基于主动制动的汽车稳定性控制系统开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕基于主动制动的车辆稳定性控制系统开发研究这一主题,在借鉴国内外研究成果的基础上,就车辆稳定性控制系统建模、车辆稳定性控制的力学原理分析、控制算法设计、控制系统开发方法、车辆稳定性控制系统实车试验等方面进行了研究。
     基于主动制动的车辆稳定性控制系统是通过汽车液压制动系统的主动制动实时调整车辆的运行状态,使车辆能够按照驾驶员的意图行驶,防止车辆失稳的汽车主动安全控制技术,是当前国际上汽车主动安全领域的研究热点。随着控制技术的发展和系统成本的降低,车辆稳定性控制系统将很有可能全面替代ABS成为现代汽车的标准配置。在国外,最近几年该类车辆稳定性控制得到了快速地发展,已经开始在中、高级轿车上大量装备;而我国在此领域的研究才刚刚起步,仅有吉林大学、清华大学、北京理工大学、中国重汽集团等少数大学及科研单位进行了控制方法的仿真研究,且研究不够深入。因此开展车辆稳定性控制系统实车开发研究对我们来说具有重要的现实意义。
     车辆稳定性控制系统开发研究涉及到机械、电子、液压、车辆建模、软硬件的研制、人的驾驶行为,以及最终的实车试验验证等许多方面。针对汽车主动安全控制系统传统开发方法所存在的开发周期长,实车试验耗时耗财且覆盖率低,试验事故易发的缺点,本文系统的提出了基于模型的设计开发方法,并应用到车辆稳定性控制系统实车开发中。该设计开发涵盖了控制系统概念设计、系统建模、系统离线仿真、代码自动生成、硬件在环实时仿真以及最终产品试验等开发过程。基于此设计开发思想,本文在以下几个方面开展了工作:
     首先,本文第1、2章对车辆稳定性控制的组成、功能以及工作原理进行了论述,对各种运行工况进行详细分析,并建立了既能反映所研究问题的本质,又能满足实时仿真需要的车辆稳定性控制系统的动力学系统模型。动力学模型是基于模型设计开发最重要的组成部分,直接关系到控制器的开发效率和精度,主要包括整车模型,轮胎模型,控制器模型,液压系统模型以及制动器模型。为了验证动力学系统模型的有效性和准确性,对仿真结果与实车试验结果进行了比较。结果表明文中建立的动力学系统模型理论上是正确的,满足实时仿真的精度要求。
     接着,第3章就基于模型的设计方法在车辆稳定性控制系统实车开发中的应用进行了详细论述。以模型设计方法为指导,以VSC系统实车开发为目标,从仿真、软硬件开发、模块测试和实车试验等方面详细论述了VSC系统设计和开发的全过程。在车辆系统理论建模的基础上,编制了车辆VSC系统仿真模型;根据仿真测试台架建设的需要,设计了接口设备,驱动电路和电气系统;完成了dSPACE控制原型实车试验、ECU原代码自动生成与硬件开发、硬件在环测试、标定以及实车试验。
     第4章提出了基于主动制动产生直接横摆力矩的车辆稳定性控制算法。它根据横摆角速度和质心侧偏角误差,采用模糊鲁棒控制方法进行汽车横摆力矩的决策,并根据轮胎工作点信息把决策得到的汽车横摆力矩合理分配到四个车轮上,通过压力调节来实现所决策的汽车横摆力矩。在综合前人研究成果的基础上提出了汽车运行状态综合估计法,并验证了其有效性。此外,本章还就VSC系统的失效模式分析、传感器失效识别与处理方法及其在VSC实车开发中的应用进行了初步探讨。最终的仿真和实车试验结果表明文中设计的车辆稳定性控制系统,使车辆在高速变道和转向时能够迅速、准确、安全地按照驾驶员的意图行驶,且在道路条件和行驶条件改变时具有较强的适应性和鲁棒性。
     最后,本文第5章详细论述了开发过程中涉及的仿真测试方案、控制原型试验、实车试验以及各阶段试验结果。利用计算机实时仿真技术和虚拟现实技术搭建了人与硬件在环仿真试验台,为车辆稳定性控制的理论研究和系统调试标定提供了平台。
     基于模型的设计开发方法在车辆稳定性控制系统实车开发中的成功应用,有力地证明了本文的研究工作使在较少的前期投入和较短时期内开发出合格的车辆稳定性控制系统成为可能,为我国汽车电子技术进步和企业进行汽车电子控制系统产品的自主开发,提供了有价值的帮助和重要的启示。
The Paper is about Real-car development for vehicle stability control system based on active braking. It describes vehicle dynamic modeling, VSC control principle analysis, control algorithm design, debug method and Real-car test on the basis of former researchers’production.
     The VSC is a system that relies on the vehicle’s braking system as a tool for“steering”the vehicle. When the stability-control function assumes operation it shifts the priorities that govern the brake system. VSC research is an international focus in the vehicle active safety field. With the development of control technology and decrease of control system cost, VSC is replacing ABS to be the standard equipment of modern vehicles. In recent years, more and more VSC or equivalent devices were used on vehicles in aboard, while in China, VSC is a whole new thing, not mention to deep research. Some universities and institutes such as Jilin University, Tinghua University, Beijing Technology Institute and Heavy Truck Group, did some research on the VSC simulation, but it is superficial. Hence, it is quite significant to study on the Real-car development for VSC not only on the understanding but also on the application prospect.
     The development of VSC comprises mechanics, electronic, hydraulic, vehicle dynamics modeling, software and hardware design, driving actions, field test and validation. For the disadvantage of traditional vehicle active safety system development method such as long test lead time, low test efficiency and test accidents easily introduced, a new development method based on model design is proposed in this paper and is put into application for VSC development. This design method covers the whole process of concept and function design, system modeling, off-line simulation, code automatic generation, real-time hardware-in-the-loop (HiL) simulation and final validation of vehicle test. In the guide of this new development method, the work for VSC development is listed as following:
     Firstly, in the Chapter 1 and 2, the constituent, function, system nature and working conditions are introduced. The dynamics model including vehicle dynamics, tire model, controller model, hydraulic system model and brake actuators, is the base of the model based design and development, and it is responsible for the efficiency and precision of the development. So a special VSC system dynamics model, which can discover the nature of the research focus as well as satisfy real-time simulation requirements, is established. In order to validate the vehicle dynamics model, a vehicle field test is introduced. From the results of three typical conditions’result - bra king, steering and braking while steering, we can see that the simulation result is correct and can be used in the VSC research.
     Secondly, design method based on the model and its application for the VSC development is described in detail. The whole process of this development method is showed in this chapter including VDC simulation model design, test bench interface device and drive circuit, the vehicle field test for control prototyping on dSPACE, C code auto generation and hardware design for ECU, ECU-in-the-loop simulation test, ECU calibration and the vehicle field test.
     In the chapter 4, VSC control algorithm based on the direct intervention yaw moment by active braking is proposed. The control algorithm decides the vehicle yaw moment by using robust-fuzzy control method based on the errors of vehicle yaw rate and vehicle side slip angle. The target yaw moment is achieved by individual wheel active braking, the vehicle keep on the track of driver commanded. The combined estimation method is introduced on the basis of former fruits. Design failure mode effect and analysis is discussed. The simulation and Real-car test results show that the control law is effective and robust in keeping the vehicle tracking the desired response quickly and correctly even under some parameters changed such as steering angle input, road friction and vehicle speed.
     In the end, Chapter 5, the scheme of simulation test, control prototyping experiment, Real-car test and the results of all stages is described in detail. Hardware & human in the loop simulation test bench is built with computer real-time simulation and virtual reality, it provides a bench for research of VSC theory, calibration and debug for control system development.
     The successful application of model based design and development method for the VSC development proved that it is a simple and effective way to develop vehicle electronic control system. The practice and study in this paper is useful for native vehicle electronic product development and research.
引文
[01].丁海涛,”轮胎附着极限下汽车稳定控制的仿真研究”吉林大学博士学位论文2003.05
    [02].张成宝?汽车驱动防滑控制与动力学控制的理论研究同济大学博士学位论文2000.03.012
    [03].赵治国.车辆动力学及其非线性控制理论技术的研究西北工业大学博士学位论文2002-06-01 .
    [04]. H. E. Tseng,D. Madau,B. Ashrafi,T. Brown,D. Recker.”Technical Challenges in The Development of Vehicle Stability Control System”Proceedings of the 1999 IEEE International Conference on Control Applications USA.Auguu 22-27,1999Hongtei Eric
    [05]. Tseng, Behrouz Ashrafi,Dinu Madau,Todd Allen Brown, and Darrel Recker”The Development of Vehicle Stability Control at Ford”IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 4, NO. 3, SEPTEMBER 1999
    [06]. Shingo Kawalami and Jiro Okuda.“Dynamic performance evaluation of a vehicle equipped with a stability control system.”. JSAE 1999(20): 421-438.
    [07].王悦新,李建民,尚士忠“凌志400型汽车稳定控制系统结构及原理解析”Technology & Economy in Areas of Communications 2002年第3期
    [08]. B.G. Schulze and E. Lissel, "Anti-Slip Regulator System (ASR)", Int. J. of Vehicle Design, Vol8, No. l,1987
    [09].吴权晖,徐达.汽车防抱制动系统的应用及发展.汽车工业大学学报,1999(1) 21(1):111-114.
    [10].孟嗣宗、崔艳萍,“现代汽车防抱死制动系统和驱动力控制系统”,北京理工大学出版社,1995
    [11].李修曾.汽车防抱制动系统的发展现状及趋势.世界汽车,1996(3):15~20.
    [12].孟嗣宗、崔艳萍.现代汽车防抱死制动系统和驱动系统.北京理工大学出版社,1997.
    [13]. ABS株式会社著.李朝禄、刘荣华译.汽车制动防抱装置(ABS)构造与原理.机械工业出版社,1995.
    [14].殷承良.“车辆防抱死制动系统(ABS)实用化技术控制逻辑与实车试验研究”.博士后出站报告,上海:上海交通大学,2002年5月。
    [15].李君.“车辆ABS控制系统快速开发研究”.上海交通大学博士学位论文,2002年4月。
    [16].赵和平“.硬件在环仿真技术在防抱死制动系统试验台架开发中的应用”.上海交通大学博士学位论文,2002年1月。
    [17].司利增编,“汽车防滑控制系统-ABS与ASR”,人民交通出版社,1997
    [18].何宇平,伦景光.国外轿车制动法规的评述.汽车工程,1994, 16(3): 182-191.
    [19].朱伯比.论现代汽车的制动性能及对策.汽车工程,1997, 19(2): 89-95.
    [20]. Hans-Jorg Feigel and Peter Rieth.“New Low Cost ABS concept for small cars.”SAE Technical Paper 970811
    [21]. Dr A Hac, Delphi Automotive Systems, "Evaluation of Two Concepts in Vehicle Stability Enhancement Systems", 98ME031
    [22]. Glaser, H., "Electronic Stability Program ESP, Audi Press Presentation",Lycksele, Sweden, 9.-13. December, 1996
    [23]. Michael A, Kremer, Ford-Werke AG Koln, "The Electronic Stability Program (ESP) On The Ford Focus". Vehicle Electronic Systems 2000 European Conference and Exhibition, StratFord Manor, StratFord-upon-Avon, UK, 2000
    [24].刘彩志,陈思忠”直接横摆力矩控制汽车的操纵稳定性研究”湖北汽车工业学院学报Vol.16 No.2 June 2002
    [25].管西强,屈求真,张建武,刘延庆.四轮转向汽车的模型跟踪便结构控制机械工程学报Vol.38 No.3 Mar.2002
    [26]. Aleksander Hac and Mark O. Bodie, "Improvements in Vehicle Handling Through Integrated Control of Chassis System", Int. J. of Vehicle Design, Vol. 29, Nos. 1/2,2002
    [27]. YOSHIMI FURUKAWA and MASATO ABE.“Advanced chassis control systems for vehicle handling and active safety”. Vehicle System Dynamics, 1997(28): 59-86.
    [28]. Youssef A. Ghoneim, William C. Lin, David M. Sidlosky Hsien H. Chen, Yuen-Kwok Chinand Michael J. Tedrake, "Integrated chassis control system to enhance vehicle stability", Int. J.Vehicle Design, Vol.23, Nos. 1/2, 2000
    [29]. Herbert Demel and Herbert Hemming, "ABS and ASR for Passenger Cars一Goals and Limits", SAE paper No.890834
    [30]. .H: J. Schbpf and J. Paul, "ASR Acceleration Skid Control一A Further Contribution Towards Increasing The Active Safety of Daimler-Benz Vehicles", SAE paper No.885050
    [31].宋传学,周云山等.防抱制动系统控制算法的仿真研究.汽车工程,1998,20(1): 24-29.
    [32].李衽,石晓明.汽车电子防抱制动系统仿真的研究.汽车工程,1996,18(5): 290-296.
    [33].程军.防抱制动系统防抱逻辑的研究.汽车工程,1995, 17(1): 1-11.
    [34].王志煌. MK20I汽车防抱死制动系统.汽车研究与开发,1998(3):28-33.
    [35]. Anton T. Zanten, Rainer Erhardt, Klaus Landesfeind and Georg Pfaff, "VDC System Development and Perspective", SAE paper No.980235
    [36]. T. van Zanten, "Bosch ESP System: 5 Years of Experience", SAE paper 2000-01-1633
    [37]. Junichi Yukawa, Toshiyuki Nozoe, Hideo Ohgoshi, Masayoshi Murakami, Takeshi Uemura,Toshiya Nakagaki, Yasushi Ishiai, "Angular Rate Sensor for Dynamic Chassis Control", SAE paper No.980269
    [38]. Brach, R.M.“Vehicle dynamics model for simulation on a microcomputer”. Int. J. Vehicle Design, 1991,12(4): 404-419.
    [39]. Ken Koibuchi, Masaki Yamamoto, Yoshiki Fukada, and Shoji Inagaki, "Vehicle Stability Control in Limit Cornering by Active Brake", SAE paper No.960487
    [40]. Leffer, H,"Consideration of Lateral and Longitudinal Vehicle Stability by Function Enhanced Brake and Stability Control System", SAE paper No.940832
    [41]. Yoshiki Fukada, "Slip-Angle Estimation for Vehicle Stability Control", Vehicle System Dynamics, 1999, Vo1.32, pp.375-388
    [42]. BOSCH, "Driving-safety systems 2nd edition", Society of Automotive Engineers, September,1999
    [43].殷承良.“汽车稳定控制“,内部参考资料,2000.11
    [44].余志生,汽车理论,北京:机械工业出版社,2000.10
    [45].上海交通大学博世维修站培训教材(内部参考)
    [46]. BOSCH,“ESP Electronic Stability Program Edition 1999”, Technical Instruction, 1999.
    [47]. H.B.PACEJKA and I.J.M.BESSELINK. Magic Formula Tyre Model with Transient Properties. Vehicle System Dynamics, 1997(27): 234-249
    [48]. J.J.M. Van Oosten and E.Bakker. Determination of magic tyre model parameters. Proceedings 1st Tyre Colloquium, Delft, Oct. 1991, Suppl. to Veh. Sys. Dyn. 1993(21): 20-57
    [49]. Palkovics, L., and EI-Gindy, M. Modeling of the cornering characteristics of tyre on uneven road surface: a dynamic version of the Nero-Tyre. Int. J. of Vehicle Design, 1994, 15(1/2): 189-215
    [50]. J.L Harned, L.E. Johnston, and G.Scharpf. Measurement of tire brake force characteristics as related to wheel slip (Anti-lock) control system. SAE Technical Paper 940831
    [51]. Laura R. Ray. Experimental determination of tire forces and road friction. Proceedings of the American Conference. Philadelphia, Pennsylvania. June 1998:1843-1847
    [52]. Laura R. Ray. Nonlinear tire force estimation and road friction identification: simulation and experiments. Automatica, 1997,33(10): 1819-1833
    [53]. P.BOLZERN, F.CHELI and G.FALCIOLA. Estimation of the Non-linear suspension tyre cornering forces from experimental road test data. Vehicle System Dynamics, 1999(31): 23-34
    [54]. gbert Bakker. A new tire model with an application in vehicle dynamics studies. SAE Technical Paper 890087
    [55].郭孔辉.汽车操纵动力学.长春:吉林科学出版社,1991
    [56]. William P. Amato and Mark A. Bennett. Verification of heavy truck EBS and ABS using MartriX Hardware in the loop tools. SAE Technical Paper 1999-01-3713
    [57]. Rolf Boot and Jobst Richert. Automated test of ECUs in a hardware-in-the-loop simulation environment. International Symposium on Computer Aided Control System Design., Kohala Coast-Island of Hawai’i, USA. August 22-27, 1999:587-593
    [58]. Wanger, J., Brunts, R., and Kaster. A vision for automotive electronics hardware-in-the-loop testing. Int. J. of Vehicle Design, 1999, 22(1/2): 14-28
    [59]. eborh Kempf and Loren Bonerson. Real time simulation for application to ABS development. SAE Technical Paper 870336
    [60]. Egbert Bakker and Lars Nyborg. Tyre Modeling for use in vehicle dynamics studies. SAE Technical Paper 870421
    [61]. Loeb, J.S. et. al.,“Lateral Stiffness, Cornering Stiffness and Relaxation Length of the Pneumatic Tire,”SAE Paper No. 900129, 1990.
    [62]. Bernard, J. E., Clover, C. L.,“Tire Modeling for Low–speed and High–speed Calculations,”SAE Paper No. 950311, 1995
    [63]. Pacejka, H., Sharp, R.S.“Shear Force development by Pneumatic Tyres in Steady State Conditions: A Review of Modelling Aspects”Vehicle System Dynamics, 20 (1991), pp.121-176, Equations 88-93
    [64].何存兴、张铁华主编,液压传动与气压传动,华中科技大学出版社,武汉, 2000年8月
    [65].蔡廷文,液压系统现代建模方法,中国标准出版社,北京,2002年12月
    [66].尹念东,余群,“基于横向预瞄偏差的驾驶员前视轨迹控制模型”汽车工程,2002 (VoL24)No.4
    [67].高振海,管欣,郭孔辉,“预瞄跟随理论和驾驶员模型在汽车智能驾驶研究中的应用”交通运输工程学报,2002 Vol.2 No.2
    [68].单忠德,顾永年,张人佶.“快速原型技术在汽车工业中的应用与策略”.汽车工程,2002年第24卷第3期.
    [69].李君,喻凡,殷承良,张建武.“混合仿真技术在车辆电子控制系统快速开发中应用”.汽车工程,2001年第23卷第5期.
    [70]. R.Isermann, J.Schaffnit, S.Sinsel.“Hardware-in-the-loop simulation for the design and testing of engine control system”. Control Engineering and Practice, 1999, (7): 643-653.
    [71]. www.dSPACE.com
    [72]. I.R Kendall and R.P. Jones.“An investigation into the use of hardware-in-the-loop simulation testing for automotive electronic control system”. Control Engineering and Practice, 1999, (7): 1343-1356.
    [73]. J.M.Cho,D.H.Hwang, Design and implementation of HILS system for ABS ECU of commercial vehicles,ISIE2001,Pusan.KOREA.
    [74]. Carl Cao, Donn Shull and Ed Himes,A Model-Based Environment for Production Engine Management System (EMS) Development , SAE 2001-01-0054
    [75]. Klaus Lamberg, Michael Beine,Mario Eschmann and Rainer Otterbach.Model-Based Testing Of Embedded Automotive Software Using Mtest.SAE 2004-01-1593
    [76]. J Li, F Yu,The rapid development of a vehicle electronic control system and its application to an antilock braking system based on hardware-in-the-loop simulation,Proc Instn Mech Engrs Vol 216 Part D: J Automobile Engineering.
    [77]. Hahn S, etc.,"Simulation and Measurement of Driving Simulator, Presentation of Selected Experiments", SAE Paper No.880058, 1998
    [78]. www.matlab.com
    [79]. Borut Zupancic.“Extension Software for real-time control system design and implementation with Matlab/Simulink”. Simulation Practice and Theory 1998(6): 703-719.
    [80]. www.vector.com
    [81]. Hartmut Pohlheim, Mirko Conrad,Arne Griep,"Evolutionary Safety Testing of Embedded Control Software by Automatically Generating Compact Test Data Sequences",SAE 2005(01-0750)
    [82]. Alberto Sangiovanni-Vincentelli, "ELECTRONIC-SYSTEM DESIGN IN THE AUTOMOBILE INDUSTRY", IEEE Computer Society 2003 (0272-1732)
    [83]. Stephen D. Morton,"Defining a“Safe Code”Development Process", Applied Dynamics International(2001)
    [84]. H. Fennel, E. L. Ding. A Model-Based Failsafe System for the Continental TEVES Electronic-Stability-Program (ESP), SAE, 2000-01-1635
    [85]. Jong Hyeon Park etc. Wheel slip control system for vehicle stability. Vehicle System Dynamics, 1999(31): 262-278
    [86]. YOSHIMI FURUKAWA and MASATO ABE. Advanced chassis control systems for vehicle handling and active safety. Vehicle System Dynamics, 1997(28): 59-86
    [87].张成宝,吴光强,丁玉兰,刘岩.“汽车驱动防滑的控制方法研究”.汽车工程,2000年第22卷第5期.
    [88]. Gunther Buschmann, Hans-Thomas Ebner, and Wieland Kuhn, "Electronic Brake ForceDistribution Control -A Sophisticated Addition to ABS", SAE paperNo.920646
    [89]. S. Motoyama, H. UKI, K. Isoda and H. Yuasa, "Effect of Traction Force Distribution Control on Vehicle Dynamics", Vehicle System Dynamics, 22 (1993)
    [90]. Jong Hyeon Park and Woo Sung Ahn, "H. Yaw-Moment Control with Brakes for ImprovingDriving Performance and Stability", Proceedings of the 1999 IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics, September 19-23, 1999, Atlanta, USA
    [91].王德平,郭孔辉,“车辆动力学稳定性控制的控制原理”,机械工程学报,2000.03 (Vol.36) No.3, p97-99
    [92]. PARK K, HEO S J, BAEK I. Controller design for improving lateral vehicle dynamic stability[J]. JSAE Review 22(2001) 481-486.
    [93]. UNGOREN A Y , PENG H. A study on lateral speed estimation methods [J]. Int. J. Vehicle Autonomous System, 2004 , 2(1) : 126-144.
    [94].于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社, 1997.
    [95].罗翼,程桂芬,付家才.控制工程与信号处理[M].北京:化学工业出版社, 2004.
    [96]. Aleksander Hac and Melinda D. Simpson, "Estimation of Vehicle Side Slip Angle and Yaw Rate", SAE paper 2000-01-0696
    [97]. Masato Abe, Yoshio Kano.“Side-slip control to stabilize vehicle lateral motion by direct yaw moment”, JSAE Review 22 (2001) 413-419
    [98]. Takatoshi Nishimaki, Naohiro Yuhara and Yasuji Shibahata ,”Two-degree-of-freedom hydraulic pressure controller design for direct yaw moment control system”, JSAE Review 20(1999),517-522
    [99]. Kaoru Savase and Yoshiaki Sano. Application of active yaw control to vehicle dynamics by utilizing driving/brake force. JSAE Review 20 (1999), pp.289-295
    [100]. Tamio Kano and Katsutoshi Horinouch. Study of braking in turn stability. Technical Notes/ JSAE Review 21(2000),pp.241-263
    [101]. Yuji Hisaoka and Masaki Yamamoto. Closed-loop analysis of vehicle behavior during braking in a turn. JSAE Review 20(1999), pp.537-542
    [102]. Kihong Park, Seung-Jin Hen, Inho Baek, "Controller design for improving lateral vehicle dynamic stability", JSAE Review 22 (2001) pp.481-486
    [103]. Ossama Mokhiamar, Masato Abe Effects of model response on model following type of combined lateral force and yaw moment control performance for active vehicle handling safety JSAE Review 23 (2002) 473–480
    [104]. Sergey V. Drakunov,Behrouz Ashrafi. Yaw Control Algorithm via Sliding Mode Control Proceedings of the American Control Conference Chicago. Illinois June 2000
    [105]. Chih-Min, L. and Yi-Jen, M. (2003).Hybrid adaptive fuzzy controllers with application to robotic systems. Fuzzy Sets and Systems 139, 151–165.
    [106]. Jang-Hyun, P., Sam-Jun, S. and Gwi-Tae, P. (2003). Robust adaptive fuzzy controller for nonlinear system using estimation of bounds for approximation errors. Fuzzy Sets and Systems 133, 19–36.
    [107]. Sylvia, K.R. and Henryk, F.(2003). Robust fuzzy logic control of mechanical systems. Fuzzy Sets and Systems 133, 77–108.
    [108]. ABS株式会社著.李朝禄、刘荣华译.汽车制动防抱装置(ABS)构造与原理.北京:机械工业出版社,1995
    [109].吴权晖,徐达.汽车防抱制动系统的应用及发展.武汉:武汉汽车工业大学学报,1999(1) 21(1):111-114
    [110]. Mark Akey. Development of fuzzy ABS control for commercial trucks. SAETechnical Paper 952673
    [111]. Wolf-Dieter Jonner and Armin Czinczel. Upgrade levels of the Bosch ABS. SAE Technical Paper 860508
    [112]. Bryan R.Murphym. Anti-lock braking system for North American buses, coaches and Motorhomes. SAE Technical Paper 973248
    [113]. Huang-Tsang chang and Gary C.Fulks. Controlled brakes component development process. SAE Technical Paper 980238
    [114]. Gunther Buschmann and Manfred Roth. Tandem master cylinder in change-Due to specific requirement of anti-lock and traction control. SAE Technical Paper 930504
    [115].司利增.汽车防滑控制系统——ABS与ASR.北京:人民交通出版社,1997
    [116].程军,袁金光,王西山.汽车防滑控制的研究.北京:汽车工程,1997,19(2): 95-102
    [117].宋传学,周云山等.防抱制动系统控制算法的仿真研究.北京:汽车工程,1998,20(1): 24-29
    [118].李衽,石晓明.汽车电子防抱制动系统仿真的研究.北京:汽车工程,1996,18(5): 290-296
    [119].沙奇林.ABS控制逻辑对车辆动力学模型参数及滑移率的规避分析.北京:汽车工程,1994, 16(6): 329-333
    [120]. Wolfgang Maisch and Wolf-Dieter Jonner. ASR-traction control-A logical extension of ABS. SAE Technical Paper 870337
    [121]. E. Gohring. Electronic Traction Control system ASR and its Integration in the Anti-lock braking systems ABS to form a safety system‘ABS/ASR’for commercial vehicles. SAE Technical Paper 881137
    [122]. Robert K. Holzwarth and Kenneth A. May. Analysis of traction control systems augmented by limited slip differentials. SAE Technical Paper 940831
    [123]. Erwin Petersen and Erich Reinecke. Anti-lock braking system with integrated drive slip control for commercial vehicles. SAE Technical Paper 861961
    [124].刘训忠,王一玲,夏群生.汽车防抱死制动系统(ABS)轮速算法研究.汽车电器,2001(1):7-10
    [125].厉朴,宋健,于良耀.ABS轮速信号抗干扰处理方法.汽车技术,2001(5):15-18
    [126].陈在峰,宋健,于良耀.汽车防抱死制动系统轮速传感器信号处理.汽车工程,2000, 22(4):282-285
    [127].邓建中,葛仁界,程正兴.计算方法.西安:西安交通大学出版社,1985
    [128].张代胜.基于滑移率的汽车防抱模糊控制方法与仿真,农业机械学报2002年3月(第33卷第2期);
    [129]. Lennon William K and Passino Kevin M. Intelligent Control for Brake Systems, IEEE Transactions on Control Systems Technology ,1999 ,7 (2), pp.188-202
    [130].章卫国,杨向忠.模糊控制理论与应用,西北工业大学出版社,1999年10月;
    [131].李林.汽车ABS模糊控制方法的分析与仿真,江苏大学学报(自然科学版),2003年5月(第24卷第3期);
    [132]. Layne R Jeffery , Passino Kevin M and Yurkovich Stephen. Fuzzy Learning Control for Antiskid Braking Systems, IEEE Transactions on Control Systems Technology ,1993 ,1 (2),pp.122-129
    [133].胡圣武,潘正风.虚拟现实技术的应用及其需要解决的问题.矿山测量.2004年3月第1期
    [134].姜学智,李忠华.国内外虚拟现实技术的研究现状.辽宁工程技术大学学报.第2期2004年4月
    [135].李兴玮,叶磊,黄柯棣.基于Matlab/xPCTarget构建实时仿真系统.计算机仿真. 2003年8月第8期
    [136]. Andy R. W. Huang and Chihsiuh Chen,A Low-Cost Driving Simulator for Full Vehicle Dynamics Simulation,IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 52, NO. 1, JANUARY 2003.
    [137]. R. Wade Allen, Theodore J. Rosenthal, Bimal L. Aponso,A Low Cost PC Based Driving Simulator for Prototyping and Hardware-In-The-Loop Applications, Journal SAE 980222.
    [138]. S.K.Ong, M.A.Mannan,Virtual reality simulations and animations in a web-based interactive manufacturing engineering module,Computers & Education 43 (2004) 361–382
    [139]. Thomas Brendecke and Ferit,Virtual real-time environment for automatic transmission control units in the form of hardware-in-the-loop, Int.J.of Vehicle Design, Vol.28, Nos1/2/3, 2002 攻读博士学位期间发表的学术论文
    1. *殷承良,张勇等.基于Matlab xPCTarget和虚拟现实技术的汽车动力学实时仿真研究,系统仿真学报;(已发表)
    2. *张勇,殷承良等.基于Matlab的车辆动力学控制交互式硬件在环仿真系统研究,机械科学与技术;(已录用)
    3. *张勇,殷承良等.汽车防抱死自适应模糊控制方法研究及其快速控制原型实车试验,长安大学学报;(已录用)
    4. *张勇,殷承良等.一种车辆质心侧向速度实时估计方法,机械工程学报;(已投稿)
    5. **Yong Zhang, Chenliang Yin, Jianwu Zhang.Study on Vehicle Dynamic Control Algorithm and its Implementation on Control Prototyping System,International Journal of Automotive Technology.(Accepted)
    6. Yong Zhang, ChenLiang Yin, Jianwu Zhang, Matlab Based Human&Hardware-in-Loop Simulation System of Vehicle Dynamics, The International Journal of Engineering Simulation. (submitting)
    7. *Yong Zhang, Dong Peng, ChengLiang Yin, JianWu Zhang, Model Based Design and Development of Vehicle Dynamics Control System and its Test on the Vehicle, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering. (submitting)
    8. *Zhang Yong, Yin Cheng-liang, Zhang Jian-wu, Matlab Based Human&Hardware-in-Loop Simulation for the Study on Vehicle Stability Control, Journal of Shanghai Jiaotong University.(Accepted)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700