定量聚合酶链反应热循环系统及荧光检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合酶链反应(Polymerase Chain Reaction, PCR)是20世纪80年代中期发展起来的体外DNA快速扩增技术,在其基础上发明的定量PCR技术可以实现对反应物中DNA含量的准确定量计算,高性能的热循环系统和荧光检测系统是实现DNA扩增和定量的基础。本文对定量PCR中的热循环和荧光检测系统进行了研究:
     热循环系统是DNA实现扩增的反应场所,本文设计了基于半导体制冷技术和嵌入式技术设计了PCR热循环系统。为了获得系统中各部件的准确参数,根据热电类比方法,建立了热循环系统的等效电路模型,利用该模型对热循环系统一维稳态和动态热性能进行了研究。结果表明该方法可以准确的对PCR热循环系统的一维热性能进行评估,并且可根据分析结果确定系统中各部件参数,使系统温度获得较好的稳态和动态性能。
     PCR反应对温度要求较高,因此需要对热循环系统的温度控制方法进行研究,提高系统的温度控制精度。根据热循环系统的温度变化特点,提出了一种多模态分段控制策略,在升温和降温初期使用模糊控制方法,可以使系统获得最快的升降温速度,在升降温后期使用自适应模糊PID控制方法,可以有效提高温度稳态精度。实验表明,系统的最快升温速度大于4℃/s,最快降温速度大于2℃/s,稳态精度可以控制在0.2℃以内。通过实验得到了加热和制冷模式下,样品块到试液间温度传递时间与温度值关系,以保证PCR反应物有充分反应时间。
     温度均匀性是系统中各样品等效率扩增的前提和保证。针对孔板式PCR普遍存在的温度场均匀性问题,利用有限元分析方法对影响系统温度均匀性的因素进行了研究,样品块表面与周围环境发生的热交换以及半导体制冷片之间的匹配误差是造成温度场均匀性差的主要原因。将半导体制冷片匹配误差控制在0.5%以内,再对热循环系统采取相应的隔热或热补偿措施,可以将系统温度均匀性控制在0.4℃以内。在此热循环系统中对标准PCR样品进行扩增实验,扩增产物的电泳成像结果表明系统的温度控制精度与均匀性可以满足PCR样品的高效扩增要求。
     定量PCR通过检测反应体系中添加的荧光物质的荧光信号强度对反应物中DNA数量进行定量计算。根据荧光分析法原理和定量PCR反应过程中荧光染料的光谱特性,在基于共焦式荧光检测方法的基础上,设计了一种新型的定量PCR共焦荧光检测系统,使用光电倍增管和窄带滤光片对不同波长荧光信号进行检测。分析测试了荧光检测系统的噪声来源、降噪性能和荧光信号倍增效果,对采集到的荧光信号在计算机上进行数据段选取和数字滤波处理,最终计算出每个样品的荧光信号峰值。通过对不同浓度比的罗丹明B溶液以及添加了SYBR GreenⅠ染料的黄瓜基因组DNA溶液的荧光信号实际检测与处理,证明了系统可以检测最低浓度为0.005ug/ul的罗丹明B溶液发出的中心波长为610nm的荧光信号和0.78ng/ul的SYBR Green I溶液发出的中心波长为520nm的荧光信号,经过信号检测与处理后得到的信号峰值比基本与溶液的浓度比一致,可以满足定量PCR对指数期信号的检测与处理要求。
Polymerase chain reaction (PCR) is a technique used for rapid amplification of DNA in vitro. Quantitative PCR technology enables the accurate quantified calculation of DNAs in the reactant. High performance of thermal-cycler and fluorescence detection system is the basis of correct DNA amplification and quantitative. This dissertation carries on thermal-cycler and fluorescence detection method of a quantitative PCR system.
     The thermal-cycler is a instrument which can implement the polymerase chain reaction, a PCR thermal-cycler was designed based on thermoelectric cooling technology and embedded technology. In order to get the accurate parameters of components in the thermal-cycler, the equivalent circuit model of thermal-cycler based on thermoelectric coolers was established according to the thermal-electric analogies and was applied to study the static and dynamic thermal performance of thermal-cycler in one-dimension. The results show that the method can accurately evaluate the thermal performance of PCR thermal-cycler in one-dimension and determine the parameters of components in the thermal-cycler. The system temperature can achieve excellent performances both in static and dynamic state.
     PCR require precise reaction temperature. The temperature control method of the thermal-cycler system was studied in order to improve the control accuracy.fo the system temperature. According to the temperature characteristics of the thermal-cycler, a multi-modal segmented control strategy was studied. A fuzzy control method was used in the early stages of heating and cooling to get the fastest heating and cooling rate. An adaptive fuzzy-PID control method was used in the later period of heating and cooling to improve the static temperature precision. Experiment results show that the maxim heating rate of the system is greater than℃/s and the maxim cooling rate is greater than2℃/s, the static accuracy can be controlled at less than0.2℃. In order to ensure sufficient reaction times for the PCR samples, the relationship between hold-time and temperature was experimental studied in heating and cooling mode
     The system temperature uniformity is a key factor to ensure the DNAs in various tubes can be amplified with equal efficiency. The factors affecting the system temperature uniformity were stuied by using finite element analysis method. The heat exchange between the surface of sample block and surrounding environment, and the matching error of thermoelectric cools are the main reasons for the poor temperature uniformity of the thermal-cycler. Experiment results show that the system temperature uniformity can be controlled in0.4℃by matching the thermoelectric cools with an error less than0.5%and implementing appropriate thermal insulation or compensation. The standard PCR samples were efficiently amplified in the thermal-cycler.
     The DNAs in the samples are quantified by detecting the fluorescent intensity of fluorophores in each sample. A novel confocal fluorescence detection system of quantitative PCR was designed according to the principle of fluorescence analysis and the fluorescent spectra characteristics of fluorophores in the quantitative PCR process. Fluorescent signals with different wavelength can be detected by using a photomultiplier tube and different narrowband filters. Noise sources, denoise performance and the fluorescence signal multiplier effect of this fluorescence detection system were tested and analyzed. The peaks of the fluorescence signals of each sample were calculated on computer by segment-selecting and digital denoising the data acquired from the fluorescence detection system. Experiment results show that the system can detect the fluorescence signal (center wavelength of610nm) of rhodamine B solution with a lowest concentration of0.005ug/ul and the fluorescence signal (center wavelength of520nm) of SYBR Green I added to the cucumber genomic DNA solution with a lowest concentration of0.78ng/ul. The calculated peaks have linear relationship with the concentration and the system can detect the fluorescent intensity in the Exponential phase of quantitative PCR.
引文
[1]Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome[J]. Nature,2001.409(6822):860-921.
    [2]Olivier M, Aggarwal A, Allen J, et al. A high-resolution radiation hybrid map of the human genome draft sequence[J]. Science,2001,291 (5507):1298-1302.
    [3]莱因哈德·伦内贝格.基因工程的奇迹[M].科学出版社,2009.
    [4]Smith H O, Wilcox K W. A restriction enzyme from Hemophilus influenzae.I. Purification and general properties[J]. JMol Biol,1970,51 (2):379-391.
    [5]Cohen S N, Chang A C Y, Boyer H W, et al. Construction of biologically functional bacterial plasmids in vitro[J]. Proceedings of the National Academy of Sciences, 1973,70(11):3240.
    [6]Kleppe K, Ohtsuka E, Kleppe R, et al. Studies on Polynucleotides:Repair Replication of Short Synthetic DNAs As Catalyzed by DNA Polymerases[J]. Journal of Molecular Biology, 1971,56(2):341.
    [7]Davies J E, Gassen H G. Synthetic Gene Fragments in Genetic Engineering-The Renaissance of Chemistry in Molecular Biology[J]. Angewandte Chemie International Edition in English,1983,22(1):13-31.
    [8]Watt V M, Ingles C J, Urdea M S, Et Al. Homology requirements for recombination in escherichia-coli[J]. Proceedings Of The National Academy Of Sciences Of The United States Of America,1985,82(14):4768-4772.
    [9]Mullenbach G T, Tabrizi A, Blacher R W, Et Al. Chemical synthesis and expression in yeast of a gene encoding connective-tissue activating peptide-iii-a novel-approach for the facile assembly of a gene encoding a human platelet-derived mitogen[J]. Journal Of Biological Chemistry,1986,261(2):719-722.
    [10]Mullis K B, Faloona F A. Specific synthesis of DNA invitro via a polymerase-catalyzed chain-reaction[J]. Methods In Enzymology,1987,155:335-350.
    [11]Mullis K B. Clinical-applications of the polymerase chain-reaction[J]. Clinical Chemistry,1990,36(6):922.
    [12]Mullis K B. Target amplification for dna analysis by the polymerase chain-reaction[J]. Annales De Biologie Clinique,1990,48(8):579-582.
    [13]Mullis K B. The Unusual Origin Of The Polymerase Chain-Reaction[J]. Scientific American,1990,262(4):56.
    [14]Lawyer F C, Stoffel S, Saiki R K, et al. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus[J]. J Biol Chem, 1989,264(11):6427-6437.
    [15]王廷华,Pierre Dubus. PCR理论与技术[M].科学出版社,2009.
    [16]Hartshorn C, Anshelevich A, Wangh L J. Rapid, single-tube method for quantitative preparation and analysis of RNA and DNA in samples as small as one cell[J]. BMC Biotechnol,2005,5:2.
    [17]AppliedBiosystems. Real-Time PCR Vs Traditional PCR[EB/OL]. http://www.appliedbiosystems.com.
    [18]朱水芳.实时荧光聚合酶链反应PCR检测技术[M].中国计量出版社,2003.
    [19]Higuchi R, Fockler C, Dollinger G, et al. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions[J]. Biotechnology (N Y),1993,11(9):1026-1030.
    [20]Giulietti A, Overbergh L, Valckx D. et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression[J]. Methods,2001,25(4):386-401.
    [21]Wabuyele M B, Farquar H, Stryjewski W, et al. Detection of low abundant mutations in DNA using single molecule FRET and ligase detection reactions:Proceedings of SPIE-The International Society for Optical Engineering, San Jose, CA, United states,2003 [C].
    [22]Mackay I M. Real-Time PCR in Microbiology:From Diagnosis to Characterization [M]. Caister Academic Press,2007.
    [23]Menchen S, Benson S, Upadhya K, et al. Fluorescent labeling of DNA for genetic analysis,2000[C].
    [24]Lekanne D R, Fijnvandraat A C, Ruijter J M, et al. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions[J]. Anal Biochem,2002,307(1):63-69.
    [25]Ishida K, Zhu B L, Maeda H. Novel approach to quantitative reverse transcription PCR assay of mRNA component in autopsy material using the TaqMan fluorogenic detection system:dynamics of pulmonary surfactant apoprotein A[J]. Forensic Sci Int, 2000,113(1-3):127-131.
    [26]Stratagene. Mx3000P QPCR System Product Manual [EB/OL]. http://www.Stratagene.com.
    [27]Eppendorf. Technical of Mastercycler ep realplex[EB/OL]. http://www.eppendorfna.com/.
    [28]AppliedBiosystems. Step-One Real-Time PCR System Technical Specifications [EB/OL]. https://products.appliedbiosystems.com/.
    [29]Corbett. The Rotor-Gene brochure [EB/OL]. http://www.corbettlifescience.com/.
    [30]Bio-rad. Amplification/PCR[EB/OL]. http://www.bio-rad.com.
    [31]Ririe K M, Rasmussen R P, Wittwer C T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction[J]. Anal Biochem,1997,245(2):154-160.
    [32]Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. JMol Endocrinol,2000,25(2):169-193.
    [33]Shiao Y H. A new reverse transcription-polymerase chain reaction method for accurate quantification[J]. BMC Biotechnol,2003.3:22.
    [34]Mann T P. Humbert R, Stamatoyannopolous J A, et al. Automated validation of polymerase chain reactions using amplicon melting curves[J]. Proc IEEE Comput Syst Bioinform Conf,2005:377-385.
    [35]Saha N, Watson L T. Kafadar K, et al. A general probabilistic model of the PCR process[J]. Applied Mathematics and Computation (New York),2006,182(1):232-243.
    [36]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res,2001,29(9):e45.
    [37]RocheDiagnostics. PCR Applications Manual 3rd edition[M/OL].
    [38]李鑫.基因扩增仪的温度控制系统研究[D].东北大学,2007.
    [39]张素.温度CR仪的研究[D].河北农业大学,2008.
    [40]刘立军.基于RM的基因扩增仪温度控制系统研究[D].西安工业大学,2011.
    [41]周滔,胡美,董诗旭等.自制恒温水浴锅做PCR[J].教学仪器与实验,2009(1):17-18.
    [42]Biometra. Introduction Thermocyclers[EB/OL]. www.biometra.com/thermocycler.
    [43]陈世泽.基于ARM的酶链聚合扩展仪温度控制研究[D].浙江大学,2010.
    [44]Khandurina J, McKnight T E, Jacobson S C, et al. Integrated system for rapid PCR-based DNA analysis in microfluidic devices[J]. Anal Chem,2000,72(13):2995-3000.
    [45]Kopp M U, Mello A J, Manz A. Chemical amplification:continuous-flow PCR on a chip[J]. Science,1998,280(5366):1046-1048.
    [46]Poser S, Schulz T, Dillner U, et al. Chip elements for fast thermocycling[J]. Sensors and Actuators, A:Physical,1997,62(1-3 pt 3):672-675.
    [47]徐静平,黎沛涛,甘侠林等.PCR芯片控温系统研究[J].华中科技大学学报,2001(12):45-47.
    [48]褚德南,刘冲,罗怡等.微流控芯片PCR循环温控系统[J].仪器仪表学报,2003(S1):543-545.
    [49]刘大震,闫卫平,刘志刚.PCR生物芯片温控系统设计[J].现代仪器,2004(2):41-42.
    [50]史蒂夫·拉塞尔,肖华胜.生物芯片技术实践[M].科学出版社,2010.
    [51]张亮,M.谢纳.生物芯片分析[M].科学出版社,2004.
    [52]Chen P H, Lee D S, Chien J H, et al. Development of a Novel Real-Time PCR Machine, 2005[C].
    [53]Liu Q, Zhuang Y, Wu L, et al. A microarray scanner for the real-time quantitative detection,2007[C].
    [54]McGuinness C D, Sagoo K, McLoskey D, et al. A new sub-nanosecond LED at 280 nm: Application to protein fluorescence[J]. Measurement Science and Technology. 2004,15(11):L19-L22.
    [55]Maruyama Y, Sawada K, Takao H, et al. A novel filterless fluorescence detection sensor for DNA analysis[J]. IEEE Transactions on Electron Devices,2006,53(3):553-558.
    [56]郭琛.荧光定量PCR仪监控系统的设计与实现Y[D].上海交通大学,2005.
    [57]张兰.实时PCR仪中荧光测模块的研制[D].北京工业大学,2009.
    [58]Hiraoka Y, Sedat J W, Agard D A. The use of a charge-coupled device for quantitative optical microscopy of biological structures [J]. Science,1987,238(4823):36-41.
    [59]Aikens R S, Agard D A, Sedat J W. Solid-state imagers for microscopy[J]. Methods Cell Biol,1989.29:291-313.
    [60]Mullis K B. The polymerase chain reaction (Nobel Lecture)[J]. Angewandte Chemie-International Edition In English,1994,33(12):1209-1213.
    [61]上海宏石.SLAN实时荧光定量PCR检测系统配置技术参数[EB/OL].http://www.hongshitech.com/products.htm.
    [62]陕西天隆.TL988型实时荧光定量PCR仪[EB/OL]. http://www.medtl.com/.
    [63]杭州朗基.PCR基因扩增仪[EB/OL]http://www.longgene.com.
    [64]刘长波.基于嵌入式(?)Linux的实时PCR仪中温度控制系统的研究[D].北京工业大学,2008.
    [65]李宁.基于模糊自适应PID控制的PCR仪温控制系统研究[D].西安工业大学,2010.
    [66]Melcor. Thermoelectric Handbook[EB/OL]. www.melcor.com.
    [67]李现明.无传感器PCR芯片阵列的测量与控制技术研究[D].山东大学,2007.
    [68]Pokfai T, Wong Ek K, Mongpraneet S, et al. Portable polymerease chain reaction system with thermoelectric cooling:5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON2008, Krabi, Thailand,2008[C].
    [69]Richards J B, Benett W J, Stratton P L, et al. Miniaturized detection system for handheld PCR assays:Proceedings of SPIE-The International Society for Optical Engineering, Boston, MA, United states,2000[C].
    [70]Higgins J A, Nasarabadi S, Karns J S, et al. A handheld real time thermal cycler for bacterial pathogen detection[J]. Biosensors and Bioelectronics,2003,18(9):1115-1123.
    [71]Belgrader P, Young S, Yuan B, et al. A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis (vol 73, pg 286,2001)[J]. ANALYTICAL CHEMISTRY,2001,73(2):391.
    [72]SAMSUNG. S3C2410X 32-BIT RISC MICROPROCESSOR USER'S MANUAL Revision 1.2[EB/OL]. http://www.samsung.com/.
    [73]王伯雄Thomas G. Beckwith等著.机械量测量[M].电子工业出版社,2004.
    [74]刘少强,黄惟一.基于插值计算与优化的铂电阻非线性校正方法[J].仪器仪表学报,2003(2):215-217.
    [75]陈振林,孙中泉.半导体制冷器原理与应用[J].微电子技术,1999(5):63-65.
    [76]杨春燕,王维扬.热电制冷技术现状[J].红外,2001(2):9-15.
    [77]徐德胜.半导体制冷与应用技术[M].上海交通大学出版社,1999.
    [78]Rezek Gerard,谢健勋.热电致冷器的热设计与模拟分析[J].电子计算机动态,1965(6):32-41.
    [79]陈文振,陈林根,孙丰瑞.热电制冷和泵热循环的有限时间热力学分析[J].工程热物理学报,1994(1):13-16.
    [80]Taylor P J, Jesser W A, Rosi F D, et al. Model for the non-steady-state temperature behaviour of thermoelectric cooling semiconductor devices[J]. Semiconductor Science and Technology,1997,12(4):443-447.
    [8]]陈林根,沈良文,龚建政等.热电制冷机性能分析与实验验证[J].工程热物理学报,1999(3):286-288.
    [82]Huang B J, Duang C L. System dynamic model and temperature control of a thermoelectric cooler[J]. International Journal of Refrigeration,2000,23(3):197-207.
    [83]Yamanashi M. Response to 'comment on 'a new approach to optimum design in thermoelectric cooling systems" [J. Appl. Phys.82,6368 (1997)][J]. Journal of Applied Physics,1997,82(12):6370.
    [84]Lineykin S, Ben Yaakov S. Analysis of thermoelectric coolers by a spice-compatible equivalent-circuit model[J]. IEEE Power Electronics Letters,2005,3(2):63-66.
    [85]杨明伟.周兆英.微型热电制冷器非稳态特性的热电模拟研究[J].红外与激光工程2008,37(3):432-435.
    [86]杨明伟,许文海,唐文彦.热电制冷器的等效电路模拟与分析[J].红外与激光工程,2007(2):281-285.
    [87]因克罗普拉,陆大有,德威特.传热基础[M].宇航出版社,1987.
    [88]Chavez J A, Ortega J A, Salazar J, et al. SPICE model of thermoelectric elements including thermal effects:Conference Record-IEEE Instrumentation and Measurement Technology Conference, Baltimore, MD. USA.2000[C].
    [89]Lineykin S. Ben Yaakov S. PSPICE-compatible equivalent circuit of thermoelectric coolers:PESC Record-IEEE Annual Power Electronics Specialists Conference,445 Hoes Lane/P.O. Box 1331, Piscataway, NJ 08855-1331, United States,2005[C].
    [90]Yao Y, Chen Z, Huang J. et al. Research on thermal cycle system for real-time PCR instrument based on equivalent circuit model:2010 IEEE International Conference on Automation and Logistics, ICAL 2010, Shatin, Hong kong,2010[C].
    [91]姚英豪,陈章位,黄靖等.定量基因扩增仪热循环系统建模与分析[J].中国机械工程,2011(1):31-34.
    [92]Marlow Industries. XLT2389 Technical Data Sheet[EB/OL]. http://www.marlow.com/.
    [93]黄靖,陈章位,姚英豪.PCR热循环系统热性能影响因素的等效电路研究[J].浙江大学学报(工学版),2011(12):2216-2221.
    [94]杨世铭,陶文铨.传热学[M].高等教育出版社,2006.
    [95]Gnanappa A K, Ke C, Slattery O, et al. Thermal performance analysis of a silicon microreactor for rapid DNA analysis:Thermomechanical Phenomena in Electronic Systems-Proceedings of the Intersociety Conference, San Diego, CA, United states,2006[C].
    [96]Marlow Industries. Thermoelectric Cooling Systems Design Guide[EB/OL]. http://www.marlow.com/.
    [97]埃克尔特,德雷克.传热与传质[M].科学出版社,1963.
    [98]朱英文,陆晓东.大功率半导体器件用散热器风冷热阻计算[J].电力电子,2009(6):47-51.
    [99]陈实,张卫平,陈文元等.PCR温度控制技术的研究进展[J].测控技术,2007(11):20-22.
    [100]张文超,刘晓光,吴勤勤.基因扩增分析(PCR)仪温控系统的研究与应用[J].华东理工大学学报(自然科学版),2004,30(2):203-206.
    [101]Qiu X, Yuan J, Wang Z. Feedforward variable structural proportional-integral-derivative for temperature control of polymerase chain reaction[J]. Chinese Journal of Chemical Engineering,2006,14(2):200-206.
    [102]Wang J, Zhang N. Application of feedforward technology in the polymerase chain reaction device:2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008, Shanghai, China,2008[C].
    [103]Xianbo Q, Jingqi Y. Hybrid control strategy for thermal cycling of PCR based on a microcomputer[J]. Instrumentation Science and Technology,2007,35(1):41-52.
    [104]邱宪波,袁景淇.基于改进温度控制算法的基因扩增装置[J].控制工程,2005(S2):68-70.
    [105]邹宗峰,俞涛.PCR反应仪温度的Fuzzy-PID控制方法[J].机电一体化,2005(2):63-65.
    [106]毕雪芹,倪原,王丽娟.PCR温度模糊PID控制器的设计及仿真[J].计算机工程与设计,2008(10):2604-2606.
    [107]栾书平,钟宜生.半导体制冷器的模型辨识与温度控制[J].测控技术,2010(10):43-46.
    [108]宋绍京,薛永祺.复杂环境下半导体致冷器的动态模型及温度控制[J].红外与毫米波学报,2005(5):352-356.
    [109]庞长林,王晓浩,周兆英,等.小型半导体制冷系统的参数辨识[J].仪器仪报学报,2003(6):605-607.
    [110]Richard P Bywaters, Harold A Blum. The transient behavior of cascade thermoelectric heat pumps[J]. Energy Conversion,1970,10(4):193-200.
    [111]朱麟章.试验参量的检测与控制[M].机械工业出版社,1989.
    [112]蔡震.基于半导体制冷技术的高精密温度控制系统研究[D].合肥工业大学,2007.
    [113]许霜玉.基于半导体制冷器的半主动热阻控制器研究[D].浙江大学,2007.
    [114]陶永华.新新型PID控制及其应用[M].机械工业出版社,1998.
    [115]张涛,徐进学,柴天佑.PID参数继电自整定的一种方法[J].沈阳化工学院学报,1994(3):213-217.
    [116]Copeland B R. The Design of PID Controllers using Ziegler Nichols Tuning[EB/OL]. http://educypedia.karadimov.info/library/Ziegler_Nichols.pdf.
    [117]张文修,梁广锡.模糊控制与系统[M].西安交通大学出版社,1998.
    [118]Carvajal J. Chen G, Ogmen H. Fuzzy PID controller:Design, performance evaluation, and stability analysis[J]. Information sciences,2000.123(3):249-270.
    [119]AppliedBiosystems.9700 User's Manual[EB/OL]. http://www.appliedbiosystems.com.
    [120]程远霞,魏燕,刘宝林等.PCR(聚合酶链式反应)仪温度特性的实验研究与分析[J].仪表技术与传感器,2009(1):31-34.
    [121]刘娟容,陈章位,黄靖等.基于NTC热敏电阻器的实时PCR仪数据采集器设计[J].传感器与微系统,2011(3):114-117.
    [122]Huang J, Chen Z, Yao Y, et al. Simulation and experimental study of temprature lag time for polymerase chain reaction instrument:Proceedings-2010 3rd International Conference on Biomedical Engineering and Informatics, BMEI 2010, Yantai, China, 2010[C].
    [123]比安什,福泰勒,埃黛.传热学[M].大连理工大学出版社,2008.
    [124]Lin Y C, Yang C C, Huang M Y. Simulation and experimental validation of micro polymerase chain reaction chips[J]. Sensors and Actuators, B:Chemical, 2000,71 (1-2):127-133.
    [125]Weiping Y, Liqun D, Jing W, et al. Simulation and experimental study of PCR chip based on silicon:Sensors and Actuators, B:Chemical,2005[C].
    [126]El Ali J, Perch Nielsen 1 R, Poulsen C R, et al. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor: Sensors and Actuators, A:Physical, Prague, Czech republic,2004[C].
    [127]Zhang Q, Wang W, Zhang H, et al. Temperature analysis of continuous-flow micro-PCR based on FEA[J]. Sensors and Actuators, B:Chemical,2002,82(1):75-81.
    [128]Chen W P, Tian L, Li M J, et al. Simulation and design of a self-heating continuous-flow PCR chip[J]. Journal of Harbin Institute of Technology (New Series), 2007,14(2):248-251.
    [129]黄靖,陈章位,姚英豪等.定量PCR仪热循环系统温度均匀性有限元仿真研究[J].戊器仪表学报,2010(5):1142-1147.
    [130]曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M].机械工业出版社,2009.
    [131]贾力.方肇洪.高等传热学[M].高等教育出版社,2008.
    [132]Antonova E E, Looman D C. Finite elements for thermoelectric device analysis in ANSYS:International Conference on Thermoelectrics, ICT, Proceedings, Clemson, SC, United states,2005 [C].
    [133]Huang J. Chen Z, Hu K. FEA for steady-state thermal performance of PCR thermal-cycler based on thermoelectric cooler:Proceedings of 2011 4th International Conference on Biomedical Engineering and Informatics, BMEI 2011, Shanghai, China, 2011[C].
    [134]Marlowlndustries. http://www.marlow.com/products/thermocyclers.html.
    [135]胡科伟.PCR仪温度场测量和校验方法的研究[D].浙江大学,2012.
    [136]Hu K, Chen Z, Huang J. Research on temperature measuring positions selection and verification for Polymerase Chain Reaction instruments:Proceedings of 20114th International Conference on Biomedical Engineering and Informatics, BMEI 2011, Shanghai, China,2011 [C].
    [137]迪芬巴赫,德弗克斯勒,瞿礼嘉.PCR技术实验指南[M].化学工业出版社,2006.
    [138]王尊本,陈国珍,许金钩等.觉光分析法 第2版[M].科学出版社,1975.
    [139]Valeur B. Molecular Fluorescence-Principles and Applications[M]. Wiley-VCH, 2002.
    [140]Zhong K, Chen Z, Huang J, et al. A LED-induced confocal fluorescence detection system for quantitative PCR instruments:Proceedings of 2011 4th International Conference on Biomedical Engineering and Informatics, BMEI2011, Shanghai, China,2011[C].
    [141]拉科维兹.荧光分析法原理[M].科学出版社,2008.
    [142]Crane B, Sudo H, Thilly W G, et al. Towards Fluorescence Anisotropy Detection for Real-Time PCR Assays:Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, Cancun, Mexico,2003 [C].
    [143]Hart S J, JiJi R D. Light emitting diode excitation emission matrix fluorescence spectroscopy[J]. Analyst,2002,127(12):1693-1699.
    [144]Lakowicz J R. Principles of Fluorescence Spectroscopy[M]. Springer,2006.
    [145]Semrock. RazorEdge Raman Filters[EB/OL]. http://www.semrock.com/Products.
    [146]HamamatsuPhotonics. PHOTOMULTIPLIER TUBES-Basics and Applications 3rd Editon3a[Z]. Hamamatsu Photonics K.K. Electron Tube Division,2007.
    [147]Liu Y, Li H, Wang Y, et al. A gain-programmable transit-time-stable and temperature-stable PMT voltage divider:IEEE Nuclear Science Symposium Conference Record, Portland, OR, United states,2003 [C].
    [148]Popov V, Majewski S, Wojtsekhowski B, et al. A simple method to increase effective PMT gain by amplifier circuit powered from voltage divider:IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diege, CA, United states,2001 [C].
    [149]姚英豪.定量PCR仪荧光检测系统研究[D].浙江大学,2011.
    [150]Mao H, Chen Z, Huang J, et al. Design of signal preamplifier circuit for fluorescence detection system in quantitative PCR instrument:Proceedings of 2011 4th International Conference on Biomedical Engineering and Informatics, BMEI 2011, Shanghai, China, 2011[C].
    [151]古冬冬.基于微全分析系统PCR基因芯片的光谱检测技术研究[D].北京工业大学.2008.
    [152]郑华.DNA分析仪荧光信号采集与处理系统的研究[D].浙江大学,2007.
    [153]林云跃.DNA图谱分析算法与软件研究[D].浙江大学,2006.
    [154]Giddings M C, Severin J, Westphall M, et al. A software system for data analysis in automated DNA sequencing[J]. GENOME RESEARCH,1998,8(6):644-665.
    [155]Smith L M, Sanders J Z, Kaiser R J, et al. Fluorescence detection in automated DNA sequence analysis[J]. Nature,1986,321(6071):674-679.
    [156]刘娟容.实时CR仪荧光信号监测系统的研究[D].浙江大学,2011.
    [157]Golemis Erica.蛋白质相互作用 分子克隆手册A Molecular cloning manual[M].清华大学出版社,2003.
    [158]Green M R. Molecular Cloning:A Laboratory Manual (Third Edition)[M]. Cold Spring Harbor Laboratory Press.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700