核电站松动件定位方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家高技术研究发展计划项目“核电站松动件监测系统关键技术研究(863计划,2007AA04Z426)”,就核电站松动件冲击信号的预处理与识别、松动件定位等关键技术开展了研究,提出了“核电站松动件定位方法研究”的博士论文研究课题。
     第1章:阐述了松动件监测系统(Loose Part Monitoring System,LPMS)的研究背景和意义。介绍了国内外松动件监测系统的发展进程、系统结构以及关键技术,综述了国内外松动件定位方法的研究现状,最后给出了本论文的研究背景和总体框架。
     第2章:通过分析核电站背景噪声和松动件冲击信号的性质,提出了一种松动件冲击信号的预处理和识别方法。该方法采用自适应AR模型实现检测信号的白化处理,然后以白化信号的线性预测系数(Linear Predictive Coefficients, LPC)作为信号特征,通过支持向量机(Supporter Vector Machine, SVM)识别所测信号是否包含冲击信号;最后通过仿真实验验证了该方法的有效性。
     第3章:研究了三角形定位方法中时差估算误差和波速测量误差对松动件定位精度的影响规律,提出了一种基于总体平均经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)和希尔伯特变换的松动件定位方法。首先分析了基于EEMD分解的主能量弯曲波提取方法;然后将主能量弯曲波信号的希尔伯特包络线第一个峰值所对应的时刻作为该弯曲波的到达时间,并基于主能量弯曲波信号的频谱计算弯曲波波速;进而根据信号波速和到达时间差实现松动件定位;仿真实验结果表明,该方法能够实现快速准确定位,且具有良好的抗噪声性能。
     第4章:改进了圆交叉定位法,研究了基于信号时频分析的波传播距离估计方法,在此基础上提出了一种基于平滑伪D-Flandrin分布的松动件定位方法。该方法通过分析弯曲波的频散特性,建立了时频平面上弯曲波频率和传播时延的关系;根据该关系和仿射类时频分布的定义可知平滑伪D-Flandrin分布较适合于对弯曲波信号进行时频分析;时频分析后采用非线性最小二乘法求解信号频散模型的参数以估计弯曲波传播距离,最后应用圆交叉定位法实现定位。仿真实验分析证明了该定位方法的有效性。
     第5章:研究了圆柱壳和球壳表面的定位分析方法。针对由于各个方向波速不一致造成的圆柱壳表面定位难问题,分析了冲击信号在圆柱壳上的传播模型,并由此提出了一种应用于圆柱壳定位的改进扫描定位方法。该方法通过优化多个目标实现定位:圆柱壳上弯曲波的周向传播速度方差最小、轴向传播速度方差最小以及初始碰撞时间的方差最小;最后以粒子群多目标优化算法进行目标寻优,增加了定位的速度。进行了仿真实验验证,结果表明了所提方法的有效性。
     第6章:在理论研究的基础上,采用LabVIEW开发了核电站松动件监测(LPMS)原型系统。详细分析了系统架构及主要功能模块,设计了软件模块结构以及软硬件接口,实现了松动件的在线监测、定位分析等功能,并在钢板上进行了验证分析。
     第7章:概括了全文的研究内容,并对核电站松动件监测研究方面作出展望。
Based on the High Technology Research and Development Program of China "Research on the Key Technology of Loose Part Monitoring in Nuclear Power Plant (No.2007AA04Z426)", loose parts'impact signal preprocessing and identification and impact localization methods of loose parts are studied.
     In chapter one:The importance and background of setting Loose Part Monitoring System (LPMS) in Nuclear Power Plants (NPPs) are expounded. Introduced the key technology, system structure and develop progress of LPMS. The impact localization methods now available are summarized. Finally, the study background and overall frame of the dissertation are given.
     In chapter two:a signal preprocessing and impact signal identification method is proposed by analyzing the noise signal of NPP and impact signal of loose parts. The signal is whitened using adaptive AR model, and then the SNR of signal can be improved. Extract the Linear Predictive Coefficients (LPC) of the whitened signal as its characteristic, and then using Supporter Vector Machine (SVM) to identify whether the recorded signal contains impact signal. Simulation and experiment results show that the method can identify the signal in low SNR.
     In chapter three:The time arrival difference error and wave speed measurement error influence on the positioning accuracy of triangle positioning method are studied. A loose part positioning method based on Ensemble Empirical Mode Decomposition (EEMD) and Hilbert Transform was proposed. The method uses EEMD to decompose the signal into some singal vibration mode, and then calculate the envelope of the main vibration mode using Hilbert Transform, find the first peak of the envelope as the arrival time of signal. According the arrival time and wave propagating velocity, the location of loose part can be estimated. Experiment results show that the method can estimate the location of loose part fast and accurately.
     In chapter four:Improved the circle intersection positioning method to get the position of loose part. A wave propagation distance estimation method based on time-frequency analysis is studied, and then a loose part positioning method based on smoothing pseudo D-Flandrin distribution is proposed. Through the analysis of the dispersive characteristic of bending wave, build the relationship between the group delay and the frequency of wave, and then find that the D-Flandrin distribution is a suitable time-frequency analyzing method for bending wave in plate. After the time-frequency analysis, the Non-linear Least Square Method are taken to estimate the distance between impact point and sensors, then the position of loose part can be estimated using circle intersection positioning method. Experimental results prove the validity of the method.
     In chapter five:The positioning method in cylindrical shell and spherical shell is studied. It's hard to positioning the loose part in cylindrical shell as wave axial and circumferential propagation velocity is different. An improved scan positioning method is proposed based on the analysis of impact signal's propagation model in cylindrical shell. This method estimates the position of loose part by calculate the axial velocity, circumferential velocity, and the initial collision time. The particle swarm optimization algorithm is applied to accelerate scanning speed, which can greatly save search time. Experimental results show the effectiveness of the proposed method.
     In chapter six:Based on the theory study, a nuclear loose part monitoring system protype is developed using Lab VIEW. Detailed analysis of the system architecture and main modules are taken, and the software module structure and system interfaces are designed, online monitoring, location analysis and other functions are achieved, and the system is simulated on plate.
     In chapter seven:The main content of the dissertation research is summarized, and the prospect of loose part monitoring research is presented.
引文
[1]2009-2012年中国核电行业投资分析及前景预测报告(上下卷)
    [2]U.S. Nuclear Regulatory Commission, U.S. Nuclear Regulatory Guide #1.133,(1981)
    [3]U. S. Nuclear Regulatory Commission, U. S. Nuclear Regulatory Guide #1.97, (Revision 4, June 2006)
    [4]ASME OM-S/G-1997, part 12, (1997)
    [5]IEC-988:Acoustic monitoring systems for loose parts diction-Characteristics, design criteria and operational procedures.
    [6]姚伟达,杨仁安,王吉星,核电厂松动件监测概况与运行经验,上海核工程设计研究院,专题报告之一
    [7]杨仁安,姚伟达,核电厂松动部件监测和诊断的基本要求,上海核工程设计研究院,专题报告之二
    [8]姚伟达,王吉星,施国麟,国外核电厂松动部件监测系统部分产品简述,上海核工程设计研究院,专题报告之三
    [9]姚伟达,施国麟,杨仁安,核电厂松动件监测基础试验要求,上海核工程设计研究院,专题报告之四
    [10]姚伟达,施国麟,杨仁安,核工业电厂松动件监测试验,上海核工程设计研究院,专题报告之五
    [11]刘金汇,国外核电站松动件监测系统发展评述[J],国外核动力,2000,21(1-2):3-7.
    [12]J. L. Morel, C. Puyal, On-line acoustic monitoring of EDF nuclear plants in operation and loose-part diagnostics, SMORN VI, Gatlinburg, Tennessee USA,1991.
    [13]J M MAZALERAT, J MOREL,C PUYAL. PSAD, A New Tool for Condition Monitoring of Large Component in EDF Power Plant.
    [14]J. C. Benas, J. P. Cotte, D. Verney, Experience feedBack on loose part monitoring in France's54 PWR's particular cases in the secondary of a SG and in the vessel, SMORN VII, Avignon, France,1995.
    [15]B. Bechtold, W. Knoblach, U. Kunze, The new loose parts monitoring system KUS'95, SMORN VII, Avignon, France,1995.
    [16]L. Cleemann, F. X. Elfinger, Loose parts monitoring system, SMORN VII, Avignon, France,1995.
    [17]C. W. Mayo, D. P. Bozarth, G. N. Lagerberg, C. L. Mason, Loose-parts monitoring system improvements, EPRINP-5743, Project 2642-1, Final Report,1988.
    [18]B. Olma, D. Wach, On-line classification of acoustic burst signals by a neural network-application to loose parts monitoring in nuclear power plants[J], IEEE 1994:1133-1138.
    [19]B. Olma, D. Wach, Acoustic, noise and vibration monitoring-useful methods in condition monitoring and on-line degradation diagnosis, IAEA technical committee meeting on utilization of condition monitoring and degradation systems to improve nuclear safety, Wien, Austria,1991.
    [20]B. J. Olma, Acoustic monitoring of U-tube steam generators, Proceedings of SMORN VI Symposium, Gatlinburg, USA,1991:7401-7413.
    [21]B. J. Olma, Remote diagnosis support in loose parts monitoring by use of a new burst data communication system, IAEA specialists'Meeting on Early Failure Detection and Diagnosis in Nuclear Power Plants-Systems and Operational Experience', Dresden, GDR, 1989.
    [22]G. Szappanos, A. Feher, J. Lorincz, etc. A new digital expert loose part detection system[J]. Ann. Nucl. Energy,1997,24(14):1097-1103.
    [23]G. Szappanos, G. Por, Basics ideas and realization of completely digitized loose part detection system HELS[J], Progress in Nuclear Energy,1999,34(3):195-201.
    [24]G. Szappanos, J.J. Kiss, G. Por, Analysis of measurements made by HELPS loose part detection system during installation and operation periods[J], Progress in Nuclear Energy,1999,34(3):185-193.
    [25]Kunze. U, Siemens,A. G.,1997. Modern Diagnostic Systems for Loose Parts Vibration and Leakage Monitroing, Informal Meeting on Reactor Noise, IM0RN-27, Valencia, Spain, 18-20 November.
    [26]G. L. Zigler, C.W. Mayo, SMORN VII loose parts benchmark, Proceedings of SMORN VII,1995, Avignon(France),19-23.
    [27]Young-Woo Chang, Poong-Hyun Seong, A signal pattern matching and verication method using interval means cross correlation and eigenvalues in the nuclear power plant monitoring system[J], Annals of Nuclear Energy,2002,29:1795-1801
    [28]J. D. Yau, Y. B. Yang, Vertical accelerations of simple beams due to successive loads traveling at resonant speeds[J], Journal of Sound and Vibration,2006,289:210-228
    [29]K. Fujita, M. Tanaka, Shock and vibration analysis on the impact of metal parts for PWR diagnosis, Progress in Nuclear Energy,1982,9:531-540.
    [30]J. S. Kim, A study on the LPMS signal evaluation technique,1989. KAERI/NSC-351/89.
    [31]Sotirios. J. VAHAVIOLOS, Spillos. E. KATTIS, Mark F. CARLOS, Dimitrios A. Jason W. DONG. Loose Parts and Valve Flow Monitoring in Nuclear Power Plants Using Integrated Digital Systems,17th World Conference on Nondestructive Testing,25-28 Oct 2008, Shanghai, China
    [32]毛汉领,重大装备跌落零件情况监测问题的研究, 浙江大学博士学位论文,1995.
    [33]方力先,基于小波分析的跌落无状态检测技术研究,浙江大学博士学位论文,2000.
    [34]F. FAHY, Sound and Structural Vibration, Academic Press[M], London,1985.
    [35]L. Cremer, M. Heckl, Structure-Borne Sound[M], (Berlin:Springer) 1998.
    [36]B. J. Olma, Source location and mass estimation in loose parts monitoring of LWR[J], Progress in Nuclear Energy,1985,15:583-593.
    [37]S. Figedy, G. Oksa, Modern methods of signal processing in the loose part monitoring system[J], Progress in Nuclear Energy,2005,46(3-4):253-267.
    [38]D. V. Hinkley, Inference about the change-point from cumulative sum-tests[J], Biometrika,1971:509-523.
    [39]S. M. Ziola, M. R. Gorman, Source location in thin plates using cross-correlation[J], Journal of the Acoustical Society of America,1991,90:2551-2556.
    [40]L. Gaul, S. Hurlebaus, Identification of the impact location on a plate using wavelets[J], Mechanical Systems and Signal Processing,1997,12(6):783-795.
    [41]J. F. Doyle, An experimental method for determining the location and time of initiation of an unknown dispersing pulse[J], Experimental Mechanics,1987,27:229-233.
    [42]K. Choi, F. K. Chang, Identification of impact force and location using distributed sensors[J], Journal of AIAA,1996,34:136-142.
    [43]G. Por, J. Kiss, I. Sorosanszky, G. Szappanos, Development of a false alarm free, advanced loose parts monitoring system(ALPS)[J], Progress in Nuclear Energy,2003, 43(1-4):243-251.
    [44]Y. B. Kim, S.J. Kim, H. D. Chung, A study on technique to estimate impact location of loose part using Wigner-Ville distribution[J], Progress in Nuclear Energy,2003, 43(1-4):261-266.
    [45]M. Tracy, F. K. Chang, Identifying impact load in composite plates based on distributed piezoelectric sensor measurements[J],1996, SPIE,27(17):231-236.
    [46]J. H. Park, Y. H. Kim, Impact source localization on an elastic plate in a noisy environment[J], Measurement Science and Technology,2006,17:2757-2766.
    [47]G. Y. Park, S. W. Cheon, C. K. Lee, K. C. Kwon, An estimation method for impact location of loose parts[J], Progress in Nuclear Energy,2006,48:360-370.
    [48]方力先,陈仲仪,小波变换在核电站—回路松动件定位的应用研究[J],核科学与工程,2000,21(1):50-53
    [49]毛汉领,王小纯,陈仲仪,小波分析估计冲击信号之间时间延迟的方法[J],使用测试技术,1997,23(1):1-4
    [50]毛汉领,陈仲仪,张征,金属跌落物冲击信号中子波到达时刻的确定[J],广西工学院学报,1995,6(1):44-48
    [51]刘金汇,模式识别技术用于核电站松动件质量估计模型研究[J],核动力工程,2001,22(5):465-469.
    [52]刘金汇,谷芳毓,人工神经网络用于核电站松动件定位技术[J],清华大学学报(自然科学版),2001,41(6):59-62.
    [53]J. S. Kim, I. K. Hwang, J. T. Kim, J. Lyou, Development of automatic algorithm for localizing loose parts with a steam generator[J], Nuclear Engineering and Design,2002, 219:269-276.
    [54]S. N. Jeong, K. H. Woo,E. T. Hwang, A study on the estimation method of impact position using the frequency analysis, IFOST2007,2006:392-395.
    [55]方力先,陈仲仪,钱惠生,用逐级消除平均误差的LMS自适应算法检测瞬态信号[J],信号处理,2000,16(1):55-57.
    [56]方力先,陈仲仪,非线性动力学理论在反应堆噪声分析中的应用研究[J],核科学与工程,2001,21(1):86-89
    [57]马晓建,陈瑞琪,吴文英,机械装备中跌落物冲击信号的恢复[J],振动与冲击,2001,20(1):31-33
    [58]方力先,楼永坚,倪益华,陈仲仪,小波变换在松动件检测系统报警中的应用研究[J],原子能 科学技术,2004,38(5):432-435
    [59]方力先,倪益华,用小波非线性阈值滤波法检测反应堆松动件冲击信号[J],原子能科学技术,2004,38(2):159-160
    [60]崔忠科,卢长申,大亚湾核电站松动部件监测系统的误报警处理[J],核动力工程,2003,24(4):398-400
    [61]刘金汇,核电站松动件碰撞特性物理模型研究[J],核动力工程,2001,22(1):36-41
    [62]周文娟,陈廷相,刘江,杨修周,压水堆松动件故障监测中水碓碰撞波影响的研究,核动力工程,1998,19(6):509-513
    [63]毛汉领,王小纯,陈仲仪,大型设备中金属跌落零件的声学定位问题研究[J],应用声学,1998,17(2):31-35
    [64]毛汉领,黄振峰,陈仲仪,基于信号时频特征的神经网络报警方法[J],核动力工程,1998,19(3):265-269
    [65]毛汉领,王小纯,陈仲仪,金属跌落零件冲击响应信号的时频分析[J],振动\测试与诊断,1997,17(4):47-52
    [66]毛汉领,陈仲仪,用同源ANC技术提取金属跌落物冲击信号[J],广西大学学报(自然科学版),1995,20(3):218-222
    [67]徐维秀,段卫星,刘治红,提高初至波二次定位精度技术的探讨[J],石油物探,2009,48(3):239-243.
    [68]刘培洵,刘力强,黄元敏,声发射定位的稳健算法[J],岩石力学与工程学报,2009,28(1):2760-2764.
    [69]巴 晶,刘力强,马胜利,岩石力学实验中的声发射源定位技术[J].无损检测,200426(7):342-347.
    [70]刘力强.实验室声发射到时数据定位处理方法[J].华北地震科学,1986,4(3):31-42.
    [71]田 玥,陈晓非.地震定位研究综述[J].地球物理学进展,2002,17(1):147-154.
    [72]赵仲和.地震自动定位的综合解决方案[J].地震地磁观测与研究,2005,26(1):50-56.
    [73]温熙森,唐丙阳,基于AR模型和APRT检验法的过程状态监测[J],国防科技大学学报,14(2)1-4.
    [74]孙长国,龚沈光,刘志宏,基于AR模型功率谱估计的海浪水压场特性研究[J],哈尔滨工程大学学报,2008,29(12),1272-1276.
    [75]DUGUNDJI J. Envelopes and Pre-Envelopes of Real Waveforms[J], Ire Transactions on Information Theory.1958:53-57.
    [76]R. G. Byford, An advanced digital metal impact monitor, IEEE Transactions on Nuclear Science, Vol. NS-29, No.1, February 1982.
    [77]J. S. Kim, I. K. Hwang, T. W. Kim, An automatic diagnosis method for loose parts monitoring system, ISIE, Pusan, KOREA,2001.
    [78]Tsunoda T and Kato T, Studies on the loose part evaluation technique [J], Progress in Nuclear Energy,1985,15:569-576.
    [79]J. C. Lenain, M. F. Carlos, Acoustic emission(AE) loose parts monitoring application in a nuclear power plant, EWGAE 2004.
    [80]J. P. Chiu, S. S. Shyu, Y. C. Tzeng, On-line Neuro-Expert system for loose parts impact signal analysis.
    [81]C. W. Mayo, Loose part signal properties [J], Progress in Nuclear Energy,1994,28(4): 347-357.
    [82]B. J. Olma, Audio replay of acoustic burst signals for digital loose parts monitoring systems[J] Kerntechnik,1995,60(5):242-244.
    [83]B. Bechtold, U. Kunze, KUES'95-The modern diagnostic system for loose parts monitoring[J], Progress in Nuclear Energy,1999,34(3):221-230.
    [84]G. Szappanos, G. Por, Basics ideas and realization of completely digitized loose part detection system HELS[J], Progress in Nuclear Energy,1999,34(3):195-201.
    [85]G. Szappanos, J. J. Kiss, G. Por, Analysis of measurements made by HELPS loose part detection system during installation and operation periods[J], Progress in Nuclear Energy,1999,34(3):185-193.
    [86]J. V. Persio, Commercial nuclear reactor loose part monitor setpoints[J], Progress in Nuclear Energy,1999,34(3):203-211.
    [87]Y. W. Chang, J. C. Jung, P. H. Seong, Algorithm automation for nuclear power plant loose parts monitoring system[J]. Nuclear Engineering and Design,2004,231:99-107
    [88]C. W. Mayo, Loose-part mass and energy estimation [J], Progress in Nuclear Energy,1999, 34(3):263-282.
    [89]B. J. Olma, B. Schv tz, Status and operational experience with acoustic monitoring of reactors primary systems[J], Progress in Nuclear Energy,1999,34(3):299-309.
    [90]U. Kunze, B. Bechtold, New generation of monitoring systems with on-line diagnostics [J], Progress in Nuclear Energy,1995,29(3/4):215-227.
    [91]L. Shi, C.W. Mayo, J. M. Doster, Loose-part damage [J], Progress in Nuclear Energy,1999, 34(3):231-261.
    [92]L. Shi, C. W. Mayo, J. M. Doster, Reactor loose-part activity[J], Progress in Nuclear Energy,1999,34(3):283-298.
    [93]J. S. Kim, J, Lyou, Mass estimation using a loose parts monitoring system[J], Progress in Nuclear Energy,2000,34(2):109-122.
    [94]V. V. Dubinin, S. N. Bannikov, The experimental investigation of the impact of a particle or a rigid body on a cylindrical [J], Progress in Nuclear Energy,2003,43(1-4):253-260.
    [95]J. S. Kim, I. K. Hwang, K. C. Kwon, J. Lyou, Development of integrated automatic diagnosis method for loose parts monitoring system[J], Progress in Nuclear Energy,2003,43 (1-4): 233-242.
    [96]A. Kolbasseff, R. Sunder, Lessons learned with vibration monitoring systems in German nuclear power plants[J], Progress in Nuclear Energy,2003,43(1-4):159-165
    [97]B. J. Olma, Experience with identification of loose parts by acoustic monitoring of primary system[J], Progress in Nuclear Energy,2003,43(1-4):225-232.
    [98]C. W. Mayo, Metal impact signal transmission through reactor structures [C], Proceedings of a Symposium on Nuclear Reactor Surveillance and Diagnostics SMORN VII, Presentation 10.1, Avignon (France),19-23,1995.
    [99]B. Bechtold, V. Ocelik, New loose parts monitoring algorithm to increase detection sensitivity[C],29th International Meeting on Reactor Noise(IMORN-29), Budapest, Hungary,2004.
    [100]N. E. Huang, Z.Shen, S. R. Long, The empirical mode decomposition method and the Hilbert spectrum for non-stationary time serious analysis[J], Proc. Roy. Soc,1998,454A: 903-995.
    [101]N. E. Huang, M. L. Wu, S. R. Long, A confidence limit for the empirical mode decomposition and the Hilbert spectral analysis[J], Proc. Roy. Soc,2003,459A: 2317-2435
    [102]Z. Wu, N. E. Huang, Ensemble Empirical Mode Decomposition:a noise-assisted data analysis method[J], Centre for Ocean-Land-Atmosphere Studies,2004, No.173.
    [103]P. Flandrin, Empirical Mode Decomposition as a filter bank[J], IEEE Sig Proc Lett, 2003.
    [104]T. Onsay, A. G. Haddow, Wavelet transform analysis of transient wave propagation in a dispersive medium[J], Acoust Soc Am,1994,95(3):1441-1449.
    [105]A. Apostoloudia, E. Douka, L. J. Hadjileontiadis, Time-frequency analysis of transient dispersive waves:A comparative study[J], Applied Acoustics,2007,(38): 296-309.
    [106]S. Mallat, A wavelet tour of signal processing, New York:Academic Press,1998.
    [107]L. Cohen, Time-frequency distributions-a review. Proc IEEE,1998,77(7): 941-981.
    [108]D. Gabor. J. Inst. Elec. Eng.1946,93:429-457.
    [109]J. Ville, Cables et Transmissions,1948,2A:61-74.
    [110]L. Cohen, J Math Phys.,1966,7:781-786.
    [Ill]G. Paulo, R. G. Baraniuk, Pseudo Affine Wigner Distributions:Definition and Kernel Formulation [J],IEEE Transaction on Signal Processing,46(6),1998:1505-1517.
    [112]Dowon Lee,Jacek Jarzynski,H. Berthelot, A study of wave propagation on a cylindrical shell using fiber optic laser Doppler velocimetry[J], Acoustical Society of America,1993,91(1):196-212.
    [113]左言言,由频率方程分析圆柱壳中的波动[J],力学与实践,1998,20(1):24-26.
    [114]徐慕冰,张小铭,张维衡,充液圆柱壳的波传播和功率流特性研究[J], Journal of Vibration Engineering,1997,10(2):230-235.
    [115]孙云岭,朴甲哲,张永祥,Wigner-Ville时频分布在内燃机故障诊断中的应用[J],中国机械工程,2004,15(6):505-507.
    [116]李亚安,王军,李钢虎,基于自适应高斯核函数时频分布的水声信号处理研究[J],系统仿真学报,2006,18(11):3230-3233.
    [117]孟鸿鹰,刘贵忠,一类新的复合核的二次时频分布[J],西安交通大学学报,1996,30(9):77-81.
    [118]袁泉,石昭祥,一种基于空间时频分布的波达方向估计方法[J],探测与控制学报,2007,29(2):50-57.
    [119]刘庆云,李志舜,马艳,一种时频分布核函数构造方法[J],电子学报,2005,4:745-747.
    [120]邹红星,周小波,李衍达,时频分析:回溯与前瞻[J],电子学报,2000,28(9):78-84.
    [121]李嶷,孙长瑜,不同布阵方式下球面交汇定位系统性能分析[J],声学技术,2008,27(5): 649-653.
    [122]M.W. Wik, Double exponential of optical and electrical signals and pattern recognition in lightning, nuclear and electrostatic discharge spectra [C], Proc of 6th Int Symp Tech Exhibition on Electro magnetic Compatibility,1985,169.
    [123]余英林,谢胜利,蔡汉添,等,信号处理新方法导论[M].北京:清华大学出版社,2004.
    [124]杨种山,小波分析及其在瞬态信号波至点检测与去噪中的应用[D],西安:西安电子科技大学,2000.
    [125]徐科军,韩泓,李云.传感器自适应AR模型的建模方法[J].合肥工业大学学报(自然科学版),1995,18(1):8-13
    [126]C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery,1998,2(2):121-167.
    [127]潘翔,李洁冰.一种基于支持向量机的目标定位方法[J],浙江大学学报(工学版),2006,40(3):482-489
    [128]Steve R. Gunn. Support Vector Machines for Classification and Regression, Technical Report,1998.
    [129]Vapnik, V., S. Golowich, and A. Smola (1997). Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jor-dan, and T. Petsche (Eds.), Advances in Neural Information Processing Systems9, Cambridge, MA, pp.281-287. MIT Press.
    [130]C. W. Hsu, C. C. Chang, C. J. Lin, A practical guide to Support Vector Classification, 2008, http://www.csie.ntu.edu.tw/~cjlin.
    [131]周伟达,张莉,焦李成, 支撑矢量机推广能力分析[J], 电子学报,2001,29(5):590-594.
    [132]曹冲锋,基于EMD的机械振动分析与诊断方法研究,浙江大学博士论文,2009.
    [133]高云超,桑恩方,许继友,分离EMD中混叠模态的新方法[J],哈尔滨工程大学学报,2008,29(9):963-966.
    [134]黄小燕,文展,付克昌,基于改进PSO的汽车路径优化[J],湘潭大学自然科学学报,2009,31(2):166-170.
    [135]J. Kennedy, R. C. Eberhart, Particle swarm optimization[C]// Proc IEEE Int Conf Neural Networks,1995:1942-1948.
    [136]廖平,用粒子群优化算法计算点到复杂曲面最短距离[J],计算机仿真,2009,26(8):176-178.
    [137]张庆,Matlab语言在非线性最小二乘估计中的应用[J],测绘与空间地理信息,2004,27(3):35-38.
    [138]王新洲,非线性模型参数估计理论与应用[M],武汉,武汉大学出版社,2002.
    [139]匡兴红,邵惠鹤,基于传感器网络的气体源定位方法研究[J],系统仿真学报,2007,19(7):1464-1467.
    [140]谷源涛,唐昆,崔慧娟,杜文,最优变步长最小均方模型和实现算法[J],清华大学学报(自然科学版),2003,43(1):9-11.
    [141]高鹰,谢胜利,一种变步长LMS自适应滤波算法及分析[J],电子学报,2001,29(8):1-4.
    [142]郑建明,基于HMM的多特征融合钻头磨损监测技术的研究,西安理工大学博士论文,2004.
    [143]李鹏,郑毅,张义军,闪电瞬态电场信号波形去噪方法[J],强激光与粒子束,2007,19(12):2055-2010.
    [144]胡劲松,杨世锡,吴昭同,基于EMD和HT的旋转机械振动信号时频分析[J],2004,振动、测试与诊断,24(2):106-110.
    [145]胡劲松,杨世锡,EMD基于AR模型预测的数据延拓与应用[J],振动、测试与诊断,2007,27(2):116-121.
    [146]焦卫东,杨世锡,复合ICA-SVM机械状态模式分类[J],中国机械工程,2004,15(1):62-65.
    [147]郑详明,王杜,基于改进HHT的多模式Lamb波信号的时频分析[J],无损检测,2008,30(5):271-275.
    [148]欧徽,邹逢兴,高政,徐晓红,基于多目标粒子群算法的混合流水车间调度方法研究[J],计算机工程与科学,2009,31(8):52-56.
    [149]张贤达,现代信号处理[M].2版.北京:清华大学出版社,2002.
    [150]俞卞章,数字信号处理[M].2版,西安:西北工业大学出版社,2002.
    [151]刘君华,基于LabVIEW的虚拟仪器设计,北京,电子工业出版社,2003.
    [152]张志涌.精通MATLAB6.5版.北京:北京航空航天大学出版社,2005.
    [153]王惠南.GPS导航原理与应用[M].北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700