method was presented, and theoretical analysis was made on the accuracy of the method, and furthermore, the Mean Square Error formulae in 3-dimensional coordinates were derived. The coefficients of the effect of Earth curvature and refraction were discussed in detail, which was proved to be chiefly determined by the coefficient of the vertical refraction of atmosphere.
     8. The GM(1,N) gray correlation model of the Gray System Theory was introduced. A method was proposed that improve model fitting using the degree of gray correlation in the selection of the independent variable of prominence, and a workflow of the solution of the improved gray correlation model was put forward.
     9. The gray correlation models for the refraction coefficients of observed directions were studied and set up, according to which the refraction coefficient for the observed direction can be solved readily, and real-time corrections can be made to the observed height difference, and thus the effects of refraction can be reduced effectively to a great extent. Therefore, the scheme of improved polar coordinates real-time surveying was presented for the first time. Field experiments demonstrated that the scheme can result in a better correction to errors of vertical refraction of atmosphere, and the application of the scheme was proved to be convenient. The scheme can effectively raise the precision of one-way trigonometric height surveying.
     10. Models of classic Kalman Filtering and the Extended Kalman Filter(EKF) as well as their solutions were introduced. The advantages and disadvantages and applicability of the two methods were also discussed in detail.
     11. The Sigma Point Kalman Filter(SPKF) method was introduced. Firstly the Sigma Point Transform was introduced and its accuracy was analyzed. Then the SPKF formulae were derived in detail. Examples showed the superiority of SPKF to EKF which are no need for the computation of Jacobi matrix, higher accuracy of prediction, more stable performance of filtering.
     12. Neural Network(NN) based SPKF was proposed for the first time and was applied in the modeling and prediction of nonlinear system of the deformation monitoring of buildings. The commonly used Back Propagation(BP) NN has some defects, like long training time, relying heavily on initial values and the proneness of reaching local extreme value although the NN has the basic advantage of approximating any continuous function and nonlinear mapping with high accuracy. However, the advantage of NN is embodied through the combination with SPKF. Experiment proved the applicability and effectiveness of NN based SPKF.
     13. Some representative monitoring projects that the author joined in recent years were introduced. A comprehensive analysis was made on the effect of the glass refraction of monitoring house which accommodates Total Station on the observed directions and observed distances, which can be used as reference for future monitoring projects. For large-scale buildings or extensive monitoring areas, the multi station real-time deformation monitoring system was constructed for the first time, and corresponding software and database systems were developed.
     14. For special monitoring situations like subway, the author joined in the construction of monitoring network system composed of multi stations. The creative method of real-time dynamic reciprocal traverse measurement was introduced, which filled the blank of domestic subway deformation monitoring field by solving the problems encountered in monitoring, such as blocked target, atmosphere torrent, ground base vibration, multi target interfering, etc. Filed applications demonstrated that the monitoring accuracy satisfied the demands of the project.
引文
[1]陈永奇.变形观测数据处理[M].北京:测绘出版社,1988.
    [2]吴子安.工程建筑物变形观测数据处理[M].北京:测绘出版社,1989.
    [3]朱建军,贺跃光,曾卓乔.变形测量的理论与方法[M].长沙:中南大学出版社,2004.
    [4]白迪谋.工程建筑物变形观测和变形分析[M].成都:西南交通大学出版社,2002.
    [5]许其凤.空间大地测量学──卫星导航与精密定位[M].北京:解放军出版社,2001.
    [6]许其凤.GPS卫星导航与精密定位[M].北京:解放军出版社,1994.
    [7] Elliott D.Kaplan著.GPS原理与应用[M].邱致和,王万义译.北京:电子工业出版社,2002.
    [8]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].修订版.北京:测绘出版社,1997.
    [9]邓卫中.GPS技术、应用与市场[M].北京:航空工业出版社,1996.
    [10]徐忠阳.全站仪原理与应用[M].北京:解放军出版社,2003.
    [11]段定乾.电子速测技术[M].北京:解放军出版社,1996.
    [12]王家耀.空间信息系统原理[M].北京:科学出版社,2001.
    [13]陈永奇,吴子安,吴中如.变形监测分析与预报[M].北京:测绘出版社,1998.
    [14] H. Dieter Meisenheimer . Der neue Hochleistungstachymeter TCA2003 von Leica– erste Eindrücke[J].Verm.-Ing.,1998,(3):13-15.
    [15]连岳泉.大跨径桥梁施工控制精密三维坐标定位方法研究[D].武汉:武汉理工大学,2003.
    [16] Erwin Jacobs . Die Vermessungstechnische Steuerung Von Vortriebsmaschinen im Tunnelbau[J].Verm.-Ing.,1996,(1):39-42.
    [17] Valérie Michel,Thierry Person and Michel Kasser.The Largest Topometric Continuous Real Time Monitoring System in the World[A].FIG Working Week[C].Paris, 2003.
    [18] ?tefan Luká?,Milan ?ák and Ján Hardo?.Deformation Measurements of the Most Important Structures in Slovak Nuclear Power Plants[A].FIG Working Week[C].Paris, 2003.
    [19] Maria Joāo Henriques,Joāo Casaca.Monitoring Displacements at Large Dams by Means of Precision Traverses[A].FIG Working Week[C].Paris, 2003.
    [20] Alojz Kopá?ik.Loading Tests of Highway Bridges in Slovakia[A].Proc. 11th FIG Symposium on Deformation Measurements[C].Santorini, 2003.
    [21]包欢.差分方法在测量中的应用[J].测绘通报,2003,(5):29-31.
    [22]张良琚,徐忠阳,包欢.自动极坐标差分测量系统及其在大坝外部变形监测中的应用[J].测绘通报,2001,(9):28-30.
    [23]包欢,徐忠阳,张良琚.自动变形监测系统在地铁结构变形监测中的应用[J].测绘学院学报,2003,(2):103-105.
    [24]包欢,朱江,付子傲,等.自动测量工程中的远程监视与控制[J].工程勘察,2003,(3):47-49.
    [25] WU Dongcai.Construction Survey of Large Cable-stayed Bridge[M].Beijing:Publishing House of Surveying and Mapping,1996.
    [26] LIU Zhengguang,et al.Structural Health Monitoring System of Bridge[A].The Symposium in the Thirteenth Session of Bridges[C].Shanghai:Scientific Conference of Whole Country, 1998.
    [27]吴栋材.大跨度斜拉桥变形监测研究[J].测绘学报,2002,31(3):278-281.
    [28]许曦,周胜利,戴秋云.大跨径悬索桥主缆线形测量[J].施工技术,2002,31(9):21-23.
    [29]黄声享,尹晖,将征.变形监测数据处理[M].武汉:武汉大学出版社,2003.
    [30] Gethin Roberts,Xiaolin Meng,Michele Meo,et al.A Remote Bridge Health Monitoring System Using Computational Simulation and GPS Sensor Data[A].Proc. 11th FIG Symposium on Deformation Measurements[C].Santorini, 2003.
    [31] Atinc PIRTI.The Criterions for Selecting Reference Points in RTK GPS Survey[A].FIG Working Week[C].Paris, 2003.
    [32] Mauro CAPRIOLI,Gianpiero STRISCIUGLIO.The Use of GPS-RTK Techniques through National GPS-GSM Network[A].FIG Working Week[C].Paris, 2003.
    [33] Alojz Kopá?ik.Loading Tests of Highway Bridges in Slovakia[A].Proc. 11th FIG Symposium on Deformation Measurements[C].Santorini, 2003.
    [34] Michael A. Duffy,Cecilia Whitaker.Utilization of Continuous Operating Reference Stations(CORS) in Southern California for Deformation Monitoring[A].Proc. 11th FIG Symposium on Deformation Measurements[C].Santorini, 2003.
    [35] Joel Barnes,Chris Rizos,Jinling Wang,et al.The Monitoring of Bridge Movements Using GPS and Pseudolites[A].Proc. 11th FIG Symposium on Deformation Measurements[C].Santorini, 2003.
    [36] Xiaolin Meng,Gethin Wyn Roberts,Emily Cosser,et al.Real-time Bridge Deflection and Vibration Monitoring Using an Integrated GPS/Accelerometer/Pseudolite System[A].Proc. 11th FIG Symposium on Deformation Measurements[C].Santorini, 2003.
    [37] Emily Cosser,Gethin W Roberts,Xiaolin Meng.The Comparison of Single Frequency and Dual Frequency GPS for Bridge Deflection and Vibration Monitoring[A].Proc. 11th FIG Symposium on Deformation Measurements[C].Santorini, 2003.
    [38]李宗春,李广云.我国大坝变形监测技术现状与进展[J].测绘通报,2002,(10):19-21.
    [39]张学庄,王爱公,张驰.单波高精度测距系统的研究[J].测绘学报,1996,25(3):186-190.
    [40]叶晓明,凌模.全站仪原理误差[M].武汉:武汉大学出版社,2004.
    [41]于来法,杨志藻.军事工程测量学[M].北京:八一出版社,1994.
    [42]徐青.地形三维可视化技术[M].北京:测绘出版社,2000.
    [43]郭仁忠.空间分析[M].北京:高等教育出版社,2001.
    [44]邬伦,刘瑜,张晶,等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2002.
    [45]李德仁,关泽群.空间信息系统的集成与实现[M].武汉:武汉大学出版社,2002.
    [46]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001.
    [47]陆守一,唐小明,王国胜.地理信息系统实用教程[M].北京:中国林业出版社,1998.
    [48]黄声享,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社,2003.
    [49]二滩水电开发有限责任公司.岩土工程安全监测手册[M].北京:中国水利水电出版社,1999.
    [50]李珍照.意大利的大坝安全监测[J].大坝观测与土工测试,1998,22(1):1-4.
    [51] J.P.Milmo,T.A.Johnston.英国大坝安全立法与准则展望[J].水利水电快报,1998,19(21):10-14.
    [52]马湛,袁普生.赴意大利、法国水情/大坝工情自动化监测代表团报告[J].水利水电自动化,2001,(3):1-3.
    [53] E.G.Gaziev . Safety Provision and an Expert System for Diagnosing and Predicting Dam Behavior[J].Hydrotechnical Construction,2000,34(6):285-289.
    [54] Gordon Veitch,Gabriela Barboza,Hatem Nasr,Sami Suheil.Field Trial Tests Web-based Wireless eSCADA[J].Oil & Gas Journal,2002,100(38):39-41.
    [55] A.M.Aliomarov,M.G.Tyagunov,A.I.Sidel’nikov,N.A.Sobolenko.The Scope for Upgrading a Computerized Hes Control System with Limited Finance[J].Hydrotechnical Construction,2000,34(6):293-299.
    [56] A.A.Karlson,V. S.Klement'ev,V.N.Chernenko.Geodetic Monitoring of Slope and Strueture Stability at the ZAGORSK Pumped-Storage Power Plant[J].Hydrotechnical Construction,2000,34(4):177-180.
    [57] I.A.Parabuchev , V.V.Kayakin , A.V.Mulina . Engineering Surveys and The Safety Problem of Water-Development Works[J].Hydrotechnical Construction,2000,34(4):193-196.
    [58] S.M.Ginzburg.Identification of The Deformation Characteristics of The“Concrete-Dam/Rock-Bed”system[J].Hydrotechnical Construction,2000,34(6):270-275.
    [59] Myers Barry K,Marilley Jill M.Automated Monitoring at Tolt Dam[J].Civil Engineering,1997,67(3):44-46.
    [60] Barry Myers.Optimization of Dam Monitoring Systems[A].Review of the Available Technology and Case Studies[C].Beijing:Commission Internatin des Grands Barrages,2000:641-702.
    [61] Angel Pérez Saiz,Armando Molina Pérez.Design and Implementation of an Information System for the Automated Control of the Monitoring and Management of the Maintenance of Six Dams in the Guadacquivir River Hydrographical Basin[A] . Review of the Available Technology and Case Studies[C].Beijing:Commission Internatin des Grands Barrages,2000:703-715.
    [62] P.Bonaldi,F.Chirico,G.La Barbera.Iside Center to Manage Dam Safety and Surveillance in the South of Italy[A].Review of the Available Technology and Case Studies[C].Beijing:Commission Internatin des Grands Barrages,2000:431-442.
    [63]吴中如,顾冲时.大坝安全综合评价专家系统[M].北京:科学技术出版社,1997.
    [64] JGJ/T 8-97.建筑物变形测量规程[S].北京:中国标准出版社,1997.
    [65]郑东健,吴中如,徐洪钟,苏怀志.大坝安全智能结构框架的构建[J].大坝安全监测,2002,(5):23-25.
    [66]杨杰,吴中如.大坝安全监控的国内外研究现状与发展[J].西安理工大学学报,2002,18(1):7-9.
    [67]李吉绍,李树堂,吴俊伟,龙洪.大坝安全远程在线监测系统的研制[J].大坝安全监测,2002,(5):17-19.
    [68]吴中如,朱伯芳.三峡水工建筑物安全监测与反馈设计[M].北京:中国水利水电出版社,1999.
    [69]冯振宇,郭文峰.大坝安全监控远程自动化控制是今后的主要发展方向[J].大坝安全监测,2002,(5):3-5.
    [70]缪韧,樊天龙,等.大坝变形观测资料分析的组合模型[J].水力发电,1998,(5):58-61.
    [71]岳建平,华锡生.大坝安全监控在线分析系统研究[J].大坝观测与土工测试,2000,24(1):12-15.
    [72]岳建平.安全监测数据关联分析方法研究[J].测绘通报,1999,(4):11-13.
    [73]华锡生,岳建平,等.主要水工建筑物安全监测信息管理系统的研制和应用[J].大坝观测与土工测试,1994,18(4):5-11.
    [74]华锡生,岳建平.数据诊断在建立安全监控模型中的应用[J].水力发电学报,1997,(1):18-24.
    [75] LONDE.P.Concepts and Instruments for Improved Monitoring[J].ASCE,Journal of Geotechnical Engineering,2002,108(6):820-834.
    [76] Stopinski,Wojciech.Bedrock Monitoring by Means of the Electric Resistivity Method During the Construction and Operation of the Czorsztyn-Niedzica Dam[J].Acta Geophysical Polonica,2003,51(2):215-226.
    [77]郑峡龙,李文正,等.安全管理系统的设计与实现[J].人民长江,1998,29(9):16-17.
    [78]张社荣.面板堆石坝安全监测关联管理系统研究[D].天津:天津大学,2004.
    [79]张昆,黄金义,张正禄,等.大坝工程管理信息系统建设研究[J].大坝与安全,2002,(5):30-32.
    [80]朱顺平,薛英.ATR的工作原理、校准及检测[J].北京测绘,2005,(3):26-29.
    [81] DIN 18723-1-1990 . Field Procedure for Precision Testing of Surveying Instruments: General Information[S].Berlin:Deutsches Institut für Normung,1990.
    [82] DIN 18723-3-1990.Field Procedure for Precision Testing of Surveying Instruments: Theodolites [S].Berlin:Deutsches Institut für Normung,1990.
    [83] DIN 18723-4-1990.Field Procedure for Precision Testing of Surveying Instruments: Optical Distance Measuring Instruments[S].Berlin:Deutsches Institut für Normung,1990.
    [84] GJB 5073-2004.全站型电子速测仪检定规程[S].北京:总装备部军标出版发行部,2004.
    [85]郦能惠.土石坝安全监测分析评价预报系统[M].北京:中国水利水电出版社,2002.
    [86] Roger Jennings.Special Edition Using Acess 2000[M].U.S.A.:Que,1999.
    [87]邵佩英.分布式数据库系统及其应用[M].北京:科学出版社,2000.
    [88] Jeffrey L,Whitten and Lonnie D,Bentley.Systems Analysis and Design Methods[M].New York: McGraw-Hill Companies Inc.,1998.
    [89]杨宗志.Delphi数据库设计[M].北京:清华大学出版社,2001.
    [90]闪四清.SQL Server 2000系统管理指南[M].北京:清华大学出版社,2001.
    [91]陈玉泉.Access 2003与Visual FoxPro 8.0的对比分析[J].福建电脑,2007,(6):70-71.
    [92]李晓喆,张晓辉,李祥胜.SQL Server 2000管理及应用系统开发[M].北京:人民邮电出版社,2002.
    [93]张科,高赟.基于Web环境下的Access动态数据库设计与实现[J].电化教育研究,2007,(12):45-47.
    [94]邓芳伟,曹化工.基于处理分布的C/S计算模式的研究[J].计算机工程与科学,1999,21(1):42-46.
    [95]放长华.基于三层C/S模型的大型关系数据库应用系统优化设计技术[J].计算机工程与应用,1999,35(11):90-91.
    [96] Joe Salemi著,秦箕英译.客户机/服务器数据库指南(第二版)[M].北京:电子工业出版社,1995.
    [97]张志檩.实时数据库原理及应用[M].北京:中国石化出版社,2001.
    [98]张国辉.全自动全站仪滑坡监测数据的远传和处理[D].沈阳:辽宁工程技术大学,2005:16-22.
    [99]王献辉.大坝群安全监控远程网络系统研究[D].南京:河海大学,2004:28-34.
    [100]王建.大坝安全监控集成智能专家系统关键技术研究[D].南京:河海大学,2002:39-43.
    [101]王润英,方卫华.大坝安全监测自动化系统的千扰与抗干扰[J].大坝观测与土工测试,2000,24(6):26-29.
    [102]韩斌杰.GPRS原理及其网络优化[M].北京:机械工业出版社,2003.
    [103]何勇军.大坝安全监控的人工智能技术研究[D].南京:河海大学,2002:32-39.
    [104]岳建平.在线监测数据的可靠性检验方法研究[J].大坝观测与土工测试,1997,(2):13-15.
    [105]岳建平.大坝安全监控系统可靠性研究[D].南京:河海大学,2002:12-34.
    [106]岳建平.安全监测数据关联分析方法研究[J].测绘通报,1999,(4):11-13.
    [107] Basseville M.,Nikiforov I. V..Detection of Abrupt Changes:Theory and Application [D].New York: John Wiley & Sons Inc.,1999:1-198.
    [108] Basseville M.,Nikiforov I. V..A Unified Framework for Statistical Change Detection [A].Proc.30th IEEE Conference on Decision and Control[C].UK:Brighton,1991.
    [109]吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
    [110]李宗坤.土石坝结构性态安全评价方法研究[D].大连:大连理工大学,2003.
    [111]欧吉坤.测量平差中不适定问题的统一表达与选权拟合法[J].测绘学报,2004,(4):19-21.
    [112]何勇军.大坝监测数据的过程突变在线检验模型[J].水利水文自动化,2002,(2):13-16.
    [113] Neunreuther E.,Iung B.,Morel G..Engineering Process Modeling of an Intelligent Actuation andMeasurement System[A].Proc. of IMS'97[C].Korea:Seoul,1997:69-79.
    [114]郑晶星.土石坝原型观测资料分析及实测性态安全评价研究[D].郑州:郑州大学,2002.
    [115]吴云芳.大坝安全监测神经网络模型研究和子系统开发[D].武汉:武汉大学,2002.
    [116]陈明.神经网络模型[M].大连:大连理工大学出版社,1995.
    [117]赵斌,吴中如等.BP模型在大坝安全监测预报中的应用[J].大坝观测与土工测试,1999,(12):11-14.
    [118]杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究[J].西安理工大学学报,2000,(1):24-27.
    [119]岳建平,田林亚.变形监测技术与应用[M].北京:国防工业出版社,2007.
    [120]杨志超.误差理论[M].长沙:中南工业大学出版社,1987.
    [121]黄满太.系统误差处理理论的方法综述[J].西部探矿工程,2008,(9):177-180.
    [122]张学庄,王爱公,张驰.自动高精度大坝变形监测系统[J].大坝观测与土工测试,1996,(4):32-34.
    [123]徐正扬,刘振华,吴国良.大地控制测量学[M].北京:解放军出版社,1992.
    [124]左虎,范东明.大气竖直折光改正的新方法[J].四川测绘,2007,30(3):99-102.
    [125]蒋利龙.不对称地形的大气折光反演[J].测绘科学,2003,30(2):32-35.
    [126]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1996.
    [127]袁嘉祖.灰色系统理论及其应用[M].北京:科学出版社,1991.
    [128]冯尊德,史玉峰.基于灰色系统理论的变形数据处理方法[J].淄博学院学报(自然科学与工程版),2001,3(2):57-59.
    [129]蒋刚,林鲁生,刘祖德等.边坡变形的灰色预测模型[J].岩土力学,2000,21(3):244-246.
    [130]张伟丽,陈爱云,李霞.灰色系统理论在基坑变形预测中的应用[J].莱阳农学院学报,2003,20(1):60-61.
    [131]艾斯卡尔·吾秀尔.多因子静态灰色模型在大坝安全监测中的应用[J].大坝与安全,2003,(4):36-38.
    [132]王利,张勤,李亚红.基于中值滤波的灰色预测模型及其在大坝变形预测中的应用[J].测绘科学,2007,32(2):135-137.
    [133]周元春,薛挂玉,何金平.大坝安全监测统计模型中的异方差问题[J].长江水科院院报,2002,19(2):42-44.
    [134]赵斌,吴中如.大坝安全监测数据处理的抗差多元回归模型[J].大坝观测与土工测试,2000,(3):18-21.
    [135]徐洪钟,吴中如.偏最小二乘回归在大坝安全监测中的应用[J].大坝观测与土工测试,2002,(6):22-24.
    [136]李民.时间序列分析在大坝观测资料分析中的应用[D].武汉:武汉水利电力大学,1991.
    [137]何秀凤,刘建业,袁信.GPS/INS组合导航系统降阶滤波器设计[J].宇航学报,1997,18(3):75-79.
    [138]李小平.岭回归及主成分回归在大坝安全监测资料分析中的应用研究[D].武汉:武汉水利电力大学,1998.
    [139]戴晓光,匡键.基于数字图像处理的应变测量[J].武汉职业技术学院学报,2006,5(1):90-92.
    [140]何秀凤.变形监测新方法及其应用[M].北京:科学出版社,2007.
    [141]吴云芳,李珍照.改进的BP神经网络模型在大坝安全监测预报中的应用[J].水电站设计,2002,(2):21-24.
    [142]陈维江,马震岳,董毓新.建立大坝安全监控数学模型的一种新方法[J].水利学报,2002,(8):91-96.
    [143]赖道平,顾冲时.Elman回归模型在大坝安全监控中的应用[J].河海大学学报,2003,(8):255-258.
    [144]赵东明,朱明.随机变量经非线性变换后统计性质的确定[J].测绘学院学报,2003,20(4):1-4.
    [145]宋文尧,张牙.卡尔曼滤波[M].北京:科学出版社,1991.
    [146]高雅萍,冯晓亮.卡尔曼滤波在GPS变形监测中的应用[J].人民长江,2006,37(7):87-89.
    [147]高雅萍,冯晓亮.离散性卡尔曼滤波在GPS变形监测数据处理中的应用[J].工程勘察,2006,(7):55-57.
    [148]高雅萍,冯晓亮.GPS变形监测动态数据处理中卡尔曼滤波的应用[J].海洋测绘,2006,26(4):36-38.
    [149]郭丽,王启明,袁永生.Kalman滤波用于大坝位移模拟与预报[J].水电能源科学,2006,24(6):53-56.
    [150]王利,李亚红,刘万林.卡尔曼滤波在大坝动态变形监测数据处理中的应用[J].西安科技大学学报,2006,26(3):353-357.
    [151]肖杰.Kalman滤波在矿区GPS变形监测数据处理中的应用[J].科技情况开发与经济,2007,17(8):243-244.
    [152]胡静.基于Kalman滤波的大坝监控统计模型研究[D].西安:西安理工大学,2007.
    [153]朱健,张贵钢.卡尔曼滤波在变形监测中的应用[J].山西建筑,2007,33(8):360-361.
    [154]王利,张勤,李亚红.基于卡尔曼滤波的GM模型及其在公路边坡变形预测中的应用[J].工程勘察,2007,(3):56-59.
    [155]赵东明,蔡志武,包欢.SPKF滤波方法在变形监测数据分析中的应用[J].测绘科学技术学报,2007,24(3):186-188.
    [156]赵东明.卫星跟踪卫星任务的引力谱分析和状态估计方法[D].郑州:解放军信息工程大学,2004.
    [157]许阿裴,归庆明,韩松辉.Kalman滤波模型中三种残差的比较[J].黑龙江工程学院学报(自然科学版),2008,22(2):22-25.
    [158]王铁生,张冰,马开锋.基于卡尔曼滤波与AR混合算法的沉降监测[J].灌溉排水学报,2008,27(5):122-124.
    [159] Teunissen PJG.Quality control in navigation systems[J].IEEE Aerospace and Electronic SystemsMagazine,1990,5(7):35-41.
    [160] Koch K R,Yang Y.Robust Kalman filter for rank deficient observation model [J].Journal of Geodesy. 1998,72(8):436-441.
    [161] Teunissen PJG.An integrity and quality control procedure for use in multi sensor integration [A].In: Proceedings of ION GPS-90[C].Colorado springs,Colorado,USA,19-21 September,1990:513-522.
    [162] Yang Y,He H,Xu G.Adaptively robust filtering for kinematic geodetic positioning[J].Journal of Geodesy,2001,75(2/3):109-116.
    [163]周江文.抗差最小二乘法[M].武汉:华中理工大学出版社,1997.
    [164]杨元喜.动态Kalman滤波模型误差的影响[J].测绘科学,2006,31(1):17-18.
    [165]杨元喜.自适应动态导航定位[M].北京:测绘出版社,2006.
    [166]杨元喜.论动态自适应滤波[J].测绘学报,2001,30(4):293-298.
    [167]杨元喜.动态系统的抗差Kalman滤波[J].解放军测绘学院学报,1997,14(2):79-84.
    [168]杨元喜,张双成.导航解算中的系统误差及其协方差矩阵拟合[J].测绘学报,2004,33(3):189-194.
    [169]邓自立.最优估计理论及其应用[M].哈尔滨:哈尔滨大学出版社,2005.
    [170] Merwe RVD and Wan E.Efficient Derivative-Free Kalman Filters for Online Learning[A].In Proc of ESANN[C].Bruges, April 2001.
    [171]史忠科,最优估计的计算方法[M].北京:科学出版社,2001.
    [172]刘林,廖新浩.人卫长弧定轨中的摄动计算问题[J].天文学报,1993,34(4):411-422.
    [173]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [174] Montenbruck O, Gill E.Satellite orbits: Models, Methods and Applications[M].Springer-Verlag New York Inc,2000.
    [175]胡明城,鲁福.现代大地测量学(下册)[M].北京:测绘出版社,1994.
    [176]胡明城.空间大地测量的最新进展(一)[J].测绘科学,2001,26(3):52-55.
    [177]胡明城.空间大地测量的最新进展(二)[J].测绘科学,2001,26(4):53-56.
    [178]胡明城.空间大地测量的最新进展(三)[J].测绘科学,2002,27(1):59-60.
    [179]胡明城.空间大地测量的最新进展(四)[J].测绘科学,2002,27(2):49-51.
    [180]胡明城.空间大地测量的最新进展(五)[J].测绘科学,2002,27(3):57-59.
    [181]胡明城.空间大地测量的最新进展(六)[J].测绘科学,2002,27(4):64-66.
    [182] Julier S, Uhlmann JK.A General Method for Approximating Nonlinear Transformations of Probability Distributions[R].RRG, Dept of Engineering Science, University of Oxford, 1996.
    [183]冯康.数值计算方法[M].北京:国防工业出版社,1978.
    [184] Julier S, Uhlmann JK.A general method for approximating non-linear transformations of probability distributions[M].WWW-Publication,1994.
    [185] Wan EA, Merwe RV.The Unscented Kalman Filter for Nonlinear Estimation[A].In Proc of IEEE Symposium 2000 (AS-SPCC)[C].Lake Louise, Alberta, Canada, 2000.
    [186] Merwe RVD, Wan E.The square-root unscented kalman filter for state and parameter-estimation[A].In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)[C].Salt Lake City, Utah, 2001.
    [187] Kotasakis C, Sideris MG.A modified Wiener-type filter for geodetic estimation problems with non-stationary noise[J].Journal of Geodesy, 2001, 75:647-660.
    [188] Julier S, Uhlmann JK, Durrant-Whyte H.A new approach for filtering nonlinear systems[A].In Proceedings of the American Control Conference[C], 1995:1,628–1,632.
    [189] TorY K.Application of Kalman Filter in Real-Time DeformationMonitoring using Surveying Robot[ J]. Civil Engineering Research,2003:92-95.
    [190] TorY K.L1, L2, Kalman Filter and Time SeriesAnalysis in deformation Analysis[A].FIG XXII International Congress[C].USA,Washington D C,2002.
    [191] Simon Haykin.Adaptive Filter Theory 3rd edition[M].Verlag:PrenticeHall 1996:302-334.
    [192] Kazufumi Ito, Kaiqi Xiong.Gaussian Filters for Nonlinear Filtering Problems[J].IEEE Transactions on Automatic Control, 2000, 45(5):910-927.
    [193] Klees R, Ditmar P, Broersen P . How to handle colored observation in large least-squares problems[J].Journal of Geodesy, 2003, 76:629-640.
    [194] Kusche J.A Monte-Carlo technique for weight estimation in satellite geodesy[J].Journal Of Geodesy, 2003, 76:641-652.
    [195] Kusche J, Rudolph S.The multigrid method for satellite gravity field recovery[A].(Schwarz ed) Geodesy Beyond 2000– The Challenges of the First Decade[C].International Association of Geodesy Symposia 121, Springer, Berlin, 2000.
    [196] Lefebvre T, Bruyninckx H, Schutter DJ.Comment on "A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators"[J].IEEE Transactions on Automatic Control, 2002, 47-48.
    [197] Klees R, Koop R, Visser P, et al.Efficient gravity field recovery from GOCE gravity gradient observations[J].Journal of Geodesy, 2000, 74:561-571.
    [198] Khan SA, Tscherning CC.Determination of semi-diurnal ocean tide loading constituents[J].Geophysical Research Letters, 2001, 28(11):2,249-2,252.
    [199] Julier S, Uhlmann JK. A New Extension of the Kalman Filter to Nonlinear Systems[A].In Proc of AeroSense:The 11th Int Symp on Aerospace/Defence Sensing, Simulation and Controls[C].1997.
    [200] Kusche J.On fast multigrid iteration techniques for the solution of normal equations in satellite gravity recovery[J].Journal of Geodynamics, 2002, 33:173-186.
    [201]周桃庚,郝群,沙定国.U-卡尔曼滤波在状态估计中的应用[J].仪器仪表学报,2003,24(4):410-412.
    [202]张传定.卫星重力测量——基础、模型化方法与数据处理算法[D].郑州:信息工程大学测绘学院,2000.
    [203]奚锐锋.平面复测网的自适应卡尔曼滤波方法[J].测绘学报,1990,19(2):139-147.
    [204]武延鹏,尤政,任大海.采样Kalman滤波器在天文卫星定姿滤波中的应用[J].清华大学学报(自然科学版), 2003,43(8):1013-1016.
    [205] Mackey M, Glass L.Oscillation and chaos in a physiological control system[J].Science,1977,197(287).
    [206] Rudolph S, Kusche J, Ilk KH.Investigations on the polar gap problem in ESA’s gravity field and steady-state ocean circulation explorer mission(GOCE)[J].Journal of Geodynamics, 2002, 33:65-74.
    [207]张岭,张钹.人工神经网络理论及应用[M].杭州:浙江科学技术出版社,1997.
    [208]张定会,邵惠鹏.基于神经网络的故障诊断推理方法[J].上海交通大学学报,1999,(5):619-621.
    [209] Wan EA, Merwe RV.Kalman Filtering and Neural Networks[M].(Simon Haykin ed)chapter 7 - The Unscented Kalman Filter, Wiley, 2001.
    [210]高宁.基于BP神经网络的农作物虫情预测预报及其MATLAB实现[D].合肥:安徽农业大学,2003.
    [211]沈世镒.神经网络系统理论及其应用[M].北京:科学出版社,1998.
    [212]夏道明.基于神经网络的自适应噪声抵消的研究[D].武汉:武汉理工大学,2002.
    [213]田晓宇,李明干,刘沛.基于Kalman滤波的神经网络学习算法及其应用[J].计算机与数字工程,2005,33(2):40-43.
    [214]孙现申,宋卫国.水准网稳定点群筛选的稳定性矩阵分析法[J].测绘技术,1996,(1):25-27.
    [215]黄立人,马青.确定三维网中相对稳定点组的一种方法[J].地壳形变与监测,1999,19(3):12-17.
    [216]林国良.紧水滩拱坝平面变形控制网稳定分析[J].大坝观测与土工测试,2000,24(2):29-31.
    [217]喻兴旺,程鸣坚,徐忠阳,等.TCA2003全站仪在港口湾水库大坝变形监测中的应用[J].水电自动化与大坝监测,2003,27(5):48-50.
    [218]包欢,朱江,付子傲,等.自动测量一体化系统AMIS的功能及应用[J].工程勘察,2004,(5):55-57.
    [219]包欢,朱江,付子傲,等.ADMS-Pro自动变形监测系统在水库电站外部变形监测中的应用[A].见:中国测绘学会测绘仪器专业委员会.2008年全国测绘仪器综合学术年会论文集[C].银川,2008:66-69.
    [220]包欢,付子傲,陈刚,等.基于非线性平差模型的坐标转换公式[J].测绘学院学报,2004,21(3):175-177.
    [221]包欢,徐忠阳,张良琚.自动变形监测系统在地铁结构变形监测中的应用[J].测绘学院学报,2003,20(2):103-105.
    [222]卫建东,包欢,徐忠阳,等.基于多台测量机器人的监测网络系统[J].测绘学院学报,2005,22(2):154-156.
    [223]包欢,卫建东,徐忠阳,等.“智能全站仪网络监测系统”在地铁监测中的应用[J].北京测绘,2005,(3):19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700