柴油机相继增压系统防喘振技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相继增压是改善中高速大功率高增压柴油机低工况性能最为有效的方法,可以有效地扩大柴油机运行范围、提高经济性、减少排放,但是,如果切换点和切换延迟时间等参数选择不当,在动态切换中,容易导致压气机喘振、增压器超速、燃烧排放恶化等问题。为了解决相继增压系统切换过程中可能出现的喘振现象,本文将压气机喘振主动控制技术应用至相继增压系统防喘振控制中,设计了相继增压喘振主动控制系统。结果表明,控制系统可以较好地抑制相继增压系统切换过程出现的喘振现象,为相继增压系统切换的平稳性控制及其安全运行提供了新思路。本文主要研究内容如下:
     1.涡轮增压器压气机稳态性能试验。根据涡轮增压器压气机稳态性能试验和相继增压系统切换试验的要求,将增压器试验台与相继增压柴油机试验台相结合设计了相继增压热动力试验台,采用燃烧器系统代替大功率柴油机进行相继增压技术的研究,涡轮进口参数柔性可调,更易于控制相继增压系统的工作状态。试验台可以在外循环和自循环模式下进行由3台涡轮增压器构成的不同结构形式的相继增压系统的相关试验,也可以对单台涡轮增压器进行稳态性能试验和动态特性试验。对试验台运行原理、总体结构设计和测控系统设计进行详细研究,进行了增压器压气机稳态性能试验,为试验台自循环切换仿真提供数据支持。
     2.增压器压气机喘振现象研究。建立了单台涡轮增压器构成的热动力系统仿真模型,对压气机喘振过程中的流量和压力参数变化特征进行分析,找出判断压气机进入喘振的参数及其特征。基于相继增压热动力试验台进行了压气机喘振试验研究,掌握了压气机出口容腔容积和转速对喘振周期的影响规律,利用频谱分析方法和小波分析方法对压气机喘振先兆信号进行了有效的确认,制定了压气机喘振定量判别标准。基于dSPACE实时仿真平台和LabVIEW测试平台进行了压气机喘振主动控制硬件在环仿真,利用模糊控制算法设计了喘振主动控制系统的快速控制原型,为相继增压防喘振控制算法奠定了基础。
     3.相继增压系统动态切换过程研究。建立了相继增压热动力系统仿真模型,在不同切入延迟时间和不同切出延迟时间以及不同容腔容积的工况下,对切入过程和切出过程进行仿真研究,得出了相继增压系统切换过程的变化规律,并利用相继增压热动力试验台进行了验证。仿真和试验结果表明,大小涡轮相继增压系统中,大增压器作为基本增压器时,切入延迟时间的设置裕度较宽;小增压器作为基本增压器时,切入延迟时间设置裕度较小。切出过程中,空气阀也应迟于燃气阀关闭,切出延迟时间过短,受控压气机将发生严重喘振;切出延迟时间过长,将引起受控压气机倒流。由于空气阀关闭时,增压器仍具有一定转速,受控压气机一定程度的喘振不可避免,但合理的切出延迟时间可以有效降低喘振强度。
     4.相继增压喘振主动控制系统设计。通过对相继增压系统动态切换特性的研究,制定了相继增压喘振主动控制方案,对切换过程可能出现的喘振现象进行抑制,提高相继增压切换过程的平稳性和安全性。喘振主动控制系统以STM32F103单片机为控制核心,运用μC/OS-Ⅱ嵌入式操作系统为架构进行多任务设计,选用放气阀作为主动控制执行机构对喘振现象进行控制。试验表明,该喘振主动控制系统可以有效抑制相继增压系统切换过程中的喘振现象,提高相继增压系统的性能,证明了控制器软硬件设计的合理性。
Sequential turbocharging technology is the most effective way to improve performance for turbocharged diesel engine, particularly at low load. It can expand operation range, improve economic performance and reduce emissions for diesel engine. However, if the switching point and switching delay time is not appropriate, it is easy to cause compressor surge, turbocharger exceed limited speed, combustion become deteriorate and so on. In order to restrain sequential turbocharging system surge phenomenon in switching process, compressor surge active control technology was applied to anti-surge control in sequential turbocharging system, sequential turbocharging anti-surge control system was developed. Experiment results show that surge active control system can inhibit the spread of surge that caused by sequential turbocharging system switching, it offer a new idea to improve the stationarity and safety for sequential turbocharging system. The main contents of this dissertation are as follows:
     1. Investigation of the turbocharger compressor steady performance. Sequential turbocharging thermal power test bed was designed and constructed according to the requirements of compressor steady performance and sequential turbocharging switching experiment based on turbocharger test rig and sequential turbocharging diesel engine test bed. The test bed used the combustor to replace the high-power diesel engine to study the sequential turbocharging system. It is easy to adjust turbine inlet parameters flexibly, to control working status, to study the overall performance of the sequential turbocharging system. The test bed can work under circulation mode and blow off mode, it can undertake sequential turbocharging test that is composed of three turbochargers in different structure, it also can carry out single turbocharger performance test including steady and dynamic characteristics. This paper make some research about its working principle, overall structure and measurement and control system in detail, the compressor steady performance experiment was carried out based on the test bed, which supplied experiment data for the test bed circulation mode simulation.
     2. Study on turbocharger compressor surge. The thermal power system simulation model including single turbocharger was established based on Greitzer compression system model. The dynamic characteristics of compressor mass flow and outlet pressure parameters in surging process were analysed to find out parameters or parameters characteristic which can predict oncoming compressor surge. Compressor surging experiment was carried out based on sequential turbocharging test rig, the compressor surge law versus rotational speed and plenum volume was investigated, spectrum analysis and wavelet analysis were applied to validate the surge precursor signal, the quantitative criterion to judge compressor surge was built. Compressor surge active control hardware-in-the-loop-simulation will be carried out based on dSPACE real-time simulation system and LabVIEW measurement system. Fuzzy control algorithm was applied to develop rapid control prototype which make a basis for sequential turbocharging anti-surge control algorithm.
     3. Investigation to sequential turbocharging system dynamic switching process. Sequential turbocharging thermal power system simulation model was established to study the law of switching process in different switching delay time and different plenum volume. And the relevant experiments were carried out to validate the simulated results. The results show that the large turbocharger as basic turbocharger, the entering delay time have a greater margin; the small one as basic turbocharger, the entering delay time margin is small in unequal size sequential turbocharging system. The sequential turbocharging system exiting experiment show that exhaust valve should be closed before the air valve, ifnot, the controlled compressor would be in deep surge. If the exiting delay time is short, controlled compressor will be in deep surge; if the time is long, the controlled compressor will be in backflow. It is inevitable that the controlled compressor would be in surge state in exiting process due to the turbocharger keep rotate state when air valve was closed, but it can reduce the surge intension to set reasonable exiting delay time. Meanwhile, the volume size of the surge tank has significant influence for dynamic characteristics of the sequential turbocharging system switching process. It should be taken into account the engine exhaust pipeline impact capacity to the booster compressor system dynamic characteristics in turbocharging system design and matching.
     4. Development of sequential turbocharging surge active control system. The surge active control system used blow-off valve as control actuator, surge controller software and hardware were designed based on STM32F103 micro-processor andμC/OS-Ⅱembedded real-time operating system. Control system acquires turbocharger rotational speed, compressor outlet pressure and compressor mass flow signal, fuzzy control algorithm was designed based on hardware in the loop simulation control prototype. The transplant method ofμC/OS-Ⅱand realization of fuzzy algorithm were introduced in detail. The test results show that the control system can realize the coming surge signal and inhibit the surge spread. It improved the sequential turbocharging system switching stationarity and safety.
引文
[1]王贺春,刘丕人,王银燕.采用相继增压技术改善柴油机低负荷性能的试验研究[J].哈尔滨工程大学学报.2007,28(8):870-874页.
    [2]陈虞涛,曾凡明,丁东东,陈国钧.相继增压柴油机推进装置增压系统特性研究[J].海军工程大学学报.2005,17(5):100-103页.
    [3]W.M.Jungowski, M.H.Weiss, GR.Price. Pressure Oscillations Occurring in a Centrifugal Compressor System With and Without Passive and Active Surge Control[J]. Journal of Turbo machinery.1996(118):29-40P.
    [4]Marc van de Wal, Frank Willems, Bram de Jager. Selection of Actuators and Sensors for Active Surge Control[C]. Proceedings of the 1997 IEEE International Conference on Control Applications, Hartford,1997:121-126P.
    [5]Jan Tommy Gravdahl, Olav Egeland. Centrifugal Compressor Surge and Speed Control[J]. IEEE Transactions on Control Technology.1999,7(5):567-579P.
    [6]Bjφrnar Bφhagen, Jan Tommy Gravdahl. On Active Surge Control of Compressors Using a Mass Flow Observer[C]. Proceeding of the 41st IEEE Conference on Devision and Control, Las Vegas, Nevada USA,2002:3684-3689P.
    [7]王小艳,赵虹,罗雄麟.叶轮压缩系统喘振的主动控制[J].动力工程.2006,26(6):808-815页
    [8]Moore, F.K, Greitzer, E.M. A Theory of Post-Stall Transients in Axial Compression Systems. Part I:Development of Equations[J]. Journal of Engineering for Gas Turbines and Power.1986(108):68-76P.
    [9]Greitzer, E.M, Moore, F.K. A Theory of Post-Stall Transients in Axial Compression Systems. Part II:Application[J]. Journal of Engineering for Gas Turbines and Power.1986(108):231-240P.
    [10]Epstein A.H, Williams J.E, Ffowcs, Greitzer E.M. Active Suppression of Aerodynamic Instabilities in Turbomachines[J]. Journal of Propulsion and Power. 1989,5(2):204-211P.
    [11]聂超群,陈静宜,乔晓辉,梁锡智,陈乃兴.压缩系统喘振现象主动控制的实验研究[J].工程热物理学报.1995,16(2):166-170页.
    [12]赵丰.离心压缩机防喘振控制系统研究[D].大连理工大学硕士学位论文.2006:15-20页.
    [13]Gunnar Stiesch, Hermann Baumann, Volker Wachter, Josef Schmitz, Christoph Teetz. Utilizing Multiple Injections for Optimized Performance and Exhaust Emissions with the MTU Series 2000 Common Rail Marine Engines[C], CIMAC2007.
    [14]Norbert Veser, Arne Schneemann, Werner Kasper, Bertram Wollmann. Development of the high-speed diesel engine 20V 8000 M71 [C]. CIMAC2007.
    [15]吉田正佑.MTU396系列柴油机.国外内燃机车[J].1997(6):1-8页.
    [16]Stefan Mueller. Field Experiences with MTU 20V 8000 engines in various Marine Applications. CIMAC2007.
    [17]H. Dinger. MTU956/1163系列柴油机的进一步发展[C].CIMAC 14,1987:3-7页.
    [18]郭连振,高德明.MTU8000系列柴油机[J].柴油机.2001(5):16-18页.
    [19]蔡毓国,刘景宝.MTU公司2002年发动机技术回顾[J].国外内燃机车.2003(5):35-36页.
    [20]高维成,孙富田.舰船用PA6柴油机相继增压试验研究[J].中外船舶科技.1995(4):18-21页.
    [21]Herrmann R. Sequential Turbocharging for PA6 Engines[C].1990 (ISME,Kobe)
    [22]柳祖德.PA6柴油机STC增压系统简介[C].陕西省内燃机学会论文,西安,1990:10-39页.
    [23]Ren Z, Compbel T, Yang J. Investigation on a Computer Controlled Sequential Turbocharging System for Medium Speed Diesel Engines[J]. SAE,1998:1-10P.
    [24]Danyluk P. Benefits of Sequential Turbocharging in Improving High Torque/Low Speed Operation of Medium Speed Diesel Engines[C]. CIMAC1998.
    [25]林国荣.船用高性能Wartsila 26X型柴油机[J].中外船舶科技.2001(4):25-25页.
    [26]Borila Y G. A Sequential Turbocharging Method for Highly-rated Truck Diesel Engine[J].1986, SAE paper 860074.
    [27]Borila Y G. Some Aspects of Performance Optimization of the Sequentially Turbocharged Highly-rated Truck Diesel Engine with Turbochargers of Unequal Size and A Pulse Converter[J]. IMechE,1986, C105/86:251-260P.
    [28]Seiji Tashima, Tomoo Taqdokoro, Haruo Okimoto, Yasushi Niwa. Development of Sequential Twin Turbo System for Rotary Engine[J]. SAE Technical Paper Series, 1991:1-10P.
    [29]王银燕,高维成,赵建平,吴英海,阿荣其其格.应用MPC-相继增压系统改善船用柴油机低负载性能的研究[J].内燃机学报.1999,17(1):13-17页.
    [30]王银燕,田祥裕.带有相继增压的旁通补燃动力涡轮复合式发动机的计算分析[J].内燃机学报.1994,12(3):276-282页.
    [31]杨传雷,刘春罡,罗巩固,王银燕.柴油机相继增压系统信号模拟器的开发[J].应用科技.2010,37(8):45-48页.
    [32]杜剑维.基于dSPACE的相继增压柴油机硬件在环仿真[D].哈尔滨工程大学硕士学位论文.2007:3-8页.
    [33]胡炜亮.相继增压控制阀流动特性研究[D].哈尔滨工程大学硕士学位论文.2008:2-5页.
    [34]万东霞.大小涡轮相继增压柴油机稳态性能分析[D].哈尔滨工程大学硕士学位论文.2008:1-3页.
    [35]王焕杰.大小涡轮相继增压柴油机排气系统性能研究[D].哈尔滨工程大学硕士学位论文.2008:1-5页.
    [36]王伟才.船用柴油机相继增压系统性能研究[D].哈尔滨工程大学博士学位论文.2008.
    [37]王伟才,王银燕,张鹏奇,王贺春.带有进排气旁通的相继增压柴油机的计算分析[J].内燃机工程,2007(4),28(2):72-75页.
    [38]王伟才,王银燕,王贺春.基于MATLAB的增压柴油机高工况放气研究[J].内燃机工程.2007(10),28(5):59-62页.
    [39]王伟才,王银燕,冯永明.相继增压柴油机增压器故障切换过程的瞬态性能研究[J].中国造船.2007(9),48(3):100-106页.
    [40]Wang Weicai, Wang Yinyan, Feng Yongming. Simulation of a sequential turbocharging system transient behavior including compressor surging. The 25th CIMAC World Congress,2007, No.25.
    [41]石凡,王银燕,冯永明.船用高速柴油机多台增压器相继增压计算分析[J].船舶工程.2007,29(2):1-5页.
    [42]王银燕,石凡,冯永明.船用柴油机相继增压蝶阀切换延迟仿真研究[J].武汉理工大学学报.2009,33(1):17-20页.
    [43]石凡,王银燕,张鹏奇.柴油机仿真模型的模糊综合评估[J].哈尔滨工程大学学报.2007,28(9):998-1001页.
    [44]杜剑维.柴油机相继增压系统控制技术研究[D].哈尔滨工程大学博士学位论文.2009.
    [45]杜剑维,王银燕.Fault Forecast and Diagnosis of Sequential Turbo-charging System Based on Grey Theory and Neural Network[J].内燃机学报.2008,26(6):543-549页.
    [46]Jianwei Du, Yinyan Wang, Chuanlei Yang, Hechun Wang. Hardware-in-the-loop Simulation Approach to Testing Controller of Sequential Turbocharging System[C]. Proceedings of 2007 IEEE International Conference on Automation and Logistics.2007:2426-2431P.
    [47]Yinyan Wang, Jianwei Du, Hechun Wang, Chuanlei Yang. Grey Decision Making Theory Approach to the Turbocharged Diesel Engine[C]. Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services.2007:784-788P.
    [48]Jianwei Du, Yinyan Wang, Chuanlei Yang, Hechun Wang. Development of Engine Controller Based on dSPACE Platform[C]. Proceedings of 2007 International Conference on Mechanical Engineering and Mechanics.2007:1882-1887P.
    [49]杜剑维,张寅豹,王银燕,杨传雷,张鹏奇.基于dSPACE平台的柴油机测控系统硬件在环仿真[J].交通运输工程学报.2009,9(3):66-70页
    [50]张哲,邓康耀,钱跃华.大小涡轮三阶段相继增压系统性能试验研究[J].内燃机学报.2010,28(1):68-73页.
    [51]张哲,钱跃华,刘博,邓康耀.车用柴油机大小涡轮相继增压系统固定转速切换的试验研究[J].内燃机工程.2010,31(1):51-55页.
    [52]张哲,王希波,邓康耀.相继涡轮增压系统对D6114型柴油机性能的影响[J].农业机械学报.2008,39(5):30-35页
    [53]张哲,邓康耀,钱跃华,石磊.柴油机大小涡轮相继增压系统瞬态切换策略[J].内燃机学报.2010,28(2):141-146页.
    [54]王振彪,田伟,邓春龙,邓康耀,崔毅,石磊.某大功率柴油机顺序增压系统切换过程试验研究[J].车用发动机.2009(10):80-84页.
    [55]王俊平.内燃机车柴油机相继增压系统研究[D].南京理工大学硕士论文.2004:24-33页.
    [56]胡宗杰.机车柴油机相继增压系统研究[D].大连铁道学院硕士论文.2002:39-50页.
    [57]闫斌.车用柴油机相继增压系统研究及中冷器流场计算[D].大连交通大学硕士论文.2009:36-40页.
    [58]梁桂森.柴油机相继增压系统设计及性能模拟[J].柴油机.1998(4):23-24页.
    [59]梁桂森,陈瑾.船用柴油机相继增压系统性能研究[J].柴油机.1999(6):10-14页.
    [60]任自中,冯明志,李江,王忠斌,焦宇飞.高增压系统相继增压技术的试验研究[J].柴油机.2001(6):18-29页.
    [61]林剑峰,欧阳光耀.相继增压柴油机控制系统及实验研究[J].中国造船.2001,42(4):88-91页.
    [62]仲怀清,李友峰,王敏鸿.12V280ZJ型柴油机相继增压系统的试验研究[J].内燃机车.2007(3):8-10页.
    [63]李恒芳,朱大鑫.应用MPC-顺序增压系统改善车用柴油机低速性能的研究[J].内燃机工程.1991,12(1):24-31页.
    [64]李恒芳.采用顺序增压方法改善高速柴油机的性能[J].车用发动机.1998(3):23-30页.
    [65]E. M. Greizter. Surge and Rotating Stall in Axial Flow Compressors, Part I: Theoretical Compression System Model[J]. Journal of Engineering for Power,1976, 98(2):190-198P.
    [66]E. M. Greizter. Surge and Rotating Stall in Axial Flow Compressors, Part II: Experimental Results and Comparison with Theory[J]. Journal of Engineering for Power,1976,98(2):199-211 P.
    [67]Ffowcs Williams J.E., Huang X.Y. Active Stabilization of Compressor Surge[J]. Journal of Fluid Mechanics.1989(204):245-262P.
    [68]J. E. Ffowcs Williams, M. F. L. Harper, D.J. Allwright. Active Stabiliztion of Compressor Instability and Surge in a Working Engine[J]. Transactions of the ASME. 1993,115(1):68-75P.
    [69]J. E. Pinsley, G. R. Guenette, J. E. Ffwocs, E. M. Greitzer. Active Stabilization of Centrifugal Compressor Surge[J]. Journal of Turbomachinery.1991,113(4): 723-732P.
    [70]D. L. Gysling, J. Dugundji, E. M. Greitzer, A. H. Epstein. Dynamic Control of Centrifugal Compressor Surge Using Tailored Structures [J]. Transactions of the ASME.1991,113(4):710-722P.
    [71]D.L.Gysling, E.M.Greitzer. Dynamic Control of Rotating Stall in Axial Flow Compressors Using Aeromechanical Feedback[J]. Journal of Turbomachinery. 1995(117):307-319P.
    [72]I.J.Day. Active Suppression of Rotating Stall and Surge in Axial Compressors [J]. Journal of Turbomachinery.1993(115):40-47P.
    [73]Frank Willems, Bram de Jager. Active Compressor Surge Control using a One-Sided Controlled Bleed/Recycle Valve[C]. Proceedings of the 37th IEEE Conference on Decision & Control.1998:2546-2551P.
    [74]Jan Tommy Gravdahl, Frank Willems, Bram de jager, Olav Egeland. Modeling for Surge Control of Centrifugal Compressors:Comparison with Experiment[C]. Proceedings of the 39th IEEE Conference on Decision and Control. 2000:1341-1347P.
    [75]Jan Tommy Gravdahl, Frank Willems, Bram de jager, Olav Egeland. Modeling of Surge in Free-Spool Centrifugal Compressors:Experimental Validation[J]. Journal of Propulsion and Power.2004,20(5):849-857P.
    [76]Frank Willems, Bram de Jager. One-Sided Control of Surge in a Centrifugal Compressor System[C]. Proceedings of ASME Turbo Expo2000:2000-GT-527.
    [77]Frank Willems, Bram de Jager, Anton A. Stoorvogel. Positive feedback stabilization of centrifugal compressor surge[J]. Automatica 38 (2002):311-318P.
    [78]Jan Tommy Gravdahl, Olav Egeland, Svein Ove Vatland. Drive torque actuation in active surge control of centrifugal compressors[J]. Automatica 38(2002):1881-1893P.
    [79]J.T Gravdahl and O.Egeland. Compressor Surge and Rotating Stall:Modeling and Control[C], London:Springer Verlag,1999.
    [80]G L Arnulfi, F Blanchini, P Giannattasio, D Micheli, P Pinamonti. Extensive Study on the Control of Centrifugal Compressor Surge[C]. Proc. IMechE, 2006(220):289-304P.
    [81]Bjφrnar Bφhagen. Active Surge Control of Centrifugal Compression Systems (theoretical and experimental results of drive actuation) [D]. Thesis for degree of philosophiae doctor, Norwegian University of Science and Technology.2007.
    [82]Bjφrnar Bφhagen, Jan Tommy Gravdahl. On Active Surge Control of Compressors Using a Mass Flow Observer[C]. Proceedings of the 41st IEEE Conference on Decision and Control.2002:3684-3689P.
    [83]Dorsa Sanadgol, Eric Maslen. Backstepping for Active Control of Surge in Unshrouded Centrifugal Compressors with Magnetic Thrust Bearing Actuation[C]. ASME Turbo Expo 2005:Power for Land, Sea and Air. GT2005-68988.
    [84]Se Young Yoon, Zongli Lin, Kin Tien Lim, Christopher Goyne, Paul E. Allaire. Model Validation for an Active Magnetic Bearing Based Compressor Surge Control Test Rig[J]. Journal of Vibration and Acoustics.2010,132(12): 061005-1-061005-13P.
    [85]金永亮,范孝铨.废气涡轮增压柴油机的喘振原因及防喘方法[J].机械设计与研究.1986(2):1-7页.
    [86]唐狄毅,郭捷,李立君,乔渭阳.轴流压气机旋转失速与喘振的实验研究[J].航空动力学报.1990,5(3):245-251页
    [87]唐狄毅,郭捷,李立君,乔渭阳.旋转失速和喘振的统一模型[J].工程热物理学报.1992,13(3):273-276页
    [88]聂超群,戴冀,廖生芳,陈静宜.离心压缩系统喘振先兆的实验研究[J].工程热物理学报.1997,18(3):306-310页
    [89]戴冀,聂超群,陈静宜.低压离心压缩系统喘振发生过程的实验观察[J].工程热物理学报.1997,18(5):574-579页.
    [90]李琳,龚建波,聂超群.离心及轴流压气机喘振失速失稳预警信号捕捉的数值方法探讨[C].中国航空学会2007学术年会.
    [91]李琳,聂超群.轴流压气机旋转失速DSP在线控制方法[J].航空学报.2009,30(5):787-791页
    [92]许振华,陈静宜,聂超群.压缩系统喘振主动控制方式的数值分析[J].工程热物理学报.1997,18(6):700-704页
    [93]王云辉,刘敏,孙聿峰,刘子亘.湿压缩对压缩系统失速后瞬态响应的影响分析[J].热能动力工程.2003,18(1):67-70页
    [94]Li Minghong, Zheng Qun. Wet Compression System Stability Analysis Part Ⅰ:Wet Compression MOORE GREITZER Transient Model[C]. Proc. of ASME Turbo Expo 2004:GT2004-54018.
    [95]惠增宏.NF-6风洞轴流压缩机喘振信号检测分析与应用[D].西北工业大学博士学位论文.2006.
    [96]Tauzia,X., Hetet, J.F., Chesse, P., Grosshans, G., Mouillard, L. Computer Aided Study of the Transient Performances of a Highly Rated Sequentially Turbocharged Marine Diesel Engine[J]. Journal of Power and Energy.1998,212(3):185-196P.
    [97]Pascal Chesse, Jean-Francois hetet, Xavier Tauzia, Philippe Roy, Bahadir Inozu. Performance Simulation of Sequentially Turbocharged marine Diesel Engines With Applications to Compressor Surge[J]. Journal of Engineering for Gas Turbines and Power.2000(122):562-569P.
    [98]Hetet, Jean-Francois, Chesse, Pascal, Inozu, Bahadir. A.C.S.L. Simulation for Optimum Operation of Turbocharged Marine Diesel Engines[J]. American Society of Mechanical Engineers.1994:1-12 P.
    [99]Chesse, Pascal, Hetet, Jean-Francois, Tauzia, Xavier, Frayret, Jean-Pierre. Influence of the Alteration of the Compressor Surge Line on the Operation Limit of a Turbocharged Marine Diesel Engine[J]. American Society of Mechanical Engineers. 1995:51-57 P.
    [100]陈华清.船用相继增压柴油机1TC/2TC切换过程仿真分析[J].热能与动力工程.2009,24(2):226-229页.
    [101]王希波,班孝东,陈德阳,邓康耀.大小涡轮三级相继增压系统匹配规律研究[J].山东交通学院学报.2010,18(3):1-6页.
    [102]D.A.Fink, N.A.Cumpsty, E.M.Greitzer. Surge Dynamics in a Free-Spool Centrifugal Compressor System[J]. Journal of Turbomachinery.1992 (114):321-332P.
    [103]王伟才,王银燕.压气机动态模型的建立及喘振过程分析[J].热能动力工程.2007,22(2):124-129页
    [104]林杰伦.内燃机工作过程数值计算[M].西安交通大学出版社.1986.
    [105]朱访君,吴坚.内燃机工作过程数值计算及其优化[M].国防工业出版社.1997.
    [106]杨旭.基于dSPACE的卫星控制实时仿真系统设计[J].系统工程与电子技术.2005,27(2):335-339页.
    [107]刘学瑜.dSPACE实时仿真系统在高压共轨ECU开发中的应用[J].现代车用动 力.2003(1):20-22页,25页.
    [108]dSPACE GmbH. dSPACE System First Work Steps For Release 4.2[M]. dSPACE GmbH.2005:13-56P.
    [109]马培蓓.dSPACE实时仿真平台软件环境及应用[J].系统仿真学报.2004,16(4):667-670页.
    [110]杨涤,李立涛,杨旭,朱承元.系统实时仿真开发环境与应用[M].清华大学出版社.2002:152-160页.
    [111]Z.S.Spakovszky. Backward Traveling Rotating Stall Waves in Centrifugal Compressors[J]. Journal of Turbomachinery.2004(126):1-12P.
    [112]Zoltan S. Spakovszky. Applications of Axial and Radial Compressor Dynamic System Modeling. Doctor of Philosophy at the Massachusetts Institute of Technology. 2001.
    [113]Franco Blanchini, Pietro Giannattasio, Diego Micheli. Experimental Evaluation of a High-Gain Control for Compressor Surge Suppression [J]. Journal of Turbomachinery. 2002(124):27-35P.
    [114]Franciscus P.T. Willems. Modeling and Bounded Feedback Stabilization of Centrifugal Compressor Surge[D]. Ph.D thesis, Eindhoven:Technische Universiteit Eindhoven,2000.
    [115]Kamal K.Botros, Subramaniam T.Ganesan. Dynamic Instabilities in Industrial Compression Systems with Centrifugal Compressors[C]. Proceedings of the 37th Turbomachinery Symposium.2008:118-132P.
    [116]Konstantin O.Boinov, Elena A.Lomonova. Surge Control of the Electrically Driven Centrifugal Compressor[C]. IEEE Transactions on Industry Applications.2006, 42(6):1523-1531P.
    [117]Stephan G. Scheidler, Christian Mundt. Active Stability Control of the Compression System a Twin-Spool Turbofan Engine by Air Injection[C]. The 10th of International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. 2004:1-11P.
    [118]Corina H.J. Meuleman. Measurement and Unsteady Flow Modelling of Centrifugal Compressor Surge[D]. Ph.D thesis, Eindhoven:Technische Universiteit Eindhoven, 2002.
    [119]M.B.Schmitz, G.Fitzky. Surge Cycle of Turbochargers:Simulation and Comparison to Experiments[C]. Proceedings of ASME Turbo Expo 2004:GT2004-53036.
    [120]M.Venturini. Development and Experimental Validation of a Compressor Dynamic Model[J]. Journal of Turbomachinery.2005(127):599-608P.
    [121]J.D.Paduano, A.H.Epstein, L.Valavani, J.P.Longley, E.M.Greitzer, GR.Guenette. Active Control of Rotating Stall in a Low-Speed Axial Compressor[J]. Journal of Turbomachinery.1993,115(49):48-56P.
    [122]雷振山.LabVIEW7 Express实用技术教程[M].中国铁道出版社.2004.
    [123]邓焱,王磊.LabVIEW7.1测试技术与仪器应用[M].机械工业出版社.2005.
    [124]刘金琨.先进PID控制MATLAB仿真(第2版)[M].北京:电子工业出版社.2006.
    [125]谢先平,王旭东,吴晓刚.车辆起步过程发动机恒转速自适应模糊控制研究[J].系统仿真学报.2008,20(16):4382-4386.
    [126]陆家祥.柴油机涡轮增压技术[M].机械工业出版社.1999:1-5页.
    [127]顾宏中,邬静川.柴油机增压及其性能优化[M].上海交通大学出版社.1989:148-154页.
    [128]刘永长.内燃机原理[M].华中科技大学出版社.2001:9-11页.
    [129]顾宏中.涡轮增压柴油机性能研究[M].上海交通大学出版社,1998:160-171页.
    [130]蒋德明.内燃机的涡轮增压[M].机械工业出版社.1986:252-256页.
    [131]宋守信.内燃机增压技术[M].同济大学出版社.1993:1-10页.
    [132]贾润达.基于紧连控制阀的离心式压缩机防喘振控制[D].大连理工大学硕士学位论文.2006.41-44页.
    [133]朱智富,马朝臣,张志强.小尺寸高转速离心压气机喘振试验研究[J].车用发动机.2008(12):77-84页.
    [134]朱智富,马超,马朝臣.离心压气机喘振发生发展过程分析[J].车用发动机.2010(4):38-41页.
    [135]姜磊,姜长泓,刘洋.基于模糊自适应PID的防喘振控制系统研究[J].机床与液压.2009,37(2):189-192页.
    [136]王志标,张早校,胡海军,姜培正.叶轮压缩机喘振的机理及防喘振策略研究[J].化工自动化及仪表.2003,30(2):10-13页.
    [137]蒋骏.离心风机喘振在线预报和自适应调节的实验研究[D].中国科学院硕士论 文.2006.
    [138]千承辉.基于嵌入式实时系统的汽车检测线测控系统研究[D].吉林大学博士论文.2008.
    [139]王俊席.基于嵌入式系统的高压共轨控制软件研究[D].上海交通大学博士论文.2006.
    [140]李煜辉.中压共轨柴油机电控系统控制器设计与研究[D].武汉理工大学博士论文.2004.
    [141]杭勇.柴油发动机控制模型及控制算法的设计与仿真研究[D].江苏理工大学博士学位论文.2002:33-40页.
    [142]任哲,潘树林,房红征.嵌入式操作系统基础uC/OS-Ⅱ和Linux[M].北京航空航天大学出版社.2006年.
    [143]田泽.嵌入式系统开发与应用教程[M].北京:北京航空航天大学出版社,2005年.
    [144]胥静.嵌入式操作系统设计与开发实例详解[M].北京航空航天大学出版社.2005年.
    [145]Tang Yue Y, Fan Xinrui, Zheng Ying N. Fuzzy correlation analysis with realization[J]. International Society for Optical Engineering-Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary. Vol.3455, p292-295,1998.
    [146]Pravadalioglu, Sinan. Single-chip fuzzy logic controller design and an application on a permanent magnet dc motor[J]. Engineering Applications of Artificial Intelligence. Vol.18,p881-890,2005.
    [147]张桂香,金耀,叶振凯.具有有界控制输入的状态反馈控制系统闭环稳定性[J].计算技术与自动化.2002,21(2):16-19页.
    [148]张金明,李人厚.模糊控制系统的设计和稳定性分析[J].西安交通大学学报.1998,32(7):24-27页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700