机载多通道SAR-GMTI误差分析与补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载多通道SAR-GMTI系统不仅可以检测主瓣杂波谱带外的快速目标,还可以利用多通道技术检测主瓣杂波谱带内的慢速目标,同时实现了对动目标的参数估计和重聚焦,并精确定位在高分辨的SAR图像上,为全天时、全天候的战略和战场高分辨侦察提供了可能性,受到了世界各军事强国的普遍关注。为了检测主瓣杂波谱带内的慢速目标,该系统可以利用DPCA、ATI或STAP等多通道技术来抑制杂波,但这些技术对通道间的频率响应、回波时延、空间位置、天线空域响应等的一致性要求较高,实际系统很难满足很高的一致性要求,各种不一致性误差导致了系统性能的下降甚至恶化,如何有效的补偿这些误差成为提高系统性能迫在眉睫的难题。
     在某研究所实验项目的资助下,紧密结合工程实际,利用理论分析、公式推导和数据验证等手段对机载多通道SAR-GMTI系统中的误差及其补偿方法进行了研究,取得了一些成果,主要概括为:
     (1)论文从杂波模型出发,推导了回波的相关性与频率响应误差、回波时延误差、通道位置误差和天线空域响应误差的关系,研究了这些误差的成因及在回波数据域的补偿方法,提高了多通道SAR-GMTI系统的动目标检测性能。
     (2)针对通道频率响应误差导致杂波抑制性能下降的问题,根据机载多通道下视雷达地杂波数据的相关特性,提出了一种不需要校正信号的、基于回波数据的自适应盲通道均衡方法。该方法不仅可以估计并补偿通道间的频率响应误差,而且也同时补偿了回波和接收机的时延误差。
     (3)在补偿水平位置误差时,为了减小主瓣杂波谱带外的动目标信号的损失,提出了利用全通的时延滤波器补偿该误差的方法,同时重点分析了补偿后运动目标信号的相消特性。理论分析和实验表明,目标的相消特性不仅与通道间距、载机速度和波长有关,还取决于雷达的脉冲重复频率,因此优化脉冲重复频率的选择对解决盲速问题也是十分重要的。
     (4)当样本中存在强的运动目标时,自适应杂波抑制性能下降的同时也造成了动目标信号的相消。针对此问题,基于最大信噪比准则,提出了一种稳健的两通道自适应DPCA杂波抑制方法。该方法对自适应权的幅度和相位分开估计,避免了二者之间的相互影响。
     (5)多点消一点和联合像素方法都充分利用参考像素周围的信息,补偿了各种系统误差,有效地抑制了地杂波。研究了多点消一点和联合像素这两种稳健的杂波抑制方法的关系,实测数据结果表明,联合像素方法虽然利用了更多的信息,但如果不能有效的对动目标信号进行约束,其动目标检测性能反而低于多点消一点方法。
The multi-channel airborne SAR-GMTI systems can detect not only fast moving targets outside the mainlobe clutter spectrum but also slowly moving targets inside using the multi-channel techniques. Simultaneously, the velocity of the moving targets can be evaluated accurately, and the targets can be refocused and relocated accurately on the high definition SAR image. Consequently, it makes all day/night, all-weather, strategic and battlefield reconnaissance be possible, and has caused considerable concern by all the military powers in the world. To detect the slowly moving targets inside the mainlobe clutter spectrum, the multi-channel techniques, such as DPCA, ATI, STAP, etc, can be used for clutter suppression, but they require that the frequency response between channels, time-delay of the returns, space position, airspace response of the antennas, etc, must be matched highly. In actual systems, the mismatch of these is inevitable and causes degradation of the detection performance of the system, even deterioration. Therefore, how to compensate these errors becomes an extremely urgent problem for the improvement of the system performance.
     Supported by the experiment project of an institute, we combine with the engineering practice tightly and carry out researches into error compensation for the multi-channel airborne SAR-GMTI systems by means of theory analysis, formula derivation and real data validation. Several key achievements are obtained and mainly summarized as:
     (1) Firstly, the clutter model with all the errors is derived out, and the relationship between the correlation characteristic of the clutter in the channels and the frequency response error, time-delay error of the return, space position error and airspace response error of the antennas is analyzed. Then the origin of these errors and the compensation approaches in the data field is studied in the doctoral dissertation, which greatly raise the detection performance for the moving targets in the multi-channel SAR-GMTI system.
     (2) To deal with the problem that the frequency response error degrades the performance for clutter suppression, an adaptive blind channel equalization method based on the echo signal is presented according to the characteristic the ground clutter for down-looking multi-channel airborne radars, in which the calibration signals is not needed. It can evaluate and compensate not only the frequency response error between channels, but also the time-delay errors induced by the receivers and returns.
     (3) When compensating for the azimuth position error, an all-pass time-delay filters is used to reduce the loss of the target signal outside the mainlobe clutter spectrum, and the cancellation characteristic about the target signal after compensation is analyzed in emphasis. Theory analysis and experiments show, the cancellation curve of the moving targets is related to not only the distance between channels, aircraft's velocity and wavelength, but also the pulse repetition frequency (PRF). As a result, the optimized selection for the PRF is important to solve the problem of blind velocity.
     (4) While strong scattering moving targets exist in samples, the performance of adaptive clutter suppression is degraded greatly and the signal of moving targets is cancelled. To deal with this problem, a robust dual-channel adaptive DPCA method for clutter suppression is proposed based on the criterion of maximum signal-to-noise ratio. In this method, the amplitude and phase for the adaptive weight is evaluated separatedly, which avoid the influence on each other.
     (5) For the multi-point minus one-point and joint pixel methods, the information on the adjacent pixels associated with the reference pixel is sufficiently used for suppressing the clutter, which can compensate all the system errors effectively at the same time. The relationship with them is derived out and the performance is compared by the measured data, which shows that although more information is used for the joint pixel method, the detection performance for the moving targets is worse than that for the multi-point minus one-point method if the signal of the moving targets cannot be constrained effectively.
引文
[1]I. G. Cumming, F. H. Wong.洪文等译.合成孔径雷达成像——算法与实现[M].北京:电子工业出版社,2007.
    [2]J. C. Curlander, R. N. Mcdonough.韩传钊等译.合成孔径雷达成像——系统与信号处理[M].北京:电子工业出版社,2006.
    [3]G. Franceschetti, R. Lanari. Synthetic aperture radar processing[M]. Washington (?)D. C.:CRC Press,1999.
    [4]M. Soumekh. Synthetic aperture radar signal processing with MATLAB algorithms[M]. San Francisco:John Wiley & Sons Inc,1999.
    [5]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [6]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [7]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [8]张强.弹载条带式SAR成像算法研究[D].长沙:国防科学技术大学,2005.
    [9]秦玉亮,王建涛,王宏强,黎湘.基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像[J].电子与信息学报,2009,31(11):2563-2568.
    [10]F. T. Ulaby, R. K. Moore, A. K. Fung. Microwave remote sensing:active and passive[M]. Reading MA:Addison-Wesley Publishing Company,1982.
    [11]R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. van Zyl (1996). Vegetation characteristics and underlying topography from interferometric radar[J]. Radio Science,1996,31(6),1449-1485.
    [12]Izzawati, E. D. Wallington, I. H. Woodhouse. Forest height retrieval from commercial X-band SAR products[J]. IEEE Trans. On Geoscience and Remote Sensing,2006,44(4):863-870.
    [13]J. Askne, M. Santoro, G. Smith, J. E. S. Fransson. Multitemporal repeat-pass SAR interferometry of boreal forests[J]. IEEE Trans. On Geoscience and Remote Sensing, 2003,41(7):1540-1550.
    [14]A. T. Mainninen, L. M. H. Ulander. Forestry parameters retrieval from texture in CARABAS VHF-band SAR images[J]. IEEE Trans. On Geoscience and Remote Sensing,2001,39(12):2622-2633.
    [15]杨听等.ERDAS遥感数字图像处理实验教程.北京:科学出版社,2009.
    [16]J. R. Jensen著,陈晓玲等译.遥感数字影像处理导论(第三版).北京:机械工业出版社,2007.
    [17]Maurice W. Long. Airborne early warning system concepts (3rd Edition)[M]. Boston:Artech House,1992.
    [18]D. A. Ausherman, A. Kozma, et al. Developments in radar imaging[J]. IEEE Trans. on Aerospace and Electronic Systems,1984,20(4):363-400.
    [19]R. K. Raney. Synthetic aperture imaging radar and moving targets[J]. IEEE Trans. on Aerospace and Electronic Systems,1971,7(3):499-505.
    [20]A. Freeman. Simple MTI using synthetic aperture radar[C]. Proceeding of IGARSS, 1984,65-69.
    [21]K. Ouchi. On the multilook images of moving targets by synthetic aperture radar[J]. IEEE Trans. on Antenna and Propagation,1985,33(8):823-827.
    [22]S. Barbarossa, A. Farina. A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville distribution[C]. IEEE International Radar Conference,1990,44-50.
    [23]S. Barbarossa. Detection and imaging of moving objects with synthetic aperture radar, Part I:Optional detection and parameter estimation theory[J]. IEE Proceeding-F,1992,139(1):79-88.
    [24]S. Barbarossa, A. Farina. Detection and imaging of moving objects with synthetic aperture radar, Part II:Joint time-frequency analysis by Wigner-Ville distribution [J]. IEE Proceeding-F,1992,139(1):89-97.
    [25]李刚,朱敏慧.基于扩展小波变换的机载SAR运动目标参数估计[J].电子与信息学报,2001,23(11):1154-1161.
    [26]毛引芳,陈国安.基于WVD-HT的SAR/ISAR多运动目标检测[J].电子科学学刊,1997,19(4):464-470.
    [27]H. Chen and C. D. Mcgillem. Target motion compensation by spectrum shifting in synthetic aperture radar[J]. IEEE Trans. on Aerospace and Electronic Systems,1992, 28(3):895-901.
    [28]J. R. Moreira and W. Keydel. A new MTI-SAR approach using the reflectivity displacement method[J]. IEEE Trans. on Geoscience and Remote Sensing,1995, 33(5):1238-1244.
    [29]R. P. Perry, R. C. Dipietro, R. L. Fante. SAR imaging of moving targets[J]. IEEE Trans. on Aerospace and Electronic Systems,1999,35(1):188-200.
    [30]J. R. Fienup. Detecting moving targets in SAR imagery by focusing[J]. IEEE Trans. on Aerospace and Electronic Systems,2001,37(3):794-809.
    [31]J. M. B. Dias, P. A. C. Marques. Multiple moving targets detection and trajectory parameters estimation using a single SAR sensor[J]. IEEE Trans. on Aerospace and Electronic Systems,2003,39(2):604-624.
    [32]G. C. Sharp, S. W. Lee, D. K. Wee. ICP registration using invariant features. IEEE Trans. On Pattern Analysis and Machine Intelligence,2002,24(1):90-102.
    [33]R. L. Fante. Analysis of the displaced-phase-center Radar for clutter reduction[C]. Mitre Corporation Report,1989, MT10666.
    [34]L. Lightstone, D. Faubert and G. Rempel. Multiple phase center DPCA for airborne radar[C]. Proceedings of IEEE National Radar Conference,1991,36-40.
    [35]H. S. C. Wang. Mainlode clutter cancellation by DPCA for space-based Radars[C]. Aerospace Applications Conference,1991,124-128.
    [36]T. J. Nohara. Derivation of a 3-Channel DPCA/monopulse radar using phased arrays[C]. IEEE International Radar Conference,1994,243-246.
    [37]E. C. Richard. Dual baseline and frequency along-track interferometry[C]. Proceeding of IEEE IGARSS,1992,1585-1588.
    [38]R. Barnler and P. Hartl. Synthetic aperture radar interferometry[J]. Inverse Problems.1998,14:R1-R54.
    [39]S. J. Frasier, A. J. Camps. Dual-beam interferometry for ocean surface current vector mapping[J]. IEEE Trans. On Geoscience and Remote Sensing,2001,39(2): 401-414.
    [40]D. Kim, W. M. Moon, D. A. Imel and D. Moller. Remote sensing of ocean waves and currents using NASA(JPL) AIRSAR along-track interferometry(ATI)[C]. Proceeding of IGARSS,2002,931-933.
    [41]S. Barbarossa and A. Farina. Space-time-frequency processing of synthetic aperture radar signals[J]. IEEE Trans. On Aerospace and Electronic Systems,1994,30(2): 341-358.
    [42]R. Klemm. Introduction to space-time adaptive processing [J]. Electronics & Communication Engineering Journal,1999,11(1):5-12.
    [43]保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报,1993,21(9):1-7.
    [44]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000.
    [45]袁昊,周荫清,李景文.基于幅度和相位联合的ATI动目标检测新方法[J].北京航空航天大学学报,2007,33(2):169-175.
    [46]S. Chiu. Performance of RADARSAT2 SAR-GMTI processors at high SAR Resolutions. Defence R&D Canada Technical Report, Ottawa.
    [47]L. E. Brennan, L. S. Reed. Theory of adaptive radar[J]. IEEE Trans. On Aerospace and Electronic Systems,1973,9(2):237-252.
    [48]R. Klemm. Principles of space-time adaptive processing[M]. London:Institution of Electrical Engineers,2002.
    [49]廖桂生.相控阵天线AEW雷达时-空二维自适应处理[D].西安电子科技大学博士学位论文,1992.
    [50]G. W. Titi. An overview of the ARPA mountaintop program[C]. Proceeding of IEEE Adaptive Antenna Symposium,1994,53-59.
    [51]M. O. Little, W. P. Berry. Real-time multi-channel airborne radar measurements[C]. IEEE International Radar Conference,1997.
    [52]D. Cerutti-Maori, J. Klare, A. R. Brenner, J. H. G. Ender. Wide area traffic monitoring with the SAR/GMTI system PAMIR[J]. IEEE Trans. on Geoscience and Remote Sensing,2008,46(10):3019-3030.
    [53]张直中.军和民两用的AN/APG-76(V)机载雷达[J].现代雷达,1999,21(6):1-4.
    [54]阳曙光,张林,王东祁.国外机载地面监视系统的现状及发展趋势[J].飞航导弹,2006,(12):13-16.
    [55]F. Lombard, J. Ender, L. Robing, et al. Experiments of Interferometric layover solution with the three-antenna airborne AER-Ⅱ SAR system [C]. Proceeding of IGARSS,2004.
    [56]A. R. Brenner, J. H. G. Ender. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR. IEE Proceeding of Radar Sonar Navigation,2006,153(2):152-162.
    [57]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003.
    [58]A. Das, R. Cobb, M. Stallard. TechSat 21:A revolutionary concept in distributed space based sensing[C]. Proceeding of AIAA Defense and Civil Space Programs Conference,1998:5255-5263.
    [59]R. Burns, C. McLaughlin, et al. TechSat 21:Formation design, control, and simulation[C]. IEEE Aerospace Conference Proceedings,2007:19-25.
    [60]D. Massonnet. The Interferometric Cartwheel:a constellation of passive satellites to produce radar images to be coherently combined [J]. International Journal of Remote Sensing,2001,22(12):2413-2430.
    [61]D. Massonnet. Capabilities and limitations of the interferometric cartwheel [J]. IEEE Trans, on Geoscience and Remote Sensing,2001,39(3):506-520.
    [62]H. Fiedler, G. Krieger, F. Jochim, et al. Analysis of bi-static configurations for spaceborne SAR interferometry[C]. Proceeding of Europe SAR,2002:29-33.
    [63]G. Krieger, H. Fiedler, J. Mittermayer, et al. Analysis of multi-static configurations for spaceborne SAR interferometry[J]. IEE Proceeding of Radar, Sonar and Navigation,2003,150(3):87-96.
    [64]J. F. Janni, Y. J. King, G. Witt, et al. An innovative approach to satellite technology[C]. Symposia on Space Based Observation Technologies,2000, P028010.
    [65]S. Marco, H. David, B. Benjamin, et al. TerraSAR-Ⅹ:Calibration concept of a multiple mode high resolution SAR[C]. International Geoscience and Remote Sensing Symposium (IGARSS),2005:4874-4877.
    [66]M. Alberto, K. Gerhard, H. Irena, et al. TanDEM-X:A TerraSAR-X add-on satellite for single-pass SAR interferometry[C]. International Geoscience and Remote Sensing Symposium (IGARSS),2004:1000-1003.
    [67]周荫清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展[J].电子学报,2003,31(12A):1939-1945.
    [68]李真芳,邢孟道,王彤,保铮.分布式小卫星SAR实现全孔径分辨率的信号处理[J].电子学报,2003,31(12):1800-1803.
    [69]闫鸿慧,王岩飞.利用频谱合成实现分布式卫星SAR高距离分辨力成像.电子与信息学报[J],2005,27(6):928-931.
    [70]Z. Li, Z. Bao, H. Wang. Performance improvement of constellation SAR systems using signal processing techniques[J]. IEEE Trans. on Aerospace and Electronic Systems,2006,42(2):436-452.
    [71]张英,李景文.基于DPCA的机载SAR-MTI系统误差分析及补偿方法研究[J].电子学报,2003,31(12):2031-2034.
    [72]胡磊,李景文.基于DPCA的机载SAR系统运动误差及其补偿[J].雷达科学与技术,2006,4(4):218-222.
    [73]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报,2004,32(9):1429-1432.
    [74]杨志伟,廖桂生,曾操.基于雷达回波数据相位矢量的通道盲均衡[J].电子学报,2008,9(36):1682-1686.
    [75]刘向阳,廖桂生,杨志伟,曲毅,朱圣棋.机载多通道雷达DPCA误差补偿及稳健的杂波抑制[J].电子学报,2009,37(9):1982-1988.
    [76]K. Gerlach. The effects of IF bandpass mismatch errors on adaptive cancellation[J]. IEEE Trans.on AES,1990,26(3):455-468.
    [77]Wu Shunjun, Li Yingjun. Adaptive channel equalization for space-time adaptive processing[C]. Proc. IEEE International Radar Conference.1995:624-628.
    [78]D. D. Aalfs, E. J. Holder. Impact of wideband channel-to-channel mismatch on adaptive arrays[J]. IEEE Proc. of SAMSP, Cambridge,2000:459-463.
    [79]K. Teitelbaum. A flexible processor for a digital adaptive array radar[J]. IEEE AES System Magazine,1991, May:18-22.
    [80]彭小亮,李荣锋,王永良,陈风波.两种修正的自适应通道均衡方法[J].电子与信息学报,2006,28(4):658-662.
    [81]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法[J].自然科学进展,2008,18(12):1484-1490.
    [82]吕孝雷,苏军海,邢孟道,张守宏.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [83]杨垒,王彤,邢孟道,保铮.机载多通道SAR-GMTI的杂波抑制方法[J].电子与信息学报,2008,30(12):2831-2834.
    [84]张立峰,王彤,邢孟道,保铮.多通道SAR-GMTI通道均衡和动目标检测定位方法[J].西安电子科技大学学报,2009,36(1):11-16.
    [85]张焕胜,郑明洁,杨汝良,祁海明.一种机载双通道SAR/GMTI自适应通道均衡方法的研究[J].遥感技术与应用,2007,22(5):642-647.
    [86]M. Soumekh. Signal Subspace Fusion of Uncalibrated Sensors with Application in SAR and Diagnostic Medicine [J]. IEEE Trans. on Imaging Processing,1999,8(1): 127-137.
    [87]K. I. Ranney, M. Soumekh. Signal Subspace Change Detection in Averaged Multilook SAR Imagery [J]. IEEE Trans. on Geoscience and Remote Sensing,2006, 44(1):201-213.
    [88]Z. Li, Z. Bao and F. Yang. Ground moving target detection and location based on SAR images for distributed spaceborne SAR [J]. Science in China (series F), 2005,48(5):632-646.
    [89]刘颖,廖桂生,周争光.对图像配准误差稳健的分布式星载SAR地面运动目标检测及高精度的测速定位方法[J].电子学报,2007,35(6):1009-1014.
    [90]曾操,廖桂生,杨志伟,刘聪锋.基于样本加权的三通道SAR-GMTI机载数据处理及性能分析[J].电子学报,2009,37(3):506-512.
    [91]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安:西安电子科技大学博士论文,2006.
    [92]刘颖.分布式SAR运动目标检测雷达阵列误差估计方法研究[D].西安:西安电子科技大学博士论文,2007.
    [93]杨志伟.机载/星载正侧阵列雷达GMTI研究[D].西安:西安电子科技大学博士论文,2008.
    [94]吕孝雷.机载多通道SAR-GMTI处理方法的研究[D].西安:西安电子科技大学博士论文,2009.
    [95]杨垒.多通道SAR-GMTI方法研究[D].西安:西安电子科技大学博士论文,2009.
    [1]王永良,陈建文,吴志文.现代DPCA技术研究[J].电子学报,2000,28(6):118-121.
    [2]Wu Shunjun, Li Yingjun. Adaptive channel equalization for space-time adaptive processing[C]. Proc. IEEE International Radar Conference.1995:624-628.
    [3]D. D. Aalfs, E. J. Holder. Impact of wideband channel-to-channel mismatch on adaptive arrays[J]. IEEE Proc. of SAMSP, Cambridge,2000:459-463.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [5]G. Franceschetti, M. Migliaccio. SARAS:A synthetic aperture radar (SAR) raw signal simulator[J]. IEEE Trans. on Geoscience and Remote Sensing,1992,30(1): 110-123.
    [6]G. Franceschetti, M. Migliaccio, D. Riccio. SAR raw signal simulation of actual ground sites described in terms of sparse input data. IEEE Trans. on Geoscience and Remote Sensing,1994,32(6):1160-1169.
    [7]E. H. Attia, B. D. Steinberg. Self-cohering large antenna arrays using the spatial correlation properties of radar clutter[J]. IEEE Trans. on Antenna Propagation, 1989,37(1):30-38.
    [8]D. L. Goeckel, J. B. Mead. Linear filtering approaches for phase calibration of airborne arrays[J]. IEEE Trans. on Aerospace and Electronic Systems,2006,42(3): 806-824.
    [9]H Urkowitz. The effect of antenna pattern on the performance of dual-antenna radar airborne moving target indicators[J]. IEEE Trans. on Aeronautic Navigation Electronics,1964,11(12):218-223.
    [10]H. A. Zebker, J. Villasenor. Decorrelation in Interferometric radar echos[J]. IEEE Trans. on Geoscience and Remote Sensing,1992,30(5):950-959.
    [11]张贤达.现代信号处理(第二版)[M].清华大学出版社,2002.
    [12]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法[J].自然科学进展,2008,18(12):1484-1490.
    [13]吕孝雷,苏军海,邢孟道,张守宏.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [14]杨垒,王彤,邢孟道,保铮.机载多通道SAR-GMTI的杂波抑制方法[J].电子与信息学报,2008,30(12):2831-2834.
    [15]张立峰,王彤,邢孟道,保铮.多通道SAR-GMTI通道均衡和动目标检测定位方法[J].西安电子科技大学学报,2009,36(1):11-16.
    [16]张焕胜,郑明洁,杨汝良,祁海明.一种机载双通道SAR/GMTI自适应通道均衡方法的研究[J].遥感技术与应用,2007,22(5):642-647.
    [17]M. Soumekh. Signal Subspace Fusion of Uncalibrated Sensors with Application in SAR and Diagnostic Medicine [J]. IEEE Trans. on Imaging Processing,1999,8(1): 127-137.
    [18]K. I. Ranney, M. Soumekh. Signal Subspace Change Detection in Averaged Multilook SAR Imagery [J]. IEEE Trans. on Geoscience and Remote Sensing,2006, 44(1):201-213.
    [19]Z. Li, Z. Bao and F. Yang. Ground moving target detection and location based on SAR images for distributed spaceborne SAR [J]. Science in China (series F),2005, 48(5):632-646.
    [20]刘颖,廖桂生,周争光.对图像配准误差稳健的分布式星载SAR地面运动目标检测及高精度的测速定位方法[J].电子学报,2007,35(6):1009-1014.
    [21]李景文.合成孔径雷达动目标检测与成像[D].北京:北京航空航天大学博士论文,1999.
    [1]J. H. G. Ender. Space-time processing for multichannel synthetic aperture radar[J]. Electronics & Communication Engineering Journal,1999,11(1):29-38.
    [2]M. Soumekh, B. Himed. Multi-channel Signal Subspace processing methods for SAR-MTI[C]. Proc. IEEE International Radar Conference.2003:126-132.
    [3]M. Soumekh. Moving Target Detection and imaging using an Ⅹ band along-track monopulse SAR[J]. IEEE Trans. on Aerospace and Electronic Systems,2002, 38(1):315-333.
    [4]张英,李景文.基于DPCA的机载SAR-MTI系统误差分析及补偿方法研究[J].电子学报,2003,31(12A):2031-2034.
    [5]Wu Shunjun, Li Yingjun. Adaptive channel equalization for space-time adaptive processing[C]. Proc. IEEE International Radar Conference.1995:624-628.
    [6]K. Gerlach. The effects of IF bandpass mismatch errors on adaptive cancellation[J]. IEEE Trans. on AES,1990,26(3):455-468.
    [7]D. D. Aalfs, E. J. Holder. Impact of wideband channel-to-channel mismatch on adaptive arrays[J]. IEEE Proc. of SAMSP, Cambridge,2000:459-463.
    [8]K. Teitelbaum. A flexible processor for a digital adaptive array radar[J]. IEEE Aerospace and Electronic Systems Magazine,1991, May:18-22.
    [9]彭小亮,李荣锋,王永良,陈风波.两种修正的自适应通道均衡方法[J].电子与信息学报,2006,28(4):658-662.
    [10]沈福民.自适应信号处理[M].西安:西安电子科技大学出版社,2002.
    [11]陆光华,彭学愚,张林让,毛用才.随机信号处理[M].西安电子科技大学出版社,2002.
    [12]张贤达.现代信号处理(第二版)[M].清华大学出版社,2002.
    [13]E. H. Attia, B. D. Steinberg. Self-cohering large antenna arrays using the spatial correlation properties of radar clutter[J]. IEEE Trans. on AP,1989,37(1):30-38.
    [14]D. L. Goeckel, J. B. Mead. Linear filtering approaches for phase calibration of airborne arrays[J]. IEEE Trans. on Aerospace and Electronic Systems,2006,42(3): 806-824.
    [15]H Urkowitz. The effect of antenna pattern on the performance of dual-antenna radar airborne moving target indicators[J]. IEEE Trans. on ANE,1964,11(12): 218-223.
    [16]J. M. Hilberg, B. Bickert, K. P. Schmitt. Results of flight tests of a two channel radar system with real-time MTI processing[C]. IEE Proc. Radar Sonar Navigation, 2003,150(1):23-27.
    [17]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000.
    [18]M I Skolnik, Radar Handbook[M], New York:McGraw-Hill,1990.
    [1]王永良,陈建文,吴志文.现代DPCA技术研究[J].电子学报,2000,28(6):118-121.
    [2]王永良,彭应宁.空时自适应信号处理.[M] 北京:清华大学出版社,2000.
    [3]张英,李景文.基于DPCA的机载SAR-MTI系统误差分析及补偿方法研究[J]. 电子学报,2003,31(12):2031-2034.
    [4]胡磊,李景文.基于DPCA的机载SAR系统运动误差及其补偿[J].雷达科学与技术,2006,4(4):218-222.
    [5]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报,2004,32(9):1429-1432.
    [6]吕孝雷,苏军海,邢孟道,张守宏.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [7]张焕胜,郑明洁,杨汝良,祁海明.一种机载双通道SAR/GMTI自适应通道均衡方法的研究[J].遥感技术与应用,2007,22(5):642-647.
    [8]杨垒,王彤,邢孟道,保铮.机载多通道SAR-GMTI杂波抑制方法[J].电子与信息学报,2008,30(12):2831-2834.
    [9]张立峰,王彤,邢孟道,保铮.多通道SAR-GMTI通道均衡和动目标检测定位方法[J].西安电子科技大学学报,2009,36(1):11-16.
    [10]赵迎辉,刘畅,王岩飞.基于Range-Doppler域相位补偿的ATI/DPCA数据配准方法[J].电子与信息学报,2008,30(2):318-321.
    [11]杨志伟.机载/星载正侧视阵列雷达GMTI研究[D].西安:西安电子科技大学博士论文,2008.
    [12]Wu Shunjun, Li Yingjun. Adaptive channel equalization for space-time adaptive processing [C]. Proc. IEEE International Radar Conference. Xi'an, China,1995. 624-628.
    [13]D. D. Aalfs, E. J. Holder. Impact of wideband channel-to-channel mismatch on adaptive arrays[J]. IEEE Proc. of SAMSP, Cambridge,2000:459-463.
    [14]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法[J].自然科学进展,2008,18(12):1484-1490.
    [15]R. M. Goldstein, H. A. Zebker and C. L. Werner. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science,1988,23(4):713-720.
    [16]W. Xu and I. Cumming. A region growing algorithm for InSAR phase unwrapping [J]. IEEE Trans. on Geoscience Remote Sensing.1999,37(1):124-134.
    [17]M. D. Pritt and J. S. Shipman. Least-squares two-dimensional phase unwrapping using FFT[J]. IEEE Trans. on Geoscience Remote Sensing,1994,32(5):706-708.
    [18]M I Skolnik, Radar Handbook[M], New York:McGraw-Hill,1990.
    [1]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法[J].自然科学进展,2008,18(12):1484-1490.
    [2]M. Soumekh. Signal Subspace Fusion of Uncalibrated Sensors with Application in SAR and Diagnostic Medicine[J]. IEEE Trans. on Imaging Processing,1999,8(1): 127-137.
    [3]K. I. Ranney, M. Soumekh. Signal Subspace Change Detection in Averaged Multilook SAR Imagery[J]. IEEE Trans. on Geoscience and Remote Sensing,2006, 44(1):201-213.
    [4]刘颖,廖桂生,周争光.对图像配准误差稳健的分布式星载SAR地面运动目标检测及高精度的测速定位方法[J].电子学报,2007,35(6):1009-1014.
    [5]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安:西安电子科技大学博士论文,2006.
    [6]吕孝雷,苏军海,邢孟道,张守宏.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [7]杨垒,王彤,邢孟道,保铮.机载多通道SAR-GMTI的杂波抑制方法[J].电子与信息学报,2008,30(12):2831-2834.
    [8]张立峰,王彤,邢孟道,保铮.多通道SAR-GMTI通道均衡和动目标检测定位方法[J].西安电子科技大学学报,2009,36(1):11-16.
    [9]张焕胜,郑明洁,杨汝良,祁海明.一种机载双通道SAR/GMTI自适应通道均衡方法的研究[J].遥感技术与应用,2007,22(5):642-647.
    [10]Wu Shunjun, Li Yingjun. Adaptive channel equalization for space-time adaptive processing[C]. Proc. IEEE International Radar Conference. Xi'an, China,1995. 624-628.
    [11]H Urkowitz. The effect of antenna pattern on the performance of dual-antenna radar airborne moving target indicators[J]. IEEE Trans. on ANE,1964,11(12): 218-223.
    [12]M. Soumekh, B. Himed. SAR-MTI Processing of Multi-Channel Airborne Radar Measurement (MCARM) Data[C]. IEEE International Radar Conference,2002, 24-28.
    [13]M. Soumekh. Signal Subspace Fusion of Uncalibrated Sensors with Application in SAR and Diagnostic Medicine[J]. IEEE Trans. on Imaging Processing,1999,8(1): 127-137.
    [14]A. Freeman, A. Currie. Synthetic Aperture Radar (SAR) Images of Moving Targets[J]. GEC Journal of Research,1987,5(2):106-115.
    [15]L. G. Cumming, F. H. Wong洪文,胡东辉译.合成孔径雷达成像—算法与实现[M].电子工业出版社,2007.
    [16]李景文.合成孔径雷达动目标检测与成像[D].北京:北京航空航天大学博士论文,1999.
    [1]王永良,陈建文,吴志文.现代DPCA技术研究[J].电子学报,2000,28(6):118-121.
    [2]王彤,保铮.提高沿航向干涉法性能的最小二乘图像对补偿方法[J].自然科学进展,2008,18(12):1484-1490.
    [3]刘向阳,周争光,廖桂生,毛志杰.一种基于回波数据的机载雷达通道均衡的方法[J].电子学报,2009,37(3):658-663.
    [4]胡磊,李景文.基于DPCA的机载SAR系统运动误差及其补偿[J].雷达科学与技术,2006,4(4):218-222.
    [5]吕孝雷,苏军海,邢孟道,张守宏.三通道SAR-GMTI误差校正方法的研究[J].系统工程与电子技术,2008,30(6):1037-1042.
    [6]张焕胜,郑明洁,杨汝良,祁海明.一种机载双通道SAR/GMTI自适应通道均衡方法的研究[J].遥感技术与应用,2007,22(5):642-647.
    [7]M. Soumekh. Signal Subspace Fusion of Uncalibrated Sensors with Application in SAR and Diagnostic Medicine[J]. IEEE Trans. On Imaging Processing,1999,8(1): 127-137.
    [8]曾操,廖桂生,杨志伟,刘聪锋.基于样本加权的三通道SAR-GMTI机载数据处理及性能分析[J].电子学报,2009,37(3):506-512.
    [9]刘颖,廖桂生,周争光.对图像配准误差稳健的分布式星载SAR地面运动目标检测及高精度的测速定位方法[J].电子学报,2007,35(6):1009-1014.
    [10]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安:西安电子科技大学博士论文,2006.
    [11]C. Livingstone, I. Sikaneta. Focusing Moving Targets (Terrain Imaged with Moving Target Filter:A Tutorial). Technical Memorandum, Defence R&D Canada, 2004.
    [12]李景文.合成孔径雷达动目标检测与成像[D].北京:北京航空航天大学博士论文,1999.
    [13]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700