用户名: 密码: 验证码:
基于知识的数控轧辊磨床智能控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轧辊是轧机上承受轧制力并把轧制材料均匀减薄的消耗性工具。板形质量很大程度上取决于轧辊表面质量。在板形轧制过程中,轧辊会产生磨损,轧辊磨损直接影响轧辊辊形及其表面精度,从而影响板材的质量。为了获得理想的板形质量,必须对轧辊进行磨削,以恢复轧辊辊形和表面精度。轧辊磨削是一种具有特殊工艺要求的磨削技术,磨损的轧辊必须通过轧辊磨床来进行磨削。轧辊磨床属于大型精密加工机床,是金属板、带、箔材加工企业的关键设备,对保证和提高产品表面质量起着重要的作用。
     近年来,由于冶金、造纸、橡胶、塑料以及印染业等工业经济的迅速发展,轧辊磨削直径已达到3000mm,工件重量达200吨,其几何精度均为μm级。同时重载荷轧辊磨床的出现,对轧辊磨削的技术要求也日趋提高。随着数控(NC)技术的不断发展,轧辊磨床也在由普通轧辊磨床向数控轧辊磨床方向发展。NC技术是现代数控轧辊磨床的核心技术,是轧辊磨床实现自动化、柔性化、集成化的基础。NC技术正在把传统制造业推进到了信息化制造时代,系统结构也从封闭转向开放。开放性是现代控制系统的一个重要特征,利用开放性可以更大程度上利用计算机技术丰富的软硬件资源,融合精确在线传感系统和测量系统。利用智能技术从实践经验中获取知识,为轧辊磨削工艺提供规划策略,实现轧辊的智能磨削。
     智能是将是现代数控轧辊磨床的一个主要特征。由于轧辊磨削是一种影响因素非常复杂的加工过程,磨削质量的优劣很大程度上与磨削专家知识和长期积累的磨削实践经验有关。同时由于板材轧制过程非常复杂而严格,为保证钢板质量,需要对轧辊辊形及其磨削精度进行严格的控制,这就需要用到轧辊磨削及轧制工艺知识。知识是揭示事物规律性的信息组合,包含了信息与决策的关系,可直接或间接用于问题的求解。随着知识经济的发展,信息集成处理正在向基于知识处理转变,知识工程(KBE)在磨削应用领域的研究将是一个主要的方向。KBE系统通过一系列知识处理方法来获取领域专家的知识和经验,并运用合适的知识建模方法与语言,将知识计算机化。然后,采用合适的知识处理策略,根据特定的产品模型进行智能推理和演绎,作出决策。利用基于知识的方法不需要精确的数学模型的优点,同时结合基于模型的方法对轧辊磨削进行智能决策与控制。
     随着NC技术向经济实用性工艺方向发展,融合制造工艺的专用系统在特殊的制造领域中更能适应特殊产品的高效和高品质制造。通用NC系统与零件加工工艺无关,是适合各种通用零部件制造的控制系统。而对于轧辊智能磨削系统,由于轧辊磨削影响因素多,受轧辊磨削实践知识和领域专家知识的影响,有着特殊的轧辊工艺知识及板轧知识,因此在这个特殊的领域,按照常规思维是行不通的,通用NC系统在轧辊磨削领域中难以发挥更有效的作用。因此控制系统融合轧辊磨削工艺是本文智能磨削控制系统的最重要特征。
     智能NC标准是现代智能控制系统必须采用的标准。由于传统ISO6983NC标准存在程序移植性差、CAD/CAM/CNC数据流单向、CAD数据必须经过专门的后处理器、不支持样条数据等局限性,因此国际标准组织制定了新的智能STEP-NC标准。利用STEP-NC在CAX./CNC之间双向信息流等方面的诸多优点,显著提高了信息的可交换性和柔性。由于轧辊辊形特征参数化明显,因此本文利用了STEP-NC思想,对轧辊CAX/CNC进行了有效的实现。
     虽然NC技术在通用NC控制系统中已经发展了很多年,但在轧辊磨削领域中,由于磨削过程的非线性、随机性和不确定性等原因,其发展还不尽人意。目前国内外现有的数控轧辊磨削在轧辊辊形生成、轧辊辊形模型描述、轧辊辊形插补策略、砂轮磨损补偿、砂轮修整方法、变速磨削、磨削参数优化决策、轧辊辊形及磨削工艺数据历史追随性、故障智能诊断等方面还存在许多问题。目前在磨削加工中,许多方面仍依赖于操作者的经验和技术熟练程度,对加工过程的实际调整是靠操作者试凑。磨削的现状已成为制约某些先进制造技术发展的关键。
     智能磨削控制系统一般采用知识基系统KBS、专家系统ES、模糊逻辑FL、神经网络NN、遗传算法GA、自适应优化AC0以及基于模型的智能系统等方法中的一种或几种。这些方法在磨削中的应用,多数集中在螺纹磨床、机器IC磨床、表面磨床、外圆磨床、内圆磨床、缓进给磨床,在轧辊磨削系统中的应用,目前还没有相关文献详细报道。
     针对目前轧辊磨削中存在的问题和现状,结合上海市科委支持的重大产学研攻关项目—面向钢铁汽车行业的高档数控磨床关键技术及装备开发(项目号05dz11c04),本文对轧辊磨削进行了深入的理论和实践研究,对轧辊磨削机理、轧辊磨削影响因素、砂轮磨损机理、砂轮修整机理进行了深入研究,建立了轧辊磨削的动态模型、轧辊和砂轮的接触弧长、轧辊磨削力、磨削功率、砂轮磨损补偿的数学模型,建立了基于知识的融合轧辊工艺的轧辊磨削智能控制系统的结构,提出了基于知识的多目标磨削参数优化决策方法,基于多通道技术的砂轮智能在线磨削修整方法,基于STEP-NC思想的轧辊辊形智能创成及其样条插补策略以及变速磨削自适应控制策略,并把知识工程(KBE)、专家系统、遗传算法、模糊逻辑、神经网络等智能理论与方法引入到轧辊磨削加工控制中,初步实现对轧辊磨削加工中轧辊磨削质量的控制。
     课题的研究为提高现代板材质量,提高轧辊磨削质量和精度,提升轧辊磨削智能磨削过程奠定了理论基础和知识支撑,对现有的国内外轧辊磨削提供了新的思维,将会产生重要的指导意义,创造可观的经济效益和社会效益。
Rolling is a process where the metal is compressed between two rotating rolls for reducing its cross-section area. The rolls are expensive and consumptive tools. They are used to endure rolling force and make rolling material thin in roll grinding. There are some requirements for roll such as sufficient intensity, higher surface hardness, accurate structure and size, and roll shape and its grinding accuracy which can meet the product quality and proper rolling process.Roll grinding is a kind of special grinding technique which requires some special process technology. During the rolling process of profile and shape of plate, roll begins to wear. Worn roll must be ground in roll grinder. Roll grinder is a large type precision machine tool, and it is a key device in manufacturing metal plate, strip, foil material enterprise. Hence it is very important to ensure and improve product quality.
     In recent years, with the rapid development of metallurgy, paper making, rubber, plastic, printing and dyeing industries economy, roll diameter is up to 3000mm, roll weight is also close to 300 tons and its geometric accuracy isμm degree. Meantime, with the coming of heavy load roll grinder, the requirement of roll grinding technique is more and more high. With the lasting development of NC, traditional roll grinder is introducing in the direction of NC roll grinder. NC technology is not only kernel technology of modern NC roll grinder, but also the base of automation, flexibility and integration of it. Under the action of NC technology, traditional manufacturing industries are being converted to information manufacturing stage, system architecture is also converting from closeness to openness. Openness is an important characteristic of modern control system. This will make plentiful software and hardware resource of computer technology to be employed in a greater degree, simultaneously make precision on-line sensor and measurement system to be integrated. Intelligence technology can help the system to acquire knowledge from practical experiences, provide process planning strategy for roll grinding, and ultimately realize the intelligent roll grinding.
     Intelligence will be a main characteristic of modern NC roll grinder. Because roll grinding is very complex machining process with too many influence factors, the final quality and performance of grinding is deeply correlated with specialist knowledge, previous grinding practical experiences. Because there is strict quality requirement in complex rolling process of plate, roll profile and its grinding accuracy must be strictly controlled, this requires knowledge of roll grinding and rolling process. Knowledge is used to reveal information combination on regularity of thing. It contains relation between information and decision, and is used to directly or indirectly solve problem. With the development of knowledge economy, information integration is converted to knowledge based processing method. Research on knowledge based engineering (KBE) in the field of grinding will be a main trend. KBE system obtains knowledge and practical experiences of field specialist by means of a series of processing methods on knowledge, selects reasonable modeling method and language of knowledge, computer knowledge, and selects adequate knowledge strategy to make intellectual reasoning, deduction and decision according to given production model. The control system can make intellectual decision and control for roll grinding by combination of knowledge based method and mathematics model based method.
     Because NC technology is developing towards to practicality technology, special system integrated with manufacturing technology is more applicable to high efficient and quality machining of special product. General NC system can not include machining technology of part. It is a control system which suits various general parts. Due to many influence factors such as specialist knowledge, roll technology knowledge and. plate rolling knowledge etc, traditional ideals using general NC system is not effective in this special manufacturing field. Hence roll grinding technology integrated into control system is most important characteristic of intelligent NC roll grinding system in this dissertation.
     Modern intelligent control system should adopt intelligent NC standard. Due to traditional ISO6983 NC standard has many disadvantages such as bad flexibility, one-way data flow from CAD/CAM/CNC, postprocess, no spline data etc, new intelligent STEP-NC standard is built by ISO. STEP-NC has many advantages such as bi-directional data flow between CAX and CNC etc, and it can improve interchangeablity and flexibility of information. Because of obvious parameterized characteristic of roll shape, STEP-NC ideal is adapted to efficiently realize CAX/CNC of roll in this dissertation.
     Though NC technology has developed in general NC control system for many years, it indicated slow development in roll grinding field. Because of nonlinearity, randomicity, uncertainty in grinding process, there are many insufficiency facts in roll grinder. At the present time, many problems about existing NC roll grinder at home and abroad need to be solved, such as creation of roll shape, expression of roll shape model, interpolation strategy of roll shape, compensation for grinding wheel wear, wheel dressing method, grinding of alternating speed, optimization of grinding parameters, historical data traceability of roll shape and grinding process data, intelligent fault diagnosis. At present, adjusting the grinding process strongly relies on the operator's experience and skill. The grinding is one of the key technologies that constraints some elements of advanced technology development.
     Intelligent system used in the field of abrasive processes usually draw on one or more of the following approaches such as KBS, ES, FL, NN, GA, ACO and model based method etc. The most common operation researched is external and internal cylindrical grinder, robotic IC grinder, screw grinder, surface grinder and creep grinder. At present, related literatures on roll grinding system are seldom reported.
     The paper is supported by the production, teaching, and scientific research project of Science and Technology Commission of Shanghai Municipality (05dz11c04). In this paper, aiming at the problems existing in the roll grinding, the theoretical and experimental study were conducted for roll grinding, principle of roll grinding, influence elements of roll grinding, principle of grinding wheel wear, principle of wheel dressing. Some mathematical model were built such as the dynamic model of roll grinding, contact length between grinding wheel and roll, grinding force, grinding power, compensation for grinding wheel wear. Architecture on NC roll grinding intelligent control system integrated with roll grinding process based on knowledge was built. Some key techniques and strategies were also studied, such as multi-objective optimization and decision of grinding parameters based on knowledge, on-line intelligent grinding wheel dressing method based on dual channels, intelligent roll shape based on STE-NC ideal and its spline interpolation strategy, adaptive optimization control for grinding of alternating speed etc In this paper, in order to obtain better quality of roll grinding, intelligent theory and methods such as KBE, ES, GA, FL, NN etc were introduced into roll grinding control system.
     This study is of great theoretical and practical value to improve quality and accuracy of roll grinding. Research result also provided new ideal for roll grinding in home and abroad, this will be helpful for producing the remarkably socioeconomic benefit.
引文
[1]David L.Goetch.Advanced Manufacturing Technology[M].Delmar publishers Inc.,1990,2-46
    [2]孙林岩,汪建.先进制造模式的概念/特征及分类集成[J].西安交通大学学报(社会科学版),2001,21(2):27-32
    [3]Shuzi Yang,"Trend in the development of advanced manufacturing technology",Chinese Journal of Mechanical Engineering,Vol 5,No.1,pp73-77,Dec.2003
    [4]王永章.数控技术.北京:高等教育出版社,2001
    [5]周德俭.数控技术.重庆:重庆大学出版社,2001
    [6]周济,周艳红.数控加工技术[M].北京:国防工业出版社,2002,1-148
    [7]韩江.现代数控技术及其应用[M].安徽:合肥工业大学出版社,2005,8
    [8]游有鹏.开放式数控系统关键技术研究:[博士学位论文].南京:南京航空航天大学,2001
    [9]蒋薏,李莉,周希国.基于面向对象的开放式全软件数控系统的实现[J].现代制造工程,2005(1):28-30
    [10]许友谊,李金伴.数控机床编程技术.北京:化学工业出版社,2005
    [11]王爱玲,张吉唐,吴雁.现代数控原理及控制系统[M].北京:国防工业出版社,2002
    [12]袁荣娟.CAD/CAM实验室数控网络化[J].现代制造工程,2003(5):93-94
    [13]李斌,李培根.数控技术和装备发展趋势及对策[EB/OL].http://www.icad.com /html/2004-4-20
    [14]胡兴军,屈平.我国数控机床发展综述[J].精密制造与自动化,2004(2):4-6
    [15]OMAC:http://www.arcweb.com/omac/.
    [16]Wolfgang Sperling,Perter Lutz.Designing Applications for an OSACA Control[C].Proceedings of the International Mechanical Engineering Congress and Exposition,(The ASME Winter Annual Meeting) Dalles/USA,1997,11,pp.16-21
    [17]Open System Architecture for Controls within Automation Systems,EP6379&EP9115OSACA Ⅰ& Ⅱ Final Report.
    [18]OSEC Document Draft.Version 2.0,1996,http://www.sml.co.jp/osec/draf12.0
    [19]李霞,王永章,郑佳昕.开放式软数控系统的关键技术研究与实现[J].组合机床与自动化加工技术,2003,12:6-8
    [20]张明亮,解旭辉,李圣怡.开放式数控体系结构的初步研究[J].中国机械工程,2001,12(11):1242-1245
    [21]唐建新.开放式智能化、网络化的数控技术[J].长春理工大学学报(综合版),2005,(02)
    [22]张英杰,韩庆瑶,贾桂红.现代数控系统的特点和发展趋势[J].中国制造业信息化,2004,(09)
    [23]刘鹏玉,石广田.基于ISO6983与ISO14649标准的数控系统对比研究.机械工程与自动化,2005,4
    [24]Peng Haitao,Chen Weidong,Lei Yi.A New Data Input Standard for CNC Systems-STEP-NC.Aeronautical Manufacturing Technology,2004,58(3),4
    [25]李伟光,张金,张秀娟等.基于STEP.NC的数控技术[J].机床与液压,2005(2):17-20
    [26]International Standards Organization.Overview and fundamental principles[S].ISO 14649.Geneva:ISO,2001
    [27]ISO 10303-238:2004,Industrial automation systems and integration — Product data and exchange — Part 238:Application protocol:Application interpreted model for computerized numerical controllers.
    [28]孙军,李丽,王军.XML在基于STEP-NC网络化制造中的应用,东北大学学报(自然科学版),2007,5
    [29]X.W.Xu,Q.He,Striving for a total integration of CAD,CAPP,CAM and CNC.Robotics and Computer Integrated Manufacturing,2004(20):101-109
    [30]Shi Xiaojuan,Wang Xiaochun.The modeling Analysis of the Intelligent Numerical Control System,CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT,2003,24(6)
    [31]SUH S H,CHEON S U.A framework for an intelligent CNC and data model.International Journal of Advanced Manufacturing Technology,2002,19:727-735.
    [32]X.W.Xu,S.T.Newman.Making CNC machine tools more open interoperable and intelligent-a review of the technologies.Computers in Industry.57(2006) 141-15.
    [33]Liu Ri-liang,Zhang Cheng-rui,Zhang Yuan-cai,et al.Techniques for interfacing CNCs with STEP-NC.Computer Integrated Manufacturing Systems,2004,10(6):642-645.
    [34]S.T.Newman,Integrated CAD/CAM/CNC manufacture for the 21st century,in:Keynote Speech.The 14th International Conference on Flexible Automation and Intelligent Manufacturing(FAIM2004),12-14 July 2004,Ryerson University,Toronto,Canada,2004.
    [35]X.W.Xu,J.Mao.A STEP-compliant collaborative product development system.Proceedings of the 33rd International Conference on Computers and Industrial Engineering,Korea,25-27 March 2004,CIE598
    [36]翟志和,许杰华.高精度轧辊的磨削及精度检测[J].有色设备,2003,2
    [37]杨祖孝.Crl2MoV精密轧辊加工工艺[J].机械制造,2000,4
    [38]肖德朗.当代国外轧辊磨床的概况[J].精密制造与自动化,1991,3
    [39]钱梅.数控轧辊磨床几种测量装置结构介绍.精密制造与自动化,2006,2
    [40]张其生,胡贤磊,李建平.轧辊凸度变化对中厚板辊缝设定的影响[J].钢铁研究学报,2007,3
    [41]Johan V R,Hedwig V,Rainer M.Accurate profile and flatness control on a modernized hot strip mill.Iron and Steel Engineer.1996,73(2):29-33
    [42]唐水源,卢继平.轧辊磨床的数控化改造.计算机辅助设计与制造,2000(5):81-82
    [43]胡学雄.HERKULES轧辊磨床机械性能失效分析和维修.中国设备工程,2005,1
    [44]张新利,王苏明.KWA1000轧辊磨床数控化改造[J].新疆钢铁,2006,1
    [45]曹世端.WS450-50H×6000CNC型轧辊磨床的故障诊断[J].中国设备工程,1998,12
    [46]陈渊.基于PMAC的开放式轧辊磨床数控系统研究与开发:[学位论文].西安:西安科技大学,2004
    [47]肖德朗.当代轧辊磨削技术的现状与展望.磨削与机床,1999,1
    [48]王涛,李剑,高航.磨削技术的现状与发展趋势.机械设计与制造,2003,4
    [49]周志雄,邓朝晖,陈根余等.磨削技术的发展及关键技术.中国机械工程,2000,11
    [50]周胜,蔡光起.热轧在线磨辊机的结构设计与抗振性研究[J].制造技术与机床,2006,10
    [51]Ehlers,J.Application of computer controls and display to roll grinders.Pulp and Paper Industry Technical Conference,1991.,Conference Record of 1991 Annual 3-7 June 1991 Page(s):43-49
    [52]李伯民,赵波.实用磨削技术.北京:机械工业出版社,1996
    [53]卜基桥.极端制造技术[J].现代制造,2006,(34)
    [54]李伟光,李勇,黄文波等.制造信息化的分析与研究.制造业自动化,2005,1
    [55]Tao Cheng,Jie Zhang,Chunhua Hu,et al.Intelligent Machine Tools in a Distributed Network Manufacturing Mode Environment.International Journal of Advanced Manufacturing Technology,2001,17:221-232.
    [56]John V Farr.Dennis M Buede,"System engineering and engineering management:Keys to the efficient development of products and services." Engineering Management Journal,Vol 15,No.3,pp.3,sep.2003
    [57]XIN-CHENG TIAN,BO PENG,QING XU,SELF-LEARNING ERROR COMPENSATION IN CNC GRINDING,Proceedings of the First International Conference on Machine Learning and Cybernetics,Beijing,November 4-5,2002,1044
    [58]Lu,S.C-Y.,Komanduri,R.(eds),Knowledge-Based Expert Systems for Manufacturing.The American Society of Mechanical Engineers,New York,1986
    [59]DURMUS KARAYEL,S.SERDAR OZKAN,RUSTEM KELES.General framework for distributed knowledge management in mechatronic system.Journal of intelligent Manufacturing,15,511-515,2004
    [60]J.-L.Hou.,M.-T.Sun,H.-C.Chuo.An Intelligent Knowledge Management Model for Construction and Reuse of Automobile Manufacturing Intellectual Properties.Advanced Manufacturing Technology,2004,3
    [1]李伯民,赵波主编.现代磨削技术.机械工业出版社,2003,6
    [2]Malkin,S.磨削技术理论与应用[M].蔡光起等译.沈阳:东北大学出版社,2002
    [3]任敬心,华定安.磨削原理[M].西安:西北工业大学出版社,1988
    [4]Yin-Tien Wang,Yann-Jyi Jail.Grinding force models in finishing processes.Advanced Intelligent Mechatronics Proceedings 2001 IEEE/ASME International Conference on Vol.2,2001:822-827
    [5]张阳,陈健,王桂阳等.一种新的外圆磨削方法.磨床与磨削,2000,3
    [6]王颖淑,丁宁.外圆纵向磨削加工磨削力模型[J].长春大学学报,2005,6
    [7]贺长生,石玉祥,丁宁.外圆纵向磨削力的研究[J].煤矿机械,2006,2
    [8]James J.Govindhasamy,Sean F.McLoone,George W.Irwin.Neural modeling,control and optimization of an industrial grinding process.Control Engineering Practice,2005,13:1243-1258
    [9]黄伟,耿富荣,王衍学.磨削:匀和磨削表面粗糙度预测的新方法[J].航空制造技术,2005,2
    [10]陈章燕.平面、外圆磨削力计算公式的研究和应用.磨床与磨削,1992,4:27-31
    [11]E.BRINKSMEIER,H.K.TOE NSHOFF,C.CZENKUSCH,et al.Modeling and optimization of grinding processes.Journal of Intelligent Manufacturing(1998)9,303-314
    [12]Tonshoff H,Peters J,Inasaki I,Paul T(1992) Modeling and simulation of grinding processes.Ann CIRP 42(2):677-688
    [13]Chen X,Rowe W.Analysis and simulations of the grinding process part Ⅱ:mechanics of grinding.Int J Mach Tools Manuf,1996,36(8):883-896
    [14]9.Zhou X,Xi F(2002) Modeling and predicting surface roughness of the grinding process.Int J Mach Tools Manuf,42:969-977
    [15]Inasaki I.Grinding process simulation based on the wheel topography measurement.Ann CIRP,1996,45(1):347-350
    [16]Badger J,Torrance A.A comparison of two models to predict the grinding force from wheel surface topography.Int J Mach Tools Manuf,2000,40:1099-1120
    [17]Younis MA,Alawi H.Probabiilistic analysis of the surface grinding process.Trans CSME,1990,8(4):208-213
    [18]Rowe W,Morgan M,Qi H,et al.The effect of deformation on the contact area in grinding.Ann CIRP,1993,42(1):409-412
    [19]Hecker RL,Ramoneda I,Liang SY.Static and dynamic wheel microstructure characterization.Trans North Am Manuf Res Inst Soc Manuf Eng,2003
    [20]Konig W,Steffens K,Ludewig T.Single grit test to reveal the fundamental mechanism in grinding.Milton Shaw grinding symposium,Miami Beach,Florida,1998,pp.141-154
    [21]Subhash G,Koeppel B,Chandra A.Dynamic indentation hardness and rate sensitivity in metals.J Eng Mater Technol 1999,121:257-263
    [22]王长琼,刘忠化,华勇.工程结构陶瓷磨削力试验研究[J].金刚石与磨料磨具工程,1997,5
    [23]李嫂,张弘弢.聚晶金刚石磨削力经验公式建立的试验研究[J].机械科学与技术,2003,S1
    [24]温度,曹硕生.陶瓷结合剂CBN砂轮磨削力的研究[J].金刚石与磨料磨具工程,2002,(04)
    [25]Amitay,G.,Malkin,S.,Koren,Y.Adaptive Control Optimization of Grinding.ASME J.Eng,1981,103:103-108
    [26]Chen,Y.T.,Shin,Y.C.A Surface Grinding Process Advisory System with Fuzzy Logic.Control of Manufacturing Processes,1991,DSC Vol.28/PED Vol.52,ASME,pp.67-77
    [27]Midha,P.S.,Zhu,C.B.,Trmal,G.J.Optimum Selection of Grinding Parameters Using Process Modeling and Knowledge Based System Approach.J.Mater.Process.1991,28:189-198
    [28]刘飞,徐宗俊.机床加工状态的功率监控技术[J].制造技术与机床,1986,2
    [29]Karpuschewski B,Wehmeier M,Inasaki I.Grinding monitoring system based on power and acoustic emission sensors.Annals of the CIRP.2000,49(1):235-240
    [30]刘贵杰,巩亚东,王宛山.基于神经网络的磨削砂轮状态的在线监测.东北大学学报(自然科学版,2002,10
    [31]I.Inasaki.Sensor Fusion for Monitoring and Controlling Grinding Processes.The International Journal of Advanced Manufacturing Technology,Volume 15,Number 10/September,1999
    [32]Zanchetta,P.,Sumner,M.,Clare,J.C,et al.Control of matrix converters for AC power supplies using genetic algorithms.Industrial Electronics,2004 IEEE International Symposium on Volume 2,4-7 May 2004 Page(s):1429-1433
    [33]Wen,X.M.,Tay,A.A.O.,Nee,A.Y.C.Micro-Computer-Based Optimization of the Surface Grinding Process.J.Mater.Process.Technol,1992,29:75-90
    [34]吴彤峰,向宇.磨削加工的动力学模型与误差修复[J].金刚石与磨料磨具工程,1999,4
    [35]V.A.Nosenko,V.K.Zhukov.On the kinematics of creep feed grinding.Journal of Machinery Manufacture and Reliability,Vol.36,Number 1 / January,2007
    [36]王龙山,李国发.磨削过程模型的建立及其计算机仿真[J].中国机械工程,2002,1
    [37]D.W.Wu,C.R.Li.An analytical model of cutting dynamics.Transactions of the American Society of Mechanical Engineers,Journal of Engineering for Industry,1985,107:107-118
    [38]C.-C.Hwang,R.-F.Fung,J.-S.Lin.Strong non-linear dynamics of cutting processes.Journal of Sound and Vibration,1997,203(3):363-372
    [39]J.S.Lin,C.I.Weng.A non-linear dynamic model of cutting.International Journal of Machine Tools and Manufacture,1990,30:53-64
    [40]J.S.Lin,C.I.Weng,Non-linear dynamics of cutting process.International Journal of Mechanical Sciences 1991,23:645-657
    [41]V.A.Kudinov,V.M.Grishin.The dynamic characteristics of the grinding process.Machine Tools and Instruments 1999,1:7-9
    [42]V.I.Ostrovsky.The Theory of the Grinding Process.Leningrad State University,Leningrad,1981
    [43]J.Tlusty.Analysis of the state of research in cutting dynamics.CIRP Annals,1998,27:583-589
    [44]B.S.Berger,I.Minis,J.Harley,et al.Non-stationary cutting.Journal of Sound and Vibration 1998,217(1):183-190
    [45]B.S.Berger,I.Minis,K.Deng,et al.Phase coupling in orthogonal cutting.Journal of Sound and Vibration,1996,191(5):976-985
    [46]B.S.Berger,I.Minis,J.Harley,et al.Wavelet based cutting state identification.Journal of Sound and Vibration,1998,213(5):813-827
    [47]B.S.Berger,I.Minis,M.Rokni.M.et al.Cutting state identification.Journal of Sound and Vibration,1997,200(1):15-29
    [48]冷建华.傅立叶变换.北京:清华大学出版社,2004,6
    [1]Li Bin,Zhou Yun-fei,Tang Xiao-qi.A research on open CNC system based on architecture/component software reuse technology.Computers in Industry,55(2004):73-85
    [2]Y.Liu,L.Zuo,T.Cheng,et al.Development of an Open Parallel Intelligent CNC Milling System.Int J Adv Manuf Technol(2000) 16:537-541
    [3]Jianhua Li.Development of a 5-axis CNC milling machine with an open-architecture controller and a real-time NURBS surface interpolator:[Doctoral Dissertation].U.S.A:The University of Kansas,2000
    [4]Richard W.Teltz.Open architecture control for intelligent machining systems:[Doctoral Dissertation].Canada:McMaster University,1998
    [5]王崇涛.森吉米尔轧机板形控制的研究:[硕士学位论文].武汉:武汉科技大学,2003
    [6]王柱.板形智能控制策略的研究:[硕士学位论文].沈阳:东北大学,2005
    [7]王珉,葛培琪,张磊.人工神经网络技术在磨削加工中的应用.工具技术,2004,1
    [8]顾伟军,彭亦功.智能控制技术及其应用.自动化仪表,Vol.27(SI),2006,5
    [9]W.Brian Rowe,Yinnan Chen,J.L.Moruzzi,et al.A generic intelligent control system for grinding.Computer Integrated Manufacturing System,Vol.10,No.3.p.231-241,1997
    [10]程涛,吴波,杨叔子等.支持分布式网络化制造的智能数控系统的研究.中国机械工程,2004,11:688-692
    [11]Monostori L.(2000) Intelligent Machines,Proc.of 2nd Conf.on Mechanical Engineering,Budapest,Hungary,May.25-26,pp.24-36
    [12]Nacsa J,G.Haidegger(1997) Built-in Intelligent Control Applications of Open CNCs,Proc.of the 2nd World Congress on Intelligent Manufacturing Processes and Systems,Springer,Budapest,Hungary,June 10-13.,pp.388-392
    [13]Teti R,S.Kumara(1997) Intelligent Computing Methods for Manufacturing Systems,Annals of CIRP,Vol 46/2,pp.629-652
    [14]Basden A:The Istar Knowledge Server,(2000)http://www.basden.u-net.com/pgm/Istar/index.html
    [15]史晓娟,王小椿.智能化数控系统的建模分析.仪器仪表学报,2003,12(6):640-642
    [16]ISO6983-1 Numeric control of machines-Program format and definition of address words-Part 1:Data format for positioning.line motion and contouring control system,1982
    [17]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 203:Application Protocols:Configuration:Configuration-controlled design[S].2004
    [18]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 219:Application Protocols::Dimensional inspection information exchange[S].2005
    [19]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 238:Application Protocols::Application interpreted model for computerized numerical controllers,ISO TC184/SC4/WG3 N1534[S].2004
    [20]International Standards Organization.ISO14649:Industrial automation systems and integration-Physical device control-Data model for computerized Numerical Controllers: Part 1 Overview and fundamental principles[S].2003
    [21]International Standards Organization.ISO14649:Industrial automation systems and integration-Physical device control-Data model for computerized Numerical Controllers:Part 10 General Process Data[S].2003
    [22]International Standards Organization.ISO14649:Industrial automation systems and integration-Physical device control-Data model for computerized Numerical Controllers:Part 11 Process Data for Milling[S].2003
    [23]International Standards Organization.ISO/DIS 14649:Data model for computerized Numerical Controllers:Part 12- Process Data for Turning[S].2003
    [24]International Standards Organization.ISO/DIS 14649:Data model for computerized Numerical Controllers:Part 121- Tools for Turning[S].2003
    [25]International Standards Organization.ISO10303..Industrial automation systems and integration-Product data representation and exchange-Part 21:Implementaion methods:Clear text encoding of the exchange structure[S].1994
    [26]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 11:EXPRESS Language Manual[S].1994
    [27]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 240:Application Protocols::Process Plans for Machined Products[S].2004
    [28]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 224:Application Protocols::Mechanical product definition for process planning using machining features IS].1999
    [29]International Standards Organization.ISO10303-22:Product data representation and exchange:Implementaion methods:Standard data access interface[S].1998
    [30]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 41:Integrated generic resource:Fundamentals of product description and support[S].2004
    [31]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 42:Integrated generic resource:Geometric and topological representation[S].2003
    [32]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 43:Integrated generic resource:Representation structures[S].2003
    [33]雷为民,乔建中,李本忍.智能数控实现技术分析.小型微型计算机系统,1998,20(8):593-599
    [34]樊留群,姜迪刚等.智能化数控系统智能表示及实现方法的研究.中国机械工程,2000,11(4):411-413
    [35]姚鑫骅.数控实时系统调度理论及应用研究:[博士学位论文].杭州:浙江大学,2006
    [36]International Standards Organization.ISO10303:Industrial automation systems and integration-Product data representation and exchange-Part 213:Application Protocols::Numerical Control Process Plans for Machined Parts[S].1997
    [37]王国勋,王军,孙军.EXPRESS描述到C++模式映射的研究.机械工艺师 [J]. 2004(7):22-24
    [38]International Standards Organization. ISO 10303-23: Product data representation and exchange: Implementaion methods: C++ language binding to the standard data access interface[S]. 2000
    [39]L Zhang, J Deng, SCF Chan. A Next Generation NC Machining System Based on NC Feature Unit and Real-Time Tool-Path Generation. The International Journal of Advanced Manufacturing Technology[J].2000,16(12):889-902
    [1]李先胜.轧辊凸度磨削原理分析.铝加工,2004,154(1)
    [2]曹新宝.辊形曲线及其实际应用.江苏冶金,1997,5:28-29
    [3]黄庆学.轧钢生产适用技术.北京:冶金工业出版社,2004,9
    [4]V.B.金兹伯格著.高精度板带材轧制理论与实践.北京:冶金工业出版社,2000,9
    [5]徐鹤贤.浅淡冷轧带钢辊型设计及其控制.特钢技术,2002,2
    [6]Huagao Fu,Changsheng Li,Xianghua Liu,et al.Research on a Mathematic Model of Roll Wear in Cold Strip Rollig.Research on Iron & Steel,2003,133(4):26-28
    [7]魏云华.铝板带箔轧机的辊型曲线及辊型配置和磨削.轻合金加工技术,2002,12
    [8]Cheng Lu,A.K.Tieu,Zhengyi Jiang.A Design of a Third-order CVC Roll Profile.Materials Processing Technology,2002,125-126:645-648
    [9]Xiukun Ding.Automation of Rolling Process.Beijing:Metallurgy industry publishing company,2005
    [10]孙一康编著.带钢冷连轧计算机控制.北京:冶金工业出版社,2002
    [11]Li Lixin.Computer Aided Design of the Roll Shape Curve.Metal Forming Technology,2001,19(4):33-35
    [12]X.M.Zhang,Z.Y.Jiang,A.K.Tieu,et al.Numerical Modeling of the Thermal Deformation of CVC Roll in Hot Strip Rolling.Materials Processing Technology,2002,130-131:219-223
    [13]Z.L.Jiang,G.D.Wang,Q.Zhang.Shifting-roll Profile and Control Characteristics.J.Mater.Process.Technol,1993,37(1):53-60
    [14]郭京林,王治国.CVC技术在现代冷轧机中的控制策略和手段.轻合金加工技术,2003,12
    [15]ISO 14649-10:2002 Data model for Computerized Numerical Controllers-Part 10-General Process Data:Industrial automation systems and integration physical device control
    [16]ISO 14649-11:2002 Data model for Computerized Numerical Controllers-Part 11-PROCESS DATA FOR MILLING-Industrial automation systems and integration physical device control
    [17]桂贵生,杜世昌.新型数控编程数据接口—STEP-NC.组合机床与自动化加工技术,2003,3:26-29
    [18]刘日良,张承瑞,王恒.基于STEP.NC的数控编程概要.机电一体化,2002,5:19~22
    [19]祝海涛,薛开.基于STEP-NC数控系统的研究.应用科技,2003,1:1-3
    [20]轩传涛,张家泰,祝海涛.基于STEP-NC标准的CAD/CAM集成接口的研究.应用科技,2003,3:6-8
    [21]韩继曼.CAPP专家系统智能推理机制研究与开发.机械工程师,2002,4:11-12
    [22]杜茂华.网络环境下CAPP工艺知识库的建立及其管理.机床与液压,2003,2:263-264
    [23]丁刚,王荣剑,陈福安.CADTSB系统的知识库构造和维护技术.计算机工程,1996,22(4):47-51
    [24]肖人彬,周济,查建中.面向智能设计的知识描述形式.计算机辅助设计与制造,1997,11:37-39
    [25]Peng Yinghong,Zhao Zhen,Ruan Xueyu.KBE Technology in Engineering Design.Proceedings of International Conference on Engineering and Technological Sciences,2000
    [26]Gupta,Yash P.Various Aspects of Expert Systems:Applications in Manufacturing.Technovation,1990,10(7):487-504
    [27]蒋红云.知识管理在CAPP中的应用.管理,2004,8:99-100
    [28]倪益华.基于本体的制造企业知识集成技术研究:[博士学位论文].浙江:浙江大学2005,10
    [29]Mockler,Robert J.Dologite,D.G.An Introduction to Expert Systems:Knowledge-Based Systems.Macmillan Publishing Company,New York,1992
    [30]彭颖红,赵震,阮雪榆.模具设计中的KBE技术.模具技术,2000,3:16-8
    [31]潘星,王君,刘鲁.数字化制造企业中知识管理集成框架及关键技术研究.计算机集成制造系统,2004.12(10):91-92
    [32]郑金桥.基于KBE的大型复杂冲压件工艺设计关键技术研究:[博士学位论文].湖北:华中科技大学2006,4
    [33]王栋彦.基于知识的机械常用件参数化CAD系统研究与实现:[硕士学位论文].天津:天津工业大学2005,7
    [34]Schreiber A.Th.,Terpstra P.Sisyphus-VT:a common KADS solution.International Journal of Human-Computer Studies,1996,44(3-4):373-402
    [35]A.Th.Schreiber,B.Weilinga,R.de Hoog,et al.Common KADS:A Comprehensive Methodology for KBS Development.IEEE Expert,1994,9(12):28-37
    [36]J.Angele,D.Fensel,D.Landes,et al.Developing knowledge-based system with MIKE.Journal of Automated Software Engineering,1998,5(4):389-418
    [37]http://www.swi.psy.uva.nl/IBROW3/
    [38]Sun,Ron.Robust reasoning:integrating rule-based and similarity-based reasoning[J].Artificial Intelligence,1995,75(2):241-295
    [39]RIESBECK C K,SCHANKR C.Inside case-based reasoning[M].Hillsdale,New Jersey:Lawrence Erlbaum Associates Inc.,1989
    [40]Puppe Frank.Knowledge reuse among diagnostic problem-solving methods in the Shell-Kit D3.International Journal of Human-Computer Studies,1998,49(4):627-649
    [1]王剑彬,王勤思.磨削加工中磨削参数的模糊优化设计.南华大学学报(自然科学版),2005,19(1)
    [2]Malkin S(1985).Pratical approaches to grinding optimization.Milton C.Shaw Grinding Symposium,ASME Winter Annual Meeting,Florida,USA,PP289-299
    [3]Field M(1978).Optimizing grinding parameters to combine high productivity eith high surface integrity.Ann CIRP 1791:523-536
    [4]Malkin S(1976).Selection of operating parameters in surface Grinding.J Eng Ind,98:56-62
    [5]Malkin S(1974).Thermal aspects of grinding,part 2:surface temperature and work piece burn.J Eng Ind 96:1184-1191
    [6]King RI,Hahn S(1986).Handbook of modern grinding technology.Chapman and Hall,London
    [7]Malkin S(1989).Grinding technology.Harwood,Chichester,UK
    [8]Thompson RA(1971).The dynamic behavior of surface grinding.J Eng Ind 93:485-497
    [9]X.M.Wen,A.A.O.Tay,A.Y.C.Nee.Micro-computer based optimization of the surface grinding process.Journal of Materials Processing Technology,1992,29:75-90
    [10]Wen,X.M.,Tay,A.A.O.,Nee,A.Y.C.Micro-Computer-Based Optimization of the Surface Grinding Process.Journal of Materials Processing Technology,1992,29:75-90
    [11]Xiao,G.,Malkin,S.,Danai,K.Intelligent Control of Cylindrical Plunge Grinding.Proceedings of the ACC,Chicago,IL,1992,Jun.24-26,pp.391-398
    [12]Xiao,G.,Malkin,S.On-Line Optimization for internal Plunge Grinding.Anuals of the CIRP,1996,Vol.45/1,pp.287-292
    [13]Rowe,W.B.,Yan,L.,Inasaki,I.Application of Artificial Intelligence in Grinding.Annals of the CIRP,1994,Vol.43/2,pp.521-531
    [14]Midha,P.S.,Zhu,C.B.,Trmal,G.J.Optimum Selection of Grinding Parameters Using Process Modeling and Knowledge Based System Approach.Joural of Materials Processing Technology,1991,Vol.28,pp.189-198
    [15]Venk,S.,Govind,R.,Merchant,E.An Expert System Approach to Optimization of the Centerless Grinding Process.Annals of the CIRP,1990,Vol.39/1,pp.489-492
    [16]Chen,Y.T.,Shin,Y.C.A Surface Grinding Process Advisory System With Fuzzy Logic.DSC Vol.28/PED Vol.52,Control of Manufacturing Processes,ASME,1991,pp.67-77
    [17]Sakakura,M.,Inasaki,L.Intelligent Data Base for Grinding Operations.Annals of the CIRP,1993,Vol.42/1,pp.378-382
    [18]Liao,T.W.,Chen,L.J.A Neural Network Approach for Grinding Processes:Modeling and Optimization.International Journal of Machine Tools and Manufacture,1994,Vol.34,No.7,pp.919-937
    [19]Sakakura,M.,Inasaki,L.Neural Network Approach to the Decision-Making Process for Grinding Operations,Annals of the CIRP,1992,Vol.41/1,pp.353-356
    [20]Amitay,G,Malkin,S,Korean,Y.Adaptive Control Optimization of Grinding.Transactions of the ASME,Journal of Engineering for Industry,1981,Vol.103,pp.103-108
    [21]Brinksmeier,E.,Pop,C.A Selfturing Adaptive Control System for Grinding Processes.Annals of the CIRP,1991,Vol.40/1,pp.355-358
    [22]Vishnupad,P.S.,Shin,YoC.Intelligent Optimization of Grinding Processes Using Fuzzy Logic.Proceedings of the Instituations of Mechanical Engineers,Part B,Journal of Engineering Manufacture,1998,Vol.212,No.B8,pp.647-660
    [23]王珉,葛培琪,张磊等.人工神经网络技术在磨削加工中的应用.工具技术,2004,38(9)
    [24]卢志刚.非线性自适应逆控制及其应用.北京:国防工业出版社,2004
    [25]A Jonathan Howell,Hilary,Buxton.Learning identity with radial basis function networks[J].Neurocomputing,1998,20:15-134
    [26]王家忠,王龙山,周桂红等.基于模糊基函数网络和自适应最小二乘算法的外圆纵向磨削表面粗糙度的预测.中国机械工程,2006,17(12)
    [27]王耀南著.智能控制系统.湖南:湖南大学出版社,1996,10
    [28]王国胤.Rough集理论与知识获取.西安:西安交通大学出版社,2001,5
    [29]丁宁.外圆纵向智能磨削:[博士学位论文].吉林:东北大学2004,6
    [30]李国友,姚磊,李惠光.基于优化的RBF神经网络模式识别新方法.系统仿真学报,2006.18(1)
    [31]Malkin,S.Grinding Technology:Theory and Application of Machining with Abrasives.SME,Michigan,1989
    [32]王新乐,孙玉山.砂轮磨损机理及修整方法研究.应用科技,2001,28(2)
    [33]Igor Egana,Alberto Mendikute,Xabat Urionaguena,etal.Towards Intelligent Dressing:Principles of an intelligent monitoring system for the grinding machine.IEEE Instrumentation & Measurement Magazine,June,2006,pp.38-42
    [34]Lachance,S.Development of an Automated System to Evaluate the Surface Condition of Grinding Wheels.Master's Thesis,Dalhousie University,hailFax,Nova Soctia,2003
    [35]吴耀.高速CD磨削砂轮修整方法及装置研究:[硕士学位论文].湖南:湖南大学,2003,4
    [36]李伯民,赵波主编.现代磨削技术.北京:机械工业出版社,2003,1
    [37]张建中,左敦稳.超硬磨料砂轮的激光修整新技术.电加工与模具,2001,4:1-4
    [38]王德泉主编.砂轮特性与磨削加工.北京:中国标准出版社,2001,9
    [39]D.A.Dornfeld,Y.Lee,A.Chang.Monitoring of ultraprecision machining processes.International Journal of Advanced Manufacturing Technology,2003,21:571-578
    [40]蔡荣莲,赵怡,陈永法.超声波磨削控制仪在磨床的应用.精密制造与自动化,2005,1:18-20
    [41]J.Tlusty,G.C.Andrews.A critical review of sensors for unmanned machining.CIRP Annals 1983,32(2)
    [42]H.K.Tonshoff,J.P.Wulfberg,H.J.J.Kals.Developments and trends in monitoring and control of machining processes.CIRP Annals,1988,37(2)
    [43]A.T.Abbas.A general algorithm for"profiling and dressing of complicated shape grinding wheels.Robotics and Computer-Integrated Manufacturing,vol.20,pp.313-327,2004
    [44]宋贵亮,巩亚东,蔡光起.砂轮磨损状态的声发射检测及其误差补偿方法的研究.机械,2000,27(4)
    [45]吴晓健,任苗佳,李郝林.数控曲轴磨削加工中砂轮磨损量的检测方法.精密制造与自动化,2006,3
    [46]黄凯锋,许黎明,范浩等.基于振动信号的砂轮磨损状态的在线特征识别.仪器仪表学 报.Vol.26(8),2005,8
    [47]吴祥.应用KL信息距离识别砂轮磨损状态.工具技术,2001,4
    [48]刘贵杰,巩亚东,王宛山.磨削加工对象多变时砂轮状态在线监测方法.现代制造工程,2003,1
    [49]田延岭,张大卫,陈华伟.基于微定位工作台的精密磨削过程动力学建模与误差补偿技术.机械工程学报,Vol.41 No.4,2005,4
    [50]Gao Y,Zhang D W,Yu C W.Dynamic modeling of a novel workpiece table for active surface grinding control.International Journal of Machine Tools &Manufacture,2001,41(4):609-624
    [51]张志慧.往复式双端面磨床夹具动作及砂轮补偿数控系统.轴承,2005,5
    [52]Sh Wang L,Li G F.Modeling and Simulation of Grinding Process[J].Chinese Mechanical Engineering,2002,13:1-4.
    [53]Kim J D,Kim D S.Waviness compensation of precision machining by piezoelectric micro cutting device.International Journal of Machine Tools &Manufacture,1998,38(10,11):1305-1322
    [54]Rao S B,Wu S M.Compensatory control of roundness error in cylindrical chuck grinding.Journal of Engineering for Industry,Trans.of the ASME,1982,104(1):23-28
    [55]田新诚,徐青,彭勃等.磨削加工误差智能补偿系统及输入输出响应.系统仿真学报,2003,11
    [56]王晓慧,李占魁,袁哲俊.圆度圆柱度在线测量及补偿控制实验研究.哈尔滨工业大学学报,Vol.27,No.1,1995,2
    [57]李国松,刘国良,沈德和等.外圆磨削补偿系统模型分析与参数辨识.机械设计与研究,1999,2
    [58]丁宁,王龙山,李国发等.细长轴磨削变形的变速优化智能预测控制研究.中国机械工程,2006,17(1)
    [59]Y.Gao and B.Jones:Control of the Traverse Grinding Process Using Dynamic active Workpiece Steadies.Int.J.Mach.Tools Manufact.Vol.33(1993):pp231-244
    [60]Yongsheng Gao.Experimental Validation of a Dynamic Workpiece Steady Control Method for Traverse Grinding.Transaction of the ASME.Vol.120,May 1998
    [61]何秀寿.闭环控制力磨削试验研究
    [62]于敏健.外圆磨削模糊控制系统研究.南京理工大学硕士学位论文.1993,3
    [63]韩正铜.磨削颤振与磨削表面形貌误差的研究:[博士学位论文].江苏:中国矿业大学出版社,2005,9
    [64]杨康,唐恒龄,廖伯瑜.机床动力学(Ⅱ).北京:机械工业出版社,1983
    [65]傅杰才等.磨削过程中的磨削模型及颤振模型砂轮耐用度标准的研究.第五届全国磨削与表面质量研讨会论文集,1988
    [66]徐燕申,牛文铁,李刚.有限随机进给法抑制磨削颤振的研究[J].金刚石与磨料磨具工程,2003,3
    [67]韩相吉,于骏一,马世骧等.变速磨削系统稳定性研究[J].吉林工业大学自然科学学报,1998,1
    [68]张艳萍,王龙山,邓怀庆.用变速磨削法抑制颤振生长速度的试验研究[J].机械设计与制造,1994,3
    [69]韩相吉,马世骧,姜涛.砂轮变速磨削系统稳定性图解析[J].吉林工学院学报(自然科 学版),1998,2
    [70]郑玉华,于嗳兵,尹铁兵,尚廷才.变速磨削抑振效果的试验研究[J].吉林工业大学自然科学学报,1997,2
    [71]王龙山,于爱兵.变速磨削对外圆磨削力的影响.磨床与磨削,1995,1:58-60
    [72]Tetsutaro H.Suppression of Wheel Regenerative Grinding Vibration by Altemating Wheel Speed.Annuals of the CIRP,1936,35
    [73]韩正铜,张永忠,黄民等.抑制磨削颤振的实用方法—工艺条件适配法[J].现代制造工程,2003,5
    [74]喻英,阮学斌.基于自适应模糊网络的在线辨识.控制工程,Vol.12,No.5,2005,9
    [75]Lin,Shield Bao-Hsin.An Optimal Gain Adaptive Control System For CNC Metal Cutting Machine Tools:[Doctoral Dissertation].Michigan:Texas A&M University,1986
    [76]Dierk Schroder.Intelligent strategies for motion control.Proceedings of the Fourth International Conference on knowledge-based Intelligent Engineering Systems & Allied Technology,UK,2000,9
    [77]W.Kong,Y.Altintas,F.Memis.Direct adaptive control of plunge grinding process using Acoustic Emission(AE) sensor.Int J.Mach.Tools Manufact.Vol.35,No.10.pp.1445-1457,1995
    [78]L.Guo,A.Schone.A comprehensive approach to nonlinear adaptive control and its application to form grinding processes,Proceedings of the 31 st Conference on Decision and Control,Artzona,December 1992
    [79]王伟,李晓理.多模型自适应控制.北京:科学出版社,2001
    [80]Cheol W.Lee.Intelligent modeling and optimization of grinding processes:[Doctoral Dissertation].USA:Purdue University,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700