无线传感器/执行器网络协同感知与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器/执行器网络是近年来发展起来的新型无线传感器网络,它结合了无线传感器网络与网络控制系统的优点,从而使得传统意义上的无线传感器网络不仅具有了监测功能,还具有了控制和执行功能。因此无线传感器/执行器网络在救灾工作、精准农业、智能家居等领域具有广泛的应用前景。由于无线传感器/执行器网络能够极大地改变人们获取信息和交互环境的方式,因此在国内外它都是一个研究热点。
     感知与控制是无线传感器/执行器网络的重要组成部分,两者相辅相成,构成了一个完整的反馈控制系统。虽然网络中每个节点的能力和资源都是有限的,但是通过节点间的协同感知与控制,就能够完成点个节点所不能完成的复杂任务。然而,现有的很多研究只是注重其中某一方面,没有进行全面的考虑,所以其中有很多问题亟需解决。本文在国内外现有研究的基础上,研究了面向控制应用的无线传感器/执行器网络协同机制和评价标准,在此基础上,提出了协同感知与控制算法。本文的主要工作以及贡献包括以下几个方面:
     1.搭建了基于无线传感器网络的移动目标跟踪平台并设计了在平台上运行的协同信息处理算法。在目标移动的过程中,根据目标的位置在其周围调度相应的传感器共同来完成目标的检测与跟踪任务。为了提高网络能效,建立了基于节点硬件的能量模型,并提出了能量优化的传感器调度策略,在保证跟踪精度的同时能够均衡节点的能量消耗。
     2.对于存在通信时延的无线传感器/执行器网络,设计了一种时延补偿算法来估计实时数据。在此基础上,根据需要完成的任务来对执行器进行分簇。对于簇内的执行器,通过一种分布式的控制策略来协同它们的工作。给出了保持系统稳定的条件并分析了控制参数选择对系统性能的影响。
     3.针对需要移动执行器来需要完成任务的情况,设计了一种基于系统能控性的执行器优化部署方案,通过虚拟力来把执行器移动到合适的位置上。在这样的一个动态网络中,提出了一种基于事件驱动的任务分配机制,综合考虑了时间、能量、控制要求等因数,为每个执行器分配最合适的工作量。
     4.为了提高系统运行的可靠性,分别使用了自适应联邦滤波器和PID神经网络来协同传感器与执行器、执行器与执行器之间的工作。根据每个节点的特点,把上述的估计及控制任务平均分配给每个节点,让节点并行完成任务,这种分布式的结构在保证控制质量的同时能够提高系统响应速度。同时,为了验证以及改进算法,搭建了基于无线传感器/执行器网络的智能灯光照明平台。
Wireless sensor and actuator networks (WSANs) are emgering rapidly as a newgeneration of wireless sensor networks (WSNs). Taking the advantage of WSNs and networkcontrol system, the novel architecture of WSANs performs not only read operations, but alsowrite operations. WSANs can be deployed for a great variety of applications, such as urbanresearch and rescue, precision agriculture, smart home, etc. Since WSANs provide a moreconcretely exchange between human and surrounding environment, more and more attentionswill be paied in this newborn area.
     Sensing and control, which are essential parts to construct a feedback control system, aretwo important elements of WSANs. Although nodes’resources and capabilities are limited inWSANs, complex tasks will be accomplished through the collbaorative sensing and controlamong the nodes that are far beyond signal node reach. However, most related works onlyfocus on one of them, and the jointly research on collaborative sensing and control isnecessary but rare. As an attempt in this direction, this thesis analyzes the coordinationmechsnism and performance criteria design for WSANs in control applications. On this basis,the collaborative sensing and control algorithms are proposed to deal with node coordinationproblem. The main works and contributions are summarized as follows
     1. A mobile target tracking platform based on WSNs is constructed and a propercollaborative processing method is designed to coordinate wireless sensor nodes. During themovement of mobile target, sensor nodes that are around it will be scheduled and theseclustered nodes are responsible for mobile target sensing and tracking tasks. In order to reduceenergy consumption and enhance system real-time tracking performance, energy model basedon hareware over wireless sensor node is established to design energy optimization sensorscheduling scheme.
     2. A predictor-controller algorithm based on distributed estimation is designed tomitigate the effects of network-induced delay. On this basis, a distributed collaborativeprocessing method is proposed to meet the desired system requirements and improve theoverall control performance. This approach will group sensors and actuators to work inparallel so as to reduce computation complexity and enhance system reacting time. In order to improve control quality, the condition to keep system stable is introduced and the controlstrategy parameters related to the system performance is analyzed.
     3. In some applications of WSANs, it is often require for the actuators to relocate. So, aregional controllability based virtual force algorithm is introduced as an actuator deploymentstrategy to improve actuator coverage. In this dynamic environment, a strategy is proposed toassign tasks to actuators and control their actions in a coordinated way to accomplish the tasksbased on the requirements of current events.
     4. In order to enhance system reliability, adaptive federated Kalman filter and PID neuralnetwork is adopted to coordinate sensor-actuator and actuator-actuator, respectively. Takingthe characteristics of different nodes into consideration, the estimation and control tasks areallocated in grouped sensor and actuator clusters, and the control decisions can be madelocally. The distributed architecture will enhance control quality as well as real-timeperformance. At the same time, a wireless lighting platform based on WSANs is designed totest and improve the proposed algorithms.
引文
[1]孙利民,李建中,陈渝,朱红松.无线传感器网络[M].北京:清华大学出版社,2005.
    [2]郎为民等译.无线传感器网络及执行器网络[M].北京:机械工业出版社,2012.
    [3]曹向辉.无线传感器/执行器网络的体系架构与算法研究[D].杭州:浙江大学博士学位论文,2011.
    [4] Akyildiz I.F., Kasimoglu I.H.. Wireless sensor and actor networks: research challenges[J]. Ad Hoc Networks,2002,2(4):351-367.
    [5] Yuan H.D., Ma H.D., Liao H.Y.. Coordination mechanism in wireless sensor and actornetworks [C]. Proceedings of The First International Multi-Symposiums on Computerand Computational Sciences, Hangzhou, China,2006:627-634.
    [6] Erica R.I., Luis V.G., Raul A.S.. Design issues and considerations for coordinationmechanisms in wireless sensor and actuator networks [C]. Fourth Congress of Elec-tronics, Robotics and Automotive Mechanics, Cuernavaca, Mexico,2007:80-85.
    [7] Erica R.I., Luis V.G.. Cooperation mechanism taxonomy for wireless sensor and actornetworks [J]. Ad Hoc and Sensor Wirless Networks,2009,7(1):91-113.
    [8] Akkaya K., Senel F., Mclaughlan B.. Clustering of wireless sensor and actor networksbased on sensor distribution and connectity [J]. Journal of Parallel and DistributedComputing,2009,69(6):573-587.
    [9] Akkaya K., Janapala S.. Maximizing connected coverage via controlled actor reloca-tion in wireless sensor and actor networks [J]. Computer Networks,2008,52(14):2779-2796.
    [10] Melodia T., Pompili D., Gungor V.C., Akyildiz I.F.. Communication and coordina-tion in wireless sensor and actor networks [J]. IEEE Transactions on Mobile Comput-ing.2007,6(10):1116-1129.
    [11] Ngai E., Zhou Y., Lyu M.R., Liu J.. A Delay-aware Reliable Event Reporting Frame-work for Wireless Sensor-Actuator Networks [J]. Ad Hoc Networks,2010,8(7):694-707.
    [12] Melodia T., Pompili D., Gungor V.C., Akyildiz I.F.. A distributed coordinationframework for wireless sensor and actor networks [C]. Proceedings of the6th ACMInternational Symposium on Mobile Adhoc Networking and Computing. Illinois, USA,2005:99-110.
    [13] Selvaradjou K., Dhanaraj M., Murthy C.S.R.. Energy efcient assignment of eventsin wireless sensor and mobile actor networks [C]. Proceedings of the14th IEEE In-ternational Conference on Networks, Singapore,2006:1-6.
    [14] Xia F.. QoS challenges and opportunities in wireless sensor/actuator networks [J].Sensors.2008,8:1099-1110.
    [15] Shah K., Meng Y.. Communication-efcient dynamic task scheduling for heteroge-neous multi-robot systems [C]. Proceedings of International Symposium on Compata-tional Intelligence in Robotics and Automation. Jacksonville, USA,2007:230-235.
    [16] Stojemenovic I.. Localized network layer protocols in sensor networks based on op-timizing cost over progress ratio [J]. IEEE Network.2006,20(1):21-27.
    [17] Ogren P., Fiorelli E., Leonard N.E.. Formations with a mission [C]. Proceedings ofthe15th International Symposium on Mathematical Theory of Networks and Systems.Notre Dame, France,2002:45-60.
    [18] Mclurkin J., Yamins D.. Dynamic task assignment in robot swarm [C]. ProceedingsRobotics: Science and Systems. Cambridge, USA,2005:129-136.
    [19] Neves P.A.C.S., Rodrigues J.J.P.C., Lin K.. Data fusion on wireless sensor and ac-tuator networks powered by the ZenSens system [J]. IET Communications,2010,5(12):1661-1668.
    [20] Li N., Hou J.C., Sha L.. Design and analysis of an MST-based topology controlalgorithm [C]. Proceedings Robotics: Science and Systems. San Francisco, USA,2003:1195-1206.
    [21] Tan H.O.., Korpeoglu I., Stojmenovic I.. A distributed and dynamic data gatheringprotocol for sesnor networks [C]. Proceedings of the21th International Conference onAdvanced Networking and Applications. Washington, USA,2007:220-227.
    [22] Ozaki K., Watanabe K., Itaya S., Hayashibara N., Enokido T., Takizawa M.. Afault-tolerant model of wireless sensor-actor network [C]. The9th IEEE InternationalSymposium on Object and Component-Oriented Real-Time Distributed Computing.Gyeongju, Korea,2006:22-30.
    [23] Akkaya K., Yonuis, M.. C2AP: Coverage-aware and connectivity-constrainted actorposition in wireless sensor and actor networks [C]. IEEE International Conference onPerformance, Computing, and Communications. Louisiana, USA,2007:281-288.
    [24] Zou Y., Chakrabarty K.. Sensor deployment and target localization based on vir-tual forces [C]. IEEE International Conference on Computer Communications. SanFrancisco, USA,2003:1293-1303.
    [25] Howard A., Mataric M.J., Sukhatme G.S.. Mobile sensor network deployment usingpotential fileds: a distributed, scalable solution to the area coverage problem [C].Proceedings of the6th International Synposium on Distributed Autonomous RoboticsSystem. Fukuoka, Japan,2002:299-308.
    [26] Heo N., Varshney P.K.. Energy-efcient deployment of intelligent mobile sensor net-works [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems andHumans,2005,35(1):78-92.
    [27] Wang G., Cao G., Porta T.L.. Movement-assisted sensor deployment [J]. IEEE Trans-actions on Mobile Computing,2006,5(6):640-652.
    [28] Gribaudo M., Chiasserini C.-F. F., Leonardi E.. A distributed sensor relocationscheme for environment control [C]. IEEE Internatonal Conference onMobile Adhocand Sensor Systems. Pisa, Italy,2007:1-10.
    [29] Howard A., Mataric M.J., Sukhatme G.S.. An incremental self-deployment algorithmfor mobile sensor networks [J]. Autonomous Robots,2002,13(2):113-126.
    [30] Ren X.P., Cai Z.X.. A distributed actor deployment algorithm for maximum con-nected coverage in WSANs [C]. The5th International Conference on Natural Com-putation. Tianjin, China,2009:283-287.
    [31] Mainwaring A., Culler D., Polastre J., Szewczyk R., Anderson J.. Wireless sensornetworks for habit monitoring [C]. Proceedings of the1st ACM International Work-shop on Wireless Sensor Networks and Applications. Atlanta, USA,2002:88-97.
    [32] Allred J., Hasan A.B., Panichsakul S., Pisano W., Gray P., Huang J., Han R.,Lawrence D., Mohseni K.. SensorFlock: an airbone wireless sensor network of micro-air vehicles [C]. Proceedings of the5th International Conference on Embedded Net-worked Sensor Systems. Sydney, Australia,2007:117-130.
    [33]莫磊,胥布工.无线传感器网络目标跟踪平台协同调度的实现[J].系统工程与电子技术,2011,33(5):1129-1134.
    [34]莫磊,胥布工.无线传感器网络的目标跟踪能量优化策略[J].华南理工大学学报,2011,39(7):13-20.
    [35] Matthew Aldrich, Dynamic solid state lighting [D]. Cambridge: Massaachusetts in-stitute of technology,2010.
    [36] Wen Yao-Jung, Wireless sensor and actuator networks for lighting energy efciencyand user satisfaction [D]. California: University of California, Berkeley,2008.
    [37] Nakamura M., Sakurai A., Nakamura J..(2009). Distributed environment controlusing wireless sensor/actuator networks for lighting applications [J]. Sensors,2009,9:8593-8609.
    [38] Singhvi V., Krause A., Guestrin C., Garrett J.H., Matthews H.S.. Intelligent LightControl using Sensor Networks [C]. Proceedings of the6th International Conferenceon Information Processing in Sensor Nteworks, San Diego, USA,2005:218-229.
    [39] Yeh L., Lu C., Kou C., Tseng Y., Yi C.. Autonomous light control by wireless sensorand actuator networks [J]. IEEE Sensors Journal,2010,10(6):1029-1041.
    [40] Moorea K.L., Chen Y.Q., Song Z.. Difusion-based path planning in mobile actuator-sensor networks (MAS-Net): some preliminary results [J]. Intelligent Computing:Theory and Applications II,2004,5421:58-69.
    [41] Mihai M.P., Stephan B., Raluca M.P.. Autonomous vehicle coordination with wire-less sensor and actuator networks [J]. ACM Transactions on Autonomous and Adap-tive Systems.2010,5(4):110-123.
    [42] Stephan B., Mihai M.P., Raluca M.P., Hans S., Paul H.. Follow me! mobile teamcoordination in wireless sensor and actuator networks [C]. IEEE International Con-ference on Pervasive Computing and Communications, Galveston, USA,2009:1-11.
    [43] Want R., Hopper A., Falcao V., Gibbons J.. The active badge location system [J].ACM Trans. on Information Systems,1992,10(1):91-102.
    [44] Harter A., Hopper A.. A distributed location system for the active ofce [J]. IEEENetwork,1994,8(1):62-70.
    [45] Priyantha N.B., Chakraborty A., Balakrishnan H.. The cricket location-support sys-tem [C]. Proceedings of the6th Annual International Conference on Mobile Comput-ing and Networking, Boston, USA,2000:32-43.
    [46] Lorincz K., Welsh M.. Motetrack: a robust, decentralized approach to rf-basedlocation tracking [C]. Proceedings of the International Workshop on Location andContext-Awareness, Munich, Germany,2005:63-82.
    [47] Xiao W.D., Wu J.K., Louis S., Li Y.Q., Xie L.H.. A prototype ultrasonic sensornetwork for tracking of moving targets [C]. IEEE Conference on Industrial Electronicsand Applications, Singapore,2006:931-937.
    [48] Zhao F., Shin J., Reich J.. Information driven dynamic sensor collaboration [J]. IEEESignal Processing Magazine,2002,19(2):61-72.
    [49] Xiao W.D., Wu J.K., Xie L.H., Louis S.. Multi-step adaptive sensor schedulingfor target tracking in wireless sensor network [C]. IEEE International Conferenceon Acoustics, Speech and Signal Processing, Toulouse, France,2006:705-708.
    [50]杨小军,邢科义,施坤林,潘泉.传感器网络下机动目标动态协同跟踪算法[J].自动化学报,2007,33(10):1029-1035.
    [51]陈维克,李文锋,首衍,缘兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报,2006,30(2):265-268.
    [52] Savarese C., Rabaey J., Beutel J.. Location in distributed ad-hoc wireless sensor net-works [C]. IEEE International Conference onAcoustics, Speech, and Signal Processing,Salt Lake City, USA,2001:2037-2040.
    [53]胥布工,危阜胜,高焕丽,陈冠升,曾明,黎善斌.基于无线传感器网络的移动目标跟踪系统[P].中国专利:200920054365.7,2009-11-10.
    [54]胥布工,危阜胜,陈冠升,曾明.基于无线传感器的目标跟踪系统软件V1.0[P].中国专利:2009SR034077,2009-08-25.
    [55] Li X.R., Vesselin P.J.. Survey of maneuvering target tracking. Part I: dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1333-1364.
    [56] Yue K.T., Xiao W.D., Xie L.H.. A wireless sensor network target tracking systemwith distribute competition based sensor scheduling [C]. International Conference onIntelligent Sensors, Sensor Networks and Information Processing, Melbourne, Aus-tralia,2007:636-642.
    [57]曾明,危阜胜,陈冠升.面向目标跟踪的WSN协同调度策略及拓扑控制[J].华南理工大学学报:自然科学版,2010,38(6):60-65.
    [58]杨余旺,于继明,赵炜.单跳无线传感器网络能量分析计算[J].南京理工大学学报:自然科学版,2007,31(1):81-84.
    [59] Healy M., Newe T., Lewis E.. Power management in operating systems for wirelesssensor nodes [C]. Proceedings of IEEE Sensors Applications Symposium, San Diego,USA,2007:1-6.
    [60] Qun S.. Power management in networked sensor radios network energy model [C].Proceedings of IEEE Sensors Applications Symposium, San Diego, USA,2007:20-25.
    [61] Rhee S., Seetharam D., Liu S.. Techniques for minimizing power consumption in lowdata rate wireless sensor networks [C]. Proceedings of Wireless Communications andNetworking Conference, Cambridge, USA,2004:1727-1731.
    [62] Victor S., Mark H., Borrong C.. Simulating the power consumption of large-scalesensor network applications [C]. Proceedings of the2nd International Conference onEmbedded Networked Sensor Systems, Baltimore, USA,2004:1163-1174.
    [63] Texas Instruments Inc. Chipcon AS SmartRF CC2420preliminary datasheet
    [DB/OL],2010-10-8.
    [64] Deborah E.. Wireless sensor networks tutorial part IV: sensor network protocols [C].Proceedings of the ACM Mobile Computing and Networking, Atlanta, USA,2002:23-28.
    [65] Gersho M., Gray R.M.. Vector quantization and signal compression [M]. Boston:Kluwer Academic Publishers,1991.
    [66] Kerry D.R., Neal C.G.. The design of two-dimensional quantizers using prequanti-zation [J]. IEEE Transactions on Information Theory,1982,28(2):232-239.
    [67] Lin J.Y., Xie L.H., Xiao W.D.. Target tracking in wireless sensor networks usingcompressed Kalman filter [J]. International Journal of Sensor Networks,2009,6(3):251-262.
    [68] Wang T., Zhou L., Han P., Zhang Q., Complete compensation for time delay innetworked control system based on GPC and BP neural network [C]. Proceedings ofInternational Conference on Machine Learning and Cybernetics, Hongkong, China,2007:637-641.
    [69] Zeng Y., Sreenan C.J., Zheng G., A real-time architecture for automated wirelesssensor and actuator networks [C]. The5th International Conference on Wireless andMobile Communications, Cannes/La Bocca, France,2009:1-6.
    [70] Ngai E., Liu J., Lyu M.R.. An adaptive delay-minimized route design for wire-less sensor-actuator networks [J]. IEEE Transactions on Vehicular Technology,2009,58(9):694-707.
    [71] Onat A., Naskali T., Parlakay E., Mutluer O., Control over imperfect networks:model-based predictive networked control systems [J]. IEEE Transactions on Indus-trial Electronics,2011,58(3):905-913.
    [72] Chow M., Tipsuwan Y.. Network-based control systems: a tutorial [C]. The27th An-nual Conference of the IEEE Industrial Electronics Society, Denver, USA,2001:1593-1602.
    [73] Luck R., Ray A.. Experimental verification of a delay compensation alrorithm forintegrated communication and control systems [J]. International Journal of Control,59(6),1994:1357-1372.
    [74] McLaughlan B., Akkaya K., Coverage-based clustering of wireless sensor and actornetworks [C]. IEEE International Conference on Pervasive Services, Istanbul, Turkey,2007:45-54.
    [75] Manuel M.J., Paulo T.. Decentralized event-triggered control over wirless sen-sor/actuator networks [J]. IEEE Transactions on Automatic Control,2011,56(10):2456-2461.
    [76] Che N., Li Z.J., Jiang S.X., Actor deployment strategies in WSANs [C]. The FirstInternational Conference on Pervasive Computing Signal Processing and Applications,Harbin, China,2010:150-153.
    [77] Alaiwy M.H., Alaiwy F.H., Habib S.J.. Optimization of actors placement withinwireless sensor-actor networks [C]. The12th IEEE Symposium on Computers andCommunications, Cappadocia, Turkey,2007:179-184.
    [78] Sundararaman B., Buy U., Kshemkalyani A.. Clock synchronization for wirelesssensor networks [J]. Ad Hoc Networks,2005,3(3):281-323.
    [79] Aurenhammer F. Voronoi diagrams-a survey of a fundamental grometric data struc-ture [J]. ACM Computing Surveys,1991,23(3):345-405.
    [80]刘丽萍.无线传感器网络节能覆盖[D].杭州:浙江大学博士学位论文,2006.
    [81] Chen C.T.. Linear system theory and design [M]. Oxford University Press: NewYork,1999.
    [82] Chen J.M., Cao X.H., Cheng P., Xiao Y., Sun Y.X.. Distributed collaborative con-trol for industrial automation with wireless sensor and actuator networks [J]. IEEETransactions on Industrial Electronics,2010,57(12):4219-4229.
    [83] Tommaso M., Dario P., Akyildiz I.F.. Handling mobility in wireless sensor and actornetworks [J]. IEEE Transactions on Mobile Computing,2010,9(2):160-173.
    [84] Xia F., Zhao W.H., Sun Y.X., Tian Y.C., Fuzzy logic control based QoS managementin wireless sensor/actuator networks [J]. Sensors,2007,7:3179-3191.
    [85] Zhang Q., Chen X., Chang W.G., Zhang J.. A top-down search grid based algorithmfor fast subspace clustering [C], International Conference on Machine Learning andCybernetics, Kunming, China,2008:180-183.
    [86] Nakamura M., Sakurai A., Furubo S., Ban H.. Collaborative processing in mote-basedsensor/actuator networks for environment control application [C]. Signal Processing,2008,88(7):1827-1838.
    [87] Guan Y., Xu B., Wen Z., Yu M.. Parallel genetic algorithms with schema migration[J]. Chinese Journal of Computers,2003,26(3):294-301.
    [88] Cao X.H., Chen J.M., Xiao Y., Sun Y.X.. Building-environment control with wirelesssensor and actuator networks: centralized versus distributed [C]. IEEE Transactionson Industrial Electronics,2010,57(11):3596-3606.
    [89] Ang K.H., Chong G., Li Y.. PID control system analysis, design, and technology [J].IEEE Transactions on Control System Technology,200513:559–576.
    [90]舒怀林. PID神经元网络及其控制[M].北京:国防工业出版社,2006.
    [91] Xu Z.H., Wang Y., Zou Q.Y., Tang J.. Adaptive Kalman Filtering Based LocationCoordination Algorithm For Wireless Sensor And Actor Networks [C]. InternationalForum on Information Technology and Applications, Chengdu, China,2009:264-267.
    [92] R.G. Brown, and P. Hwang. Introduction to random signals and applied Kalmanfiltering, New York: Wiley Press,1992.
    [93] Carlon N.A.. Federated filter for computer-efcient, near-optimal GPS integration
    [C]. IEEE Position Location and Navigation Symposium, Atlanta, USA,1996:306-314.
    [94]庞中华,崔红.系统辨识与自适应控制Matlab仿真[M].北京:北京航天航空大学出版社,2009.
    [95] Moore K.L., Chen Y.Q., Song Z.. Difusion-based path planning in mobile actuator-sensor networks (MAS-Net): some preliminary results [C]. Proceedings of SPIE Con-ference on Intelligent Computing: Theory and Applications II, part of SPIE’s Defenseand Security, Orlando, USA,2004:58-69.
    [96] Chen Y.Q., Moore K.L., Song Z.. Difusion boundary determination and zone controlvia mobile actuator-sensor networks (MAS-net): challenges and opportunities [C].Proceedings of SPIE Conference on Intelligent Computing: Theory and ApplicationsII, part of SPIE’s Defense and Security, Orlando, USA,2004:102-114.
    [97] Tim W., Chris C., Philip V., Dave S., Greg B.-H., Rebecca H.. Sensor and actuatornetworks: protecting environmentally sensitive areas [J], IEEE Pervasive Computing,2009,1(1):30-36.
    [98] Nakamura M., Sakurai A., Furubo S., Ban H., Collaborative processing in mote-based sensor/actuator networks for environment control application [J]. SignalProcessing,2008,88(7):1827-1838.
    [99] Wang Z.M, Song Z., Chen P.Y., Arora A., Stormont D., Chen Y.Q.. MASmote-amobile node for MAS-net (mobile actuator sensor networks)[C], Proceedings of the2004IEEE International Conference on Robotics and Biomimetics, Shenyang, China,2004:816-821.
    [100] Murtaza T., Andrea C.. Distributed and decentralized multicamera tracking [J],IEEE Signal Processing Magazine,2011,28(3):46-58.
    [101]韩崇昭,朱洪艳,段战胜.多源信息融合(第二版)[M].北京:清华大学出版社,2010.
    [102] Goodwin G.C., Sin K.S.. Adaptive filtering prediction and control, EnglewoodClifs: Prentice-Hall1984.
    [103] Lin F.J., Hwang J.C., Tan K.H., Lu Z.H., Chang Y.R.. Control of doubly-fed in-duction generator system using PIDNNs [C]. The9th International Conference onMachine Learning and Applications, Washington D.C., USA,2010:675-680.
    [104] Gritti T., Monaci G.. Automatic light scene setting through image-based sparselight efect approximation [J], IEEE Transactions on Multimedia,2012,14(4):1351-1358.
    [105] Wen Y.J., Agogino A.M.. Personalized dynamic design of networked lighting forenergy-efciency in open-plan ofces [J], Energy and Buildings,43(8):1919-1924.
    [106] Aldrich M., Zhao N., Paradiso J.. Energy efcient control of polychromatic solidstate lighting using a sensor network [C], Proceedings of the10th International Con-ference on Solid State Lighting, San Diego, USA,2010:1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700