电液伺服振动台的模糊控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服振动台以其优良的性价比在实际工业生产中获得了广泛应用,而控制器作为其控制核心显得更为重要。本文在分析电液伺服振动台现状的基础上,研究了用PID控制器和模糊控制器控制振动台的振动轨迹,并分析了控制过程中参数对系统性能的影响。
     首先,归纳总结了电液振动台、电液伺服控制技术的发展及国内外现状,阐述了模糊控制的形成、发展历程、特点及其主要应用领域;其次,在建立电液振动台系统线性化数学模型的基础上,分析测试了伺服阀的动静态特性及电液伺服系统的稳态特性和动态特性,掌握了系统本身的固有特性,研究了电液振动台的控制策略,并着重讨论了模糊控制策略;最后,设计了两类控制器,即基于Ziegler-Nichols参数整定经验公式的PID控制器和模糊控制器。通过比较分析两类控制器的结构形式及控制原理,利用Matlab/Simulink仿真工具分析不同控制器对电液伺服振动台的控制性能,用PID控制器和模糊控制器对其控制效果进行仿真实验,总结出两种控制器的特点:模糊控制器控制振动台系统时系统的动态特性较好,PID控制器控制振动台系统时系统的跟踪效果较好。
     本课题以实现电液振动台更高的稳定性、快速性、准确性、自适应性和鲁棒性等为目标,采用理论研究、仿真分析和实验研究相结合的手段,将模糊控制引入到电液振动台的波形控制中,实现了电液振动台波形跟踪时的高精度控制。
     电液振动台智能控制方法的研究是一个崭新的课题,其研究成果必将全面推进振动台控制技术的发展。
Electro-hydraulic vibration test stand gets a wide range of application with its excellent performance in the actual industrial production, while the controller is more important as its control core. This article has researched using PID controller and fuzzy controller to control the trajectory of vibration test stand, and then analysed the effect of control parameters basing on the analysis of the status of the electro-hydraulic vibration test stand.
     Firstly, summed up the development and the status at home and abroad of electro-hydraulic vibration test stand and electro-hydraulic servo control technology, illustrated the formation, development process, characteristics and main applications of fuzzy control. Secondly, this article bases on seting up the linear mathematical model of electro-hydraulic vibration test stand, analysing and testing the static and dynamic characteristics of the servo valve and steady-state characteristics and dynamic characteristics of electro-hydraulic servo control system, grasping the inherent characteristics of the system itself. Researched control strategy and focused on the fuzzy control strategy. Thirdly, designed two type controllers, fuzzy controller and PID controller based on the Ziegler-Nichols tuning parameters empirical formula. Through a comparative analysis of the structure form and control theory of two types controllers, analyses the performance of system using Matlab/Simulink simulation tool, and using PID controller and fuzzy controller to control the effect of the simulation and the test, summing up the advantage and disadvantage of the two controllers. It has a good dynamic characteristics when using fuzzy controller to control the vibration test stand system. It has a better tracking when using PID controller to control the vibration test stand system.
     In order to achieving a higher stability, speed, accuracy, adaptability and robustness of electro-hydraulic vibration test stand, this issue uses of a combination of theoretical research, simulation analysis and test researching, puts fuzzy control to be the controller of the electro-hydraulic vibration test stand, Realizing the high-precision waveform tracking control of the electro-hydraulic vibration test stand.
     It is a new subject to study intelligent control method of electro-hydraulic vibration test stand. The results of their research will comprehensively promote the development of vibration test stand control technology.
引文
1王占林.液压伺服系统的近期研究发展动向.流体控制工程,1994,1:3-11
    2 Merritt H.E. Hydraulic Control Systems. John Wiley & Sons, Inc. 1976: 3-28
    3宋俊,曹辉.工控机调频调幅液压振动台及其优化设计.机床与液压,2004(10):101-102
    4裴喜平.地震模拟振动台的模糊控制研究.[武汉理工大学硕士学位论文].2004.5:1-4
    5尚增温,孙虹.高频电液伺服系统的发展趋势与新的应用领域.液压与气动,2001(6):4-5
    6贾丽花.电液伺服地震模拟振动台控制算法的研究与实现.[北京交通大学硕士学位论文].2006:1-10
    7许益民.电液比例控制系统分析与设计.北京:机械工业出版社,2005:216-231
    8 T. J. Viersma. Analysis Synthesis and Design of Hydraulic Servo system and pipelines. Amsterdam: Elsevier Scientific Publishing Company, 1980: 12-16
    9丁群燕.智能控制的产生与发展.装备制造技术,2008(l1):125-126
    10王孙安,林廷忻,史维样.液压伺服控制的新发展.机床与液压,1991(1):8-14
    11刘燕秋.参数自校正Fuzzy-PI控制器及其在电液伺服结构试验系统中的应用.[西安交通大学硕士学位论文].1997.5:49-57
    12 Chen C L, Chang F Y. Design and analysis of neural/fuzzy variable structural PID control systems. IEEE Pro-Control Theory Appl, 1996, 143(2): 200-208
    13王迁,李祖枢.一种多模态智能控制方法及其在电液伺服系统中的应用.[重庆大学硕士学位论文].1990:6-9
    14 Leigh J.R. Applied digital control-theory, design and implementation. Prentice Hall, 1984: 1-18
    15易继锴,侯媛彬.智能控制技术.北京:北京工业大学出版社,1999:1-10
    16韦茵,宋俊.高频液压振动台工作参数的合理选择.液压与气动,2005(8):61-63
    17崔晓.高频电液伺服振动台的研究.[沈阳工业大学硕士学位论文].2004.12:1-59
    18 Richard C. Dorf, Robert H. Bishop. Modern Control System. Pearson Education, 2002:521-526
    19宋琼,朱长春,牛宝良.液压振动台建模与加速度波形失真度分析.机床与液压,2008.12(12):28-30
    20乔国世,刘俊山,路占宝.伺服控制液压驱动结晶器振动台.液压技术,2005(7):106-108
    21李洪人.液压控制系统(修订本).北京:国防工业出版社,1990:20-48
    22王珏,牛宝良,宋琼.伺服阀非线性特性建模的电液振动台动态特性.液压与气动,2008(6):51-53
    23许益民.电液比例控制系统分析与设计.北京:机械工业出版社,2005:216-231
    24王占林.近代液压控制.北京:机械工业出版社,1997:8-16
    25王积伟,陆心一,吴振顺.现代控制理论与工程.北京:高等教育出版社,2003:18-35
    26王益群,孔祥东.控制工程基础.北京:机械工业出版社,2001:40-91
    27叶荣飞.基于虚拟仪器结构的电液振动台计算机智能控制系统的研究.[重庆大学硕士学位论文].2002:4-8
    28 Yun Li, Kiam Heong Ang, Gregory C. Y. Chong. PID control system Analysis and Design. IEEE control systems magazine, 2006, 1: 32-41
    29 M. H. Moradi. New techniques for PID Conreoller Design. IEEE Control System, 2003, 6: 903-908
    30杨智,朱海峰,黄以华.PID控制器设计与参数整定方法综述.化工自动化及仪表,2005,32(5):1-7
    31 M. C. Shih and Y.R.Sheu. The Adaptive Position Control of an Electro-hydraulic Servo-cylinder. JSME Int. J, 1991, 34(3): 370-376
    32 P. Cominos, N. Munro. PID controllers: recent tuning methods and design to specification. IEE Proc-Control Theory Appl, Vol.149,No.1, 2002.1: 46-53
    33 Tae-Yong Kue, Woong-Gie, Han.An. Adaptive PID leaning control of robot manipulators. Automatic, 2000, 36: 717-725
    34董建伟.液压挖掘机挖掘轨迹跟踪的智能PID控制.[燕山大学硕士学位论文].2007.5:14-18
    35陶永华.新型PID控制及其应用(第2版).北京:机械工业出版社,2003,7:233-234 238-241
    36 J. G. Ziegler, N. B. Nichols. Optimum settings for automatic controllers. Trans. ASME, 1942, 64: 817-826
    37胡晚霞,余玲玲,戴义保.PID控制器参数快速整定的新方法.工业仪表与自动化装置,1996(5):11-14
    38薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002:45-55
    39 A.Filiatrault, R.Tremblay, B K. Thoen and J.Rood. A. Second gelleration earthquake simulation system in Canada: description and performance. In:Proc. Of Eleventh World Conference on Earthquake Engineering, 1996: 1200-1230
    40 Lennart.Ljung. System Identification Toolbox for Use with MATLAB. The Math Works Inc, 1998: 1-58
    41宋苏,任红格,阮晓钢,等.CMAC模糊控制器在液压振动台的应用.电工技术, 2006(4):50-52
    42李士勇.模糊控制和智能控制.第二版.哈尔滨:哈尔滨工业大学出版社, 2006:254-284
    43刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003:117-125
    44 Rouhani R, Mehra R K. Model Algorithmic Control (MAC). Basic Theoretical Properties. Automatic, 1982, 18(4): 401-414
    45 Lee C.C. Fuzzy in control systems: fuzzy logic controller[J]. Man and Cybernetics. IEEE Transactions on, Volume: 20 Issue, 1990: 404-435
    46项德明,高富强.电液式振动台智能控制器的研制.控制工程,2003.09,10(5):395-398
    47陈燎原.电液伺服系统的模糊控制研究.农业机械学报,2002,33(1):90-94
    48朱志鹏,熊瑞平,袁中凡,等.模糊自适应PID控制器在模拟振动台系统中的应用.液压与气动,2006(5):539-541
    49 A.Luo, H.Hun. Intelligent Control for Electro-hydraulic Proportional Position Servo System. Proceedings of the 4th International Conference on Fluid Power Transmission and Control, Hangzhou, China, 1997: 24-250
    50 Su Donghai, Cui Xiao, Wu Xihong. Analysis and Simulation of Dynamic Properties of High Frequency Hydraulic Vibrator. International Conference on Progress ofMachining Technology, 2004: 918-922
    51霍爱清,李琳.MATLAB在电液伺服模糊控制系统仿真中的应用.西安科技学院学报,2003.9,23(3):287-294
    52 D. cheng, T. J. Tam and A. Tsidory. Global Linearization of Nonlinear Systems via Feedback. IEEE Transaut control, 1985: 30-31
    53奚德昌,赵饮森.振动台及振动试验.北京:机械工业出版社,1985.10:238-265
    54 Kehtarnavaz, Nasser/Kim, Namjin. Digital Signal Processing System-Level Design Using LabVIEW. Butterworth-Heinemann, 2005:5-48
    55黎新,廖智麟,王国彪.基于LabVIEW的工程机械液压故障诊断平台的建立.工程机械,2005(10):54-56
    56 Gao Yingjie, Jin Yanchao, Zhang Qin. Motion Planning Based Coordinated Control for Hydraulic Excavators. In: Proceedings of the 5th International Symposium on Fulid Power Transmission and Control, Beidaihe, China, 2007:847-851

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700