SINS/GPS组合导航性能增强技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导航技术在军事、工业以及民用等众多领域都有着广泛应用,如何提高导航精度和可靠性对于导航技术的推广应用具有重要意义。GPS与SINS互补性强,是实现组合导航的一种重要方案。论文是以GPS/SINS为基础,在信息融合技术的理论框架下,从引入其它外部测量信息和改进融合算法两个方向,重点研究了增强其可靠性、姿态精度和精度的稳定性的方法。
     在组合导航系统中往往使用采样频率不同的多种传感器。论文首先对联邦卡尔曼滤波的融合策略进行改进,提出了一种适合于多采样系统的融合策略,并证明了它与集中滤波的等价性。在此基础上,论文提出了一种自适应分散滤波方法,以达到在存在不确定性或软故障的情况下仍能获得较高精度的导航解的目的。同时,算法保留了联邦滤波的分散化结构,可以方便的支持故障隔离与重构。为了便于对后续研究内容进行评价和比较,论文接着建立了GPS/SINS组合导航系统,并对其性能进行了仿真。
     为提高GPS/SINS组合导航系统对姿态误差的观测能力,论文首先研究了采用多天线GPS增强系统姿态测量能力的方法,提出了一种天线配置结构,阐述了利用载波相位差分方法进行基线测量的原理,提出了两种利用基线直接观测平台误差角的方法,并与姿态误差角法和姿态四元数误差法进行了比较。结果表明,新方法的精度与姿态四元数法基本相当,优于姿态误差角法,且两条基线能够分时工作,计算量也没有增加。
     接下来,论文又对利用偏振光和地磁测量来增强组合导航系统姿态测量性能的方法进行了研究。论文推导了偏振光对平台误差的观测方程,阐述了利用偏振光辅助进行姿态观测的基本原理,以及启动偏振光观测的条件。为进一步提高该方法的性能,论文对使用多偏振光模块非平行观测、偏振模型精确化和传感器改进等措施进行了讨论,并证明了组合导航系统的完全随机可检性。论文提出了一种偏振光/GPS/SINS组合的结构配置方案,并进行了与GPS/SINS组合的对比仿真研究。结果表明,该方法具有稳定的姿态误差修正能力。
     接着,论文对采用地磁和偏振光双重辅助、具有直接的完全姿态测量能力的系统进行了研究,推导了地磁矢量观测平台误差角的观测方程,阐述了偏振光/地磁/GPS/SINS组合的配置方案和工作原理,并进行了仿真对比检验。结果表明该方法具有精度更高、更稳定的姿态误差修正效果。最后,论文研究了该
The navigation technology is wildly employed in the military, civil, and commercial fields. Thus it is important to improve the accuracy and reliability of the navigation systems in practical applications. The GPS/SINS integrated navigation is an outstanding resolution because of the complementarity. Based on the GPS/SINS integrated navigation systems, methods of enhancing the reability and accuracy of the systems have been studied by means of involving certain external information and modifying the information fusion algorithms.
     Usually, sensors utilized in the navigation systems have different sampling rates. Hence, a novel data fusion strategy in the federated Kalman filtering is proposed to tailor the algorithm to the multirate systems. This new algorithm is proved equivalent to the centralized filtering method. Basing on this mothed, an adaptive discentralized filtering approach is presented to obtain more accurate navigation solutions with the model uncertainty or soft fault. Moreover, this filter maintains the discentralized structure, with which it can surport fault isolution and reconfiguration. In order to evaluate and compare with the work in the following chapters, the performace of our GPS/SINS integrated navigation system is studied by numerical simulations.
     To increase the degree of observability of the GPS/SINS integrated navigation system, a multi-antenna GPS attitude determination method is first studied. A multi-antenna configuration scheme is presented, and the principles of the GPS differential carrier phase measurement are expatiated. Two direct attitude error correction methods using base-line measurements are proposed and compared with the indirect Euler angle error correction and quaternion error correction methods. Numerical simulation results show that these two methods are as accurate as the quaternion error correction approach, and both outperform the Euler angle error correction method. Furthermore, with our methods, the two base-lines can work asynchronously, and the computational burden is not increased.
     Next, the polarized light and geomagnetism aided navigation methods are proposed. The models of the polarized light measurements with regard to the attitude errors are presented. The principles of the polarized light aided attitude determination approaches and the conditions, under which the polarized light modules can be
引文
1 E.Gai. The Century of inertial navigation technology. Aerospace Conference Proceedings, IEEE. 2000, (1): 59~60
    2 D.Young. A Review of Navigational Techniques Employed in Cruise Missiles and A Proposed Alternative Solution. N91~11744
    3 R. L. Greenspan. Inertial Navigation Technology from 1970~1995. Navigation. 1995, 42(1): 165~185
    4 B. W. Parkinson, T. Stansell, R. Beard, et al. A History of Satellite Navigation. Navigation. 1995, 42(1): 109~163
    5 周露, 闻新, 周秀芬. 组合导航制导系统的容错技术及特点. 上海航天. 1999, (2): 58~61
    6 J. Liu, Y. Sun, X. He, et al. Design and Realization of GPS/INS Integrated Navigation System. Proceedings of the 1997 53rd Annual Meeting of Institute of Navigation. Albuquerque, USA, 1997: 293~297
    7 P. Kline, F. V. Graas. Integrated Inertial/GPS. N91~19032
    8 J. L. Hammer. Integrated Navigation Systems-Where are We Headed. AD-A146 425
    9 T. Moore, K. Rudolph, F. Ziolkowski, et al. Use of the GPS Aided Inertial Navigation System in the Navy Standard Missile for the BMDO/Navy LEAP technology Demonstration Program. Proceedings of the 1995 8th International Technical Meeting of the Satellite Division of the Institute of Navigation, Palm Springs, USA, 1995: 363~371
    10 G. Barnes, S. Lee, A. Perez. INS/GPS Space Application for all Flight Dynamics - boost through Landing. PLANS, IEEE. 1996: 457~463
    11 K. Braden, C. Browning, H. Gelderloos, et al. Integrated Inertial Navigation System/Global Positioning System (INS/GPS) for Manned Return Vehicle Autoland Application. PLANS, IEEE. 1990: 74~82
    12 R. L Bunn. GPS/INS Autonomous Navigation Systems for Space Applications. Advances in the Astronautical Sciences. 1998: 181~195
    13 刘凯, 刘慧. GPSINS 组合制导技术在现代战争中的应用及趋势研究. 中国航天. 2005, (9): 35~40
    14 G. Hyslop, D. Gerth, J. Kraemer. GPS/INS Integration on the Standoff Land Attack Missile(SLAM). IEEE AES Magazine. 1990, 5(7): 29~34
    15 N. Barbour, G.Schmidt. Inertial Sensor Technology Trends. Sensors Journal, IEEE. 2001, 1(4): 332~339
    16 N. M. Faulkner, S. J.Cooper, P. A.Jeary. Integrated MEMS/GPS Navigation Systems. IEEE PLANS. 2002: 306~313
    17 朱绍荠, 李立新, 张绍武. 从西欧三国考察看惯性技术的发展. 飞航导弹. 1999, (1): 34~38
    18 A. M. Peczalski, J. Kriz, S. G. Carlson, et al. Military/civilian Mixed-mode Global Positioning System (GPS) Receiver (MMGR). Aerospace Conference, IEEE. 2004, (4): 2697~2703
    19 S. Ganguly. Real-time Dual Frequency Software Receiver. PLANS, IEEE. 2004: 366 ~ 374
    20 R. Babu, J. L. Wang. Dynamics Performance of Carrier and Code Tracking Loops in Ultra-tight GPS/INS/PL Integration. INDICON, IEEE. 2005: 233 ~236
    21 J. Nielson, J. Keefer, B. McCullough. SAASM: Rockwell Collins' Next Generation GPS Receiver Design. PLANS, IEEE. 2000: 98 ~ 105
    22 P. B.Renfroe, J. D. McMinemon, P. K. Couch. Test and Evaluation of the Rockwell Collins GNP-10 for the Precision Kill and Targeting (PKAT) Missile System. PLANS, IEEE. 2000:488~493
    23 N. J. Dahlen, T. L. Caylor, E. L. Goldner. Tightly Coupled IFOG-based GGP Implementation and Field Test Results. PLANS, IEEE. 1996: 213 ~ 221
    24 W. Wang, Z. Liu, R. Xie. An Improved Tightly Coupled Approach for GPS/INS Integration. IEEE Conference on Robotics, Automation and Mechatronics. 2004, 2: 1164 ~ 1167
    25 董绪荣, 张守信, 华仲春. GPS/INS 组合导航定位及其应用. 长沙: 国防科技大学出版社. 1998
    26 C. Kee, B. W. Parkinson. Wide Area Differential GPS (WADGPS): Future Navigation System. IEEE Trans. on AES. 1996, 32(2): 795 ~808
    27 闻新, 刘宝忠. GLONASS 卫星导航系统的现状与未来. 中国航天. 2004, (9): 19~23
    28 G. M. Polischuk, S. G. Revnivykh. Status and Development of GLONASS.Acta Astronautica. 2004, 54(11): 949~955
    29 S. M. Chamberlain Combined GPS/GLONASS Navigation. NTC’91. 1991: 205~210
    30 C. W. Kelley, K. F. Davis, D. M. Nguyen. GNSS - Coordinating the GPS-Galileo-GLONASS Constellations. Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2004: 2169~2183
    31 A. E. Zinoviev. Using GLONASS in Combined GNSS Receivers: Current Status. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, ION GNSS 2005: 1046~1057
    32 S. V. Averin, Y. M. Urlichich, A. A. Vinogradov. Analysis of the GLONASS and GPS Signals Availability at the GEO. Proceedings of the Institute of Navigation, 2004 National Meeting. 2004: 652~661
    33 A. A. Povalyaev. Pseudophase Measurements in Receivers of GPS and GLONASS Satellite Navigational Systems. Journal of Communications Technology and Electronics. 2002, 47(12): 1332~1345
    34 Jr J. J. Spilke. GPS Signal Structure and Performance Characteristics. Navigation. 1980, (1): 29~54
    35 R. Kroes, O. Montenbruck. High Accuracy Kinematic Spacecraft Relative Positioning Using Dual-frequency GPS Carrier Phase Data. Proceedings of the Institute of Navigation, NTM. 2004: 607~613
    36 Y. Feng. Long-range Kinematic Positioning Made Easy Using Three Carrier GNSS Signals. Proceedings of the Institute of Navigation, NTM. 2005: 694~702
    37 J. Cheng, J. A. Farrell, Y. Lu, et al. Aided Integer Ambiguity Resolution Algorithm. PLANS, IEEE. 2004: 740~745
    38 J. A. Farrell, M. Barth. The Global Positoning System and Inertial Navigation. New York: McGraw-Hill, 1999
    39 Y. Yang, J .A. Farrell. Two Antennas GPS-aided INS for Attitude Determination. IEEE Transactions on Control Systems Technology. 2003, 11(6): 905~918
    40 王广运, 郭秉义, 李洪涛. 差分 GPS 定位技术与应用. 电子工业出版社. 1996
    41 E. Frei, G. Beutler. Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach: the Alternative to Kinematic Positioning. Proc. of the 2ndInternational Symposium on Precise Positioning with GPS. Ottawa,Canada, 1990
    42 S. Haywood. Improved GPS Phase-ambiguity Resolution by Second-order Statistical Filtering. Proceedings of the Annual Meeting Navigational Technology for the 3rd Millennium, Institute of Navigation. 1996: 779~786
    43 H. M. Peng, Y. T. Chiang, F. R. Chang, et al. Maximum-likelihood-based Filtering for Attitude Determination via GPS Carrier Phase. PLANS, IEEE. 2000: 480~487
    44 S. B. Azimi., P. S. Krishnaprasad. Integer Ambiguity Resolution in GPS Using Particle Filtering. Proceedings of the American Control Conference. 2001, 5: 3761~3766
    45 D. Lin, K. V. Ling. N. Nagarajan. Real-time Attitude Determination for Microsatellite by Lambda Method Combined with Kalman Filtering. A Collection of the 22nd AIAA International Communications Satellite Systems Conference and Exhibit Technical Papers. 2004: 136~143
    46 Y. Kubo, A. Ito, M. Kihara, et al. Carrier Phase GPS Positioning and Ambiguity Resolution by Using H Infinity Filters. Robot and Human Communication - Proceedings of the IEEE International Workshop. 2000: 41~46
    47 A. J. Henley. Terrain Aided Navigation: Current Status, Techniques for Flat Terrain and Reference Data Requirements. PLANS, IEEE. Piscataway, USA, 1990: 608~615
    48 J. J. Rodriguez, J. K. Aggarwal. Matching Aerial Images to 3-D Terrain Maps IEEE Trans. on Pattern Analysis and Machine Intelligence. 1990, 12(12): 1138~1149
    49 M. T. Suzuki, T. Shibata. A Pattern Matching Technique for Detecting Similar 3D Terrain Segments. WSEAS Transactions on Information Science and Applications. 2005, 2(2): 177~182
    50 J. Hollowell. Heli/SITAN: A Terrain Referenced Navigation Algorithm for Helicopters. PLANS, IEEE. 1990: 616~625
    51 W. R. Baker, R. W. Clem. Terrain Contour Matching (TERCOM) Primer. AD-B02132B
    52 E. Russell, D. Morrell. Terrain-aided Navigation Using the Viterbi Algorithm. Journal of Guidance, Control, and Dynamics. 1995,18(6): 1444~1449
    53 苏康, 关世义, 柳健, 等. 在不同地形条件下的地形辅助导航系统定位精度评估. 宇航学报. 1998, 19(1): 84~89
    54 D. D. Boozer, J. R. Fellerhoff. Terrain-aided Navigation Test Results in the AFTI/F-16 Aircraft. Navigation. 1988, 35(2): 161~175
    55 S. Chandrasekhar, D. Elbert. The Illumination and Polarization of the Sunlit Sky on Rayleigh Scattering. Trans. Am. Phil. Soc. 1954, 44(6):643~728
    56 Z. Sekera. Light Scattering in the atmosphere and the Polarization of skylight. J. Opt. Soc. Am. 1957, (47):484~490
    57 R. M. Matchko, G. R.Gerhart. Polarization Azimuth Angle in Daylight Scenes. Optical Engineering. 2005, 44(2): 028001-1~9
    58 T. Prosch, D. Henning, E. Raschke. Video Polarimetry: a New Imaging Technique in Atmospheric Sciences. Appl. Opt. 1983,22(9):1360~1363
    59 R L. Lee. Digital Imaging of Clear-sky Polarization. Appl. Opt. 1998, 37(9):1465~1476
    60 M. Muller, R. Wehner. Path Integration in Desert Ants Cataglyphis Fortis. Proc. Natl. Acad. Sci. USA, 1988, 85L5287~5290
    61 R. Wehner, K. Gallizzi, C .Frei, et al. Calibration Processes in Desert Ant Navigation: Vector Courses and Systematic Search. J. Comp. Physiol. A. 2002, 188: 683~693
    62 S. M. Reppert, H. Zhu, R. H. White. Polarized Light Helps Monarch Butterflies Navigate. Current Biology. 2004,14(20): 155~158
    63 O. Froy, A. L. Gotter, A. L. Casselman, et al. Illuminating the Circadian Clock in Monarch Butterfly Migration. Science. 2003, 300(23):1303~1305
    64 T. Labhart, J. Petzold, H. Helbling. Spatial Integration in Polarization-sensitive Iinterneurones of Crickets: a Survey of Evidence, Mechanisms and Benefits. J Exp Biol. 2001, 204:2423~2430
    65 T. Labhart, E. P. Meyer. Detectors for Polarized Skylight in Insects: a Survey of Ommatidial Specializations in the Dorsal Rim Area of the Compound eye. Microsc Res Tech. 1999, 47:368~379
    66 D. Marie, A. D. Thuy, D. C.Ocarroll. Polarized Light Detection in Spiders. The Journal of Experimental Biology. 2001,204: 2481~2490
    67 C. W. Hawryshyn. Ultravillet-polarization Vision: it’s Roll in Salmon Navigation. Proc. SPIE. 1997, 3120(2): 2~10
    68 M. Dacke, D. E. Nilsson, H. S. Clarke, et al. Animal behaviour: Insect orientation to polarized moonlight. Nature 2003, 424(33)
    69 D. Lambrinos, M. Maris, H. Kobayashi, et al. An Automomous Agent Navigation with a Polarized Light Compass. Adaptive Behaviour. 1997, 6(1):131~161
    70 D. Lambrinos. Navigating with an adaptive light compass. In Proc. 3rd Europ. Conf. Artif. Life. Granada,Spain.1995: 602~613
    71 D. Lambrinos, R. Moller, T. Labhart, et al. A Mobile Robbot Employing Insect Strategies for Navigation. Robotics and Autonomous Systems. 2000,30(1):39~64
    72 O. F. Mathias, H. A. Mallot. Biomimetic Robot Navigation. Robotics and Autonomous Systems. 2000,30:133~153
    73 H. Emmerich, M. Schofthaler, U. Knauss. A Novel Micromachined Magnetic-field Sensor. Micro Twelfth IEEE International Conference on Electro Mechanical Systems. 1999: 94 ~ 99
    74 K. B. Rochford, A. H. Rose, G. W. Day. Magnetic optic sensors based on Iron Garnets. IEEE Trans. On Magnetics. 1996,32(5):4113~4117
    75 张学亮 , 周晓军 , 胡永明等 . 全保偏光纤地磁传感器 . 中国激光 . 2005,32(11):1515~1518
    76 彭富清. 地磁模型与地磁导航. 海洋测绘. 2006,26(2):73~74
    77 林雪原, 刘建业, 蒋秀珍. RDSS/Dopper/GPS/SINS 组合导航系统研究. 哈尔滨工业大学学报. 2004, 36(1): 48~51
    78 袁信, 俞济祥, 陈哲. 导航系统. 航空工业出版社. 1993
    79 A. F. Fuentes LORAN-C in the 21st Century. PLANS, IEEE. 1986: 277~279
    80 D. Kuegler, W. Lechner, C. Butzmuehlen. Combined use of GPS and LORAN-C in Integrated Navigation Systems. PLANS, IEEE. 1996: 161~168
    81 G. Lachapelle, B. Townsend. GPS/Loran-C: An Effective System Mix for Vehicular Navigation in Mountainous Areas. Navigation. 1993, 40 (1): 19~34
    82 吴美平, 胡小平. 惯导/GNSS/罗兰 C/航姿系统组合导航方案. 中国惯性技术学报. 2000,8(3):12~16
    83 申功勋, 孙建峰. 信息融合理论在惯性/天文/GPS 组合导航系统中的应用. 国防工业出版社. 1998
    84 R. C. Luo. Dynamic Multi-Sensor Data Fusion System for Intelligent Robotics. IEEE Journal of Robotics and Automations. 1988, RA-4(2): 386~396
    85 M. Becherman. A Bayes-maximum Entropy Method for Multi-sensor Data Fusion. Proceedings of the 1992 IEEE International Conference on Robotics & Automatics. 1992:1668~1674.
    86 D. Whyte. Sensor Models and Multisensor Integration. International Journal of Robotics Research. 1988, (7): 97~113
    87 J. R. Boston. A signal Detection System Based on Dempster-Shafer Theory and Comparison to Fuzzy Detection. Systems. IEEE Transactions on Man and Cybernetics, Part C. 2000, 30(1): 45 ~51.
    88 A. Filippidis. Fuzzy and Dempster-Shafer Evidential Reasoning Fusion Methods for Deriving Action from Surveillance Observations. Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. 1999: 121 ~124.
    89 朱大奇, 于盛林. 基于 DS 证据理论的数据融合算法及其在电路故障诊断中的应用. 电子学报. 2002, 30(2):221~223
    90 L. M. Patnaik, H. Nair, V. Abraham, et al. Performance Evaluation of Neural Network Algorithms for Multisensor Data Fusion in an Airborne Track While Scan Radar. IEEE International Conference on. 1996,1 : 223 ~228
    91 Z. Zhang, Q. Wang, S. Sun. A new Fuzzy Neural Network Architecture for Multisensor Data Fusion in Non-destructive Testing. Fuzzy Systems Conference Proceedings IEEE. 1999,3 : 1661 ~1665
    92 Q. Fu, Y. Shen, J. Q. Zhang, et al. An approach to Fault Diagnosis Based on a Hierarchical Information Fusion Scheme and Turbine Application. IMTC 2001. Proceedings of the 18th IEEE .2001,2: 875 ~878
    93 D. P. Malladi, J. L. Speyer. A New Approach to Multiple Model Adaptive Estimation. Proceedings of the 36th Conference on Decision & Control. 1997: 3460~3467.
    94 周东华, 席裕庚, 张钟俊. 非线性系统带次优渐消因子的扩展卡尔曼滤波器. 控制与决策. 1990,(5):1~6
    95 J. Z. Sasidek, Q. Wang, M. B. Zeremba. Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion. ISIC2000, IEEE. 2000:181~186.
    96 S. C. Stubberud, M. W. Owen. Targeted On-line Modeling for an Extended Kalman Filter Using Artificial Neural Networks. Neural Networks IEEE World Congress on Computational Intelligence. 1998,2: 1019 ~1023
    97 S. C. Stubberud, R. N. Lobbia, M. Owen. An Adaptive Extended Kalman Filter Using Artificial Neural Networks. Proceedings of the 34th IEEE Conference on Decision and Control. 1995,2: 1852 ~1856
    98 A. H. Sayed. A Framework for State-space Estimation with Uncertain Models. IEEE TRANS ON Automatic Control. 2001,46(7):998~1013
    99 J. Pearson, R. Goodall, M. Eastham, et al. Investigation of Kalman Filter Divergence using Robust Stability Techniques. Proceedings of the 36th Conference on Decision & Control.December.1997:4892~4893
    100 吴淮宁, 费元春.不确定离散系统的最优鲁棒滤波. 控制理论与应用. 1999,16(2):292~296
    101 F. Wang, V. Balakrishnan. Robust Kalman Filters for Linear Time-varying Systems with Stochastic Parametric Uncertainties. IEEE Transactions on Signal Processing. 2002,50 (4): 803 ~813
    102 X. Zhu, Y. C.Song, L.Xie. Robust Kalman Filter Design. Proceedings of the 39th IEEE Conference on Decision and Control. 2000,4: 3813~3818
    103 C. S. Hsieh. Robust Two-stage Kalman Filters for Systems with Unknown Inputs. IEEE Transactions on Automatic Control. 2000,45(12): 2374 ~2378
    104 G. M. Siouris, G. Chen. Tracking an Incoming Ballistic Missile Using an Extended Interval Kalman Filter. IEEE Trans. On Aerospace and Electronic Systems. 1997,33(1):232~240
    105 H. Carvalho, M. P. Del. Optimal Nonlinear Filtering in GPS/INS Integration. IEEE Trans. on AES. 1997,(3): 835~850
    106 J. Carpenter, P. Clifford, P. Fearnhead. Sampling Strategies for Monte Carlo Filters of Non-linear Systems. IEE Colloquium on Target Tracking and Data Fusion. 1996: 6/1 ~6/3
    107 N. A. Carlson. Federated Square Root Filter for Decentralized Parallel Processes. IEEE Trans. on AES. 1990,26(3): 517~525
    108 P. J. Lawrence. Comparison of a Distributed Kalman Filter Versus a Centralized Kalman Filter. AD-A270 713
    109 王富嘉, 陈哲. INS/GPS/TAN 系统中的联邦卡尔曼滤波信息融合方法. 航空学报. 1998, 19(7): 87~91
    110 房建成, 申功勋, 万德钧. 一种自适应联合卡尔曼滤波器及其在车载GPS/DR 组合导航系统中的应用研究. 中国惯性技术学报. 1998,6(4):1~6
    111 周东华, 叶银忠. 现代故障诊断与容错控制. 清华大学出版社. 2000.
    112 E. M. Nebot, H. D. Whyte, S. Scheding. Kalman Filtering Design Techniques for Aided GPS Land Navigation Applications. Proceedings of the 1996 1st Australian Data Fusion Symposium. Adelaide, Australia, 1996:83~88
    113 王宇飞. 信息融合技术在巡航导弹组合导航系统中的应用研究. 工学博士学位论文. 哈尔滨工业大学. 2000
    114 王艳东, 黄继勋, 范跃祖. GPS/INS 组合导航系统半实物仿真研究. 北京航空航天大学学报. 1999, 25(3):299~301
    115 J. A. Farrell, T. D. Givargis, M. J. Barth. Real-time Differential Carrier Phase GPS-aided INS. IEEE Trans. On Control Systems Technology. 2000, 8(4): 709~721
    116 M. S. Braasch. Signal Model for GPS. Navigation. 1990,37(4):363~377
    117 陈哲. 捷联惯导系统原理. 宇航出版社,1986: 61~66
    118 马昕, 于海田, 袁信. 组合导航系统中的联邦滤波算法研究. 东南大学学报. 1998, (9):49~53
    119 N. A. Calson, M. P. Berarducci. Federated Kalman filter simulation results. Navigation. 1994, 41(3): 297~321
    120 N. A. Calson. Federated Square Root Filter for Decentralized Parallel Processes. Proceedings of National Aerospace Electronics Conference.1987:1448~1456
    121 N. A. Calson. Federated Filter for Computer-efficient Near-optimal GPS Integeration. Position Location and Navigation Symposium, IEEE.1996:306~314
    122 F. Graasvan, M. S. Braasch GPS interferometric attitude and heading determination: initial flight test results. Proceedings of the 47th Annual Meeting, the Institute of Navigation. Williamsburg, 1991:183~191
    123 廖向前, 黄顺吉, 张晓玲. GPS 双基线载体姿态测量研究. 航空学报. 1998,19(5): 531~535
    124 王惠南, 吴智博. 采用卡尔曼滤波器的 GPS/INS 姿态组合系统的研究. 中国惯性技术学报. 2000,8(3):1~7
    125 王惠南, 何峰. 利用 GPS 载波相位实时测定动态飞行器姿态. 空间科学学报. 1998,18(1): 69~74
    126 孙晓兵, 洪津, 乔研利. 大气散射辐射偏振特性测量研究. 量子电子学. 2005,22(1): 111~115
    127 K. Usher, P. Ridley, P. Corke. A Camera as a Polarized Light Compass: Preliminary Experiments. Proc.2001 Australian Conf. on Robotics and Automation. Sydney, 2001:116~120
    128 J. H. Hannay. Polarization of Sky Light from a Canopy Atmosphere. New Journal of Physics.2004,197(6):1~10
    129 G. Horvath, B. Bernath, B. Suhai, et al. First Observation of the Fourth Neutral Polarization Point in the Atmosphere. J. Opt. Soc. Am. A. 2002,19(10): 2085~2099
    130 M. V. Berry, M. R. Dennis, R. L. Lee Polarization Singularityes in the Clear Sky. Polarization. New Journal of Physics.2004,162(6):1~14
    131 段广仁. 线性系统理论. 哈尔滨工业大学出版社. 1998:131~132
    132 秦永元, 张洪钺,汪叔华.卡尔曼滤波与组合导航原理. 西北工业大学出版社. 1998: 152~154
    133 K. J. Voss, Y. Liu. Polarized Radiance Distribution Measurements of Skylight. I. System Description and Characterization. Applied Optics.1997,36(24): 6083~6094
    134 H. Povel. Imaging Stokes Polarimetry with Modulators and Charge Coupled-device Image Sensors. Opt. Eng. 1995 (34): 1870~1878
    135 K. J. Voss, A. L. Chapin. Next Generation in-water Radiance Distribution Camera System in Ocean Optics XI. Proc. SPIE 1992(1750): 384~387
    136 K. J. Voss, G. Zibordi. Radiometric and Geometric Calibration of a Visible Spectral Electro-optic ‘fish-eye’ CameraRadiance Distribution System. J. Atmos. Oceanic Tech. 1989, (6):652~662
    137 P. Goloub, H. Chepfer, M. Herma, et al. Use of Polarization for Clouds Study. SPIE. 1997, 3121:335~346
    138 R. M. Matchko, Gr. R. Gerhart. Polarization Azimuth Angle in Daylight Scenes. Optical Engineering.2005,44(2):028001-1~9
    139 彭富清. 地磁模型与地磁导航. 海洋测绘. 2006,26(2): 73~75
    140 International Association of Geomagnetism and Aeronomy (IAGA), Division V, Working Group VMOD: Geomagnetic Field Modeling. The 10th-Generation International Geomagnetic Reference Field. Geophys. J. Int. 2005, (161): 561~565
    141 闻新, 张洪钺, 周露. 惯导系统故障诊断技术的特点. 中国惯性技术学报.1997, 5(3):13~16
    142 钱华明. 冗余技术在惯性组合导航系统中的应用研究. 中国惯性技术学报. 1999,7(1):9~13
    143 周露, 闻新, 周秀芬. 组合导航制导系统的容错技术及特点. 上海航天. 1999, (2): 58~61
    144 R. D. Andreas, L. D. Hostetler, R. C. Beckmann. Continuous Kalman Updating of An Inertial Navigation System Using Terrain Measurements. Proceedings of the 1978 National Aerospace and Electronics Conference, Washington DC, USA, 1978:1263~1270
    145 钱华明, 李文杰. 船用综合导航系统软件可靠性的设计研究. 哈尔滨工程大学学报. 1999, 20(1):46~51
    146 A. K. Brown, M. A. Sturza. Fault Tolerant GPS/Inertial System Design. Proceedings of the 3rd International Technical Meetings of the Satellite Division of the Institute of Navigation. Colorado Springs, USA, 1990: 495~504
    147 R. K. Mehra, J. Peschon. An Innovations Approach to Fault Detection and Diagnosis in Dynamic Systems. Automatica. 1971,7: 637~640
    148 H. L. Trees. Detection, Estimation and Modulation Theory. John Wiley & Sons, Inc., 1968:78~102
    149 T. Kerr. Decentralized Filtering and Redundancy Management for Multisensor Navigation,IEEE Trans. On AES.1987,23(1):83~118
    150 B. D.Brumback, M. D. Srinath. A Fault-tolerant Multisensor Navigation System Design. IEEE Trans. On AES. 1987,23(6),738~756
    151 D. Ren. Failure Detection of Dynamic Systems with the State Chi-square test. Jouranl of Guidance, Control and Dynamics. 1994, 17(2): 271~277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700