增益开关型Cr~(4+):Mg_2SiO_4激光器和Cr~(4+):YAG激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着掺Cr~(4+)激光材料的不断出现和器件的成功运转,掺Cr~(4+)激光材料及其器件的研究已经成为固体可调谐激光器研究的热点之一。尤其是Cr~(4+):YAG和Cr~(4+):Mg_2SiO_4这两种晶体有望成为近红外可调谐固体激光器的理想增益介质,所以对它们的研究尤为重要。本文采用理论和实验相结合的方法,研究了Cr~(4+):YAG和Cr~(4+):Mg_2SiO_4二种晶体作为增益介质的增益开关型Cr~(4+):YAG和Cr~(4+):Mg_2SiO_4激光器的时间特性。
     第一章:综述了掺Cr~(4+)离子的激光材料特性,特别是Cr~(4+):YAG和Cr~(4+):Mg_2SiO_4晶体的重要特性以及在激光器件中的应用和国内外研究概况。
     第二章:采用Nd:YAG调Q激光脉冲作为泵浦源,实现Cr~(4+):Mg_2SiO_4激光器的增益开关运转,得到中心波长为1.25μm,能量为0.4mJ,脉宽32ns的激光脉冲输出。从速率方程出发,对Cr~(4+):Mg_2SiO_4激光器的增益开关时间特性进行理论分析,计算出脉冲宽度,理论结果和实验结果基本一致。
     第三章:对三镜腔的腔结构进行了理论研究,从高斯光束的传输理论出发,运用ABCD定律得到优化的折叠角,补偿了三镜腔的象散,从而保证晶体和输出镜上光束为高斯基模,并且计算腔的稳定条件。采用1.06μm激光脉冲泵浦三镜腔Cr~(4+):YAG激光器,得到能量和脉宽分别为0.46mJ和28ns的中心波长为1.44μm的调Q脉冲输出。
     第四章:设计了一个复合腔,使Cr~(4+):YAG既作为可饱和吸收体对1.06μm激光调Q,同时又作为激光增益介质产生1.44μm激光,得到1.06μm和1.44μm双波长双调Q激光输出。1.06μm和1.44μm激光脉冲的能量和脉宽分别为6.8mJ、38ns和0.04mJ、21ns。理论上根据Cr~(4+):YAG激光器的相关参数,计算了1.44μm激光的脉宽,理论结果和实验结果基本一致。
With the development of the Cr -doped crystals and the successful working of pertinent lasers, the study of them has become one of the hot pots of the study of the solid tunable lasers. These two crystals such as Cr4+:Mg2SiO4 and Cr4+:YAG will hopefully become the ideal gain medium of tunable lasers in the near infrared wavelengths, and the study of them will be the most important. With the theoretical and experimental methods, the paper studies the time characteristics of gain-switched Cr4+:YAG and Cr4+:Mg2SiO4 laser.
    Chapter 1: The paper appraises the laser characteristics of Cr4+ ions in several garnet host crystals, especially the important characteristics and the application in laser devices of Cr4+:YAG and Cr4+:Mg2SiO4 and the general research situation.
    Chapter 2: Pumped by 1.06um Q-switched Nd:YAG laser, gain-switching of Cr4+:Mg2SiO4 laser is realized. And the output energy and the pulse width of the central wavelength of 1.25 um are 0.4mJ, 32ns. By studing the time characteristics of gain-switching of Cr4+:Mg2SiO4 laser with the rate equations theoretically, we calculate the formulas of the pulse width, and the theoretical parameters are consistent with the experimental results approximately.
    Chapter 3: A theoretical study is devoted to the parameters of the three-mirror cavity. By using ABCD ray transmission matrix, an optimized folding angle is obtained to compensate astigmatism, so. that the beam of the output mirror is ensured to be Guass basic mode, and the stable condition is calculated. Using 1.06um Nd:YAG laser pumping the three-mirror cavity Cr4+:Mg2SiO4 laser, the output energy and the pulse width of the gain-switched 1.44 um laser are 0.46mJ, 28ns.
    Chapter 4: The dual-wavelength laser is achieved of 1.06um and 1.44um in the designed compound resonator. The Cr4+:YAG is operated as a saturable absorber and a gain medium simultaneously. The output energy and the pulse width of 1.06 um and 1.44um are 6.8mJ, 38ns and 0.04mJ, 21ns respectively. By using the pertinent parameters of Cr4+:YAG crystal, the pulse width of 1.44 um are analyzed theoretically and the results are consistent with the experimental data.
引文
[1] Petricevic V, Gayen S K, Alfano R R, et al. Laser action in chromium-doped forsterite [J]. Appl. Phys. Lett., 1988, 52:1040~1042.
    [2] Angert N B, Borodin N I, Shestakov A B. Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelength in the range 1.35-1.4μm [J]. Sov. J. Quant. Electr., 1988, 18(1):73~75.
    [3] 浙江大学等。硅酸盐物理化学[M]。中国建筑工业出版社,1980:40。
    [4] 张克从。近代晶体学基础[M]。北京:科学出版社,1987:225~226.
    [5] N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, et al. Excited-Stated absorption and stimulated emission measurements in Cr~(4+):forsterite. Journal of Luminescence, 1997, 75:319~325
    [6] Moncorge R, Cormier G, Simkin et al. Fluorescence analysis of chromium-doped forsterite (Mg_2SiO_4). IEEE Journal of Quantum Electronics. 1991, 27(1):114~120
    [7] Petricevic V, Gayen S K, Alfano R R. Chromium-activated forsterite laser.Proceedings of the OSA Topical Meeting. 1988, 5:77~84
    [8] 徐军,邓佩珍等。Cr~(4+)在晶体中的结构稳定性[J]。人工晶体学报,1996,25(3):220~224。
    [9] Verdun H R, Merkle L. Evidence of excited-state absorption of pump radiation in the Cr: forsterite laser. Proceedings of the OSA Topical Meeting. 1991, 10:35~40
    [10] Yamaguchi Y, Yamagishi K, Sugimoto A. et al. Optical properties and crystal growth atmosphere of forsterite. Proceedings of the OSA Topical Meeting. 1991, 10:52~56
    [11] Baryshevski V G, Korzhik M B, Livshitz M G, et al. Properties of forsterite and the performance of fotsterite lasers with lasers and flashlamp pumping. Proceedings of the OSA Topical Meeting. 1991, 10:26~34
    [12] 颜声辉.王四亭,钟鹤裕等。掺铬镁橄榄石(Cr~(4+):Mg_2SiO_4)可调谐晶体的生长与性能。人工晶体学报,1994,23(1):8~12。
    [13] Steven A, Markgraf et al, Influence of different divalent co-dopants on the Cr~(4+) content of Cr-doped Y_3Al_5O_(12): the only successful co-dopants were Ca and Mg[J], J. Crystal Growth, 1997, 180(1):81~84.
    [14] 徐天华,彭维清等。生长及退火条件对Cr~(4+):Mg_2SiO_4和Cr~(4+):YAG晶体光谱特性的影响。人工晶体学报,1997,26(3-4):242.
    [15] 徐天华,彭维清等。Cr~(4+):Mg_2SiO_4晶体生长新技术。人工晶体学报,1997,26(3-4):228。
    [16] 徐天华,宋定熙等。Cr~(4+):Mg_2SiO_4晶体的生长和特性研究。第十二界全国激光学术会议论文专辑:68。
    [17] Sugimoto A, Segawa Y, Yamaguchi Y. Flash lamp pumped tunable forsterite laser[J]. J. Appl. Phys., 1989, 28(10):1833~1835.
    [18] Seas A, Petricevic B, Alfano R R. Continuous-wave mode-locked operation of a chromium-doped forsterite laser[J]. Opt. Lett., 1991, 16(21):1668~1670.
    [19] Pang Y, Yanovski V, Wise F et al. Self-mode-locked Cr:fotsterite laser. Opt Lett, 1993,18:1168.
    [20] 丘治,刘晔等。镁橄榄石可调喈激光的研究。中国激光,1993,A20(6):406~409
    [21] 掺铬镁橄榄石可调谐激光器。红外与激光,1994(6):27。
    [22] 雷海容,刘宏发,严柏生等。四价铬镁橄榄石激光器特性研究。红外与激光工程,1997,
    
    26(6):25~28。
    [23] 宋定熙,吴有武,杨勇。高输出能量Cr~(4+):MSO激光器的实验研究。激光技术,1997,21(2):101~103。
    [24] 阮双琛,侯洵。掺铬镁橄榄石日体连续波可调谐激光器。光子学报,1998,27(20):97~99。
    [25] 阮双琛,朱勤。自锁膜飞秒掺铬镁橄榄石激光器的实验研究。光子学报,1999,28(10):892~894。
    [26] Liu X, Wise F. Femtosecond Cr:fotsterite laser diode pumped by a double-clad fiber Opt. Lett.,1998, 23:129.
    [27] Eilers, H. Dennis, W.M., Performance of a Cr:YAG Laser, IEEE Journal of Quantum Electronics, 1993, 29(9): 2508~2512.
    [28] K. Spariosu, W. Chen, R. Stultz and M.Birnbaum. Dual Q Switching and Laser Action at 1.06μm and 1.44μm in a Nd:YAG oscillator at 300K, Optical Letters, 1993,18(10):814~816.
    [29] Y. Shimony, Z. Burshtein, Y Kalisky. Cr~(4+):YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser. IEEE J. Quantum Electron., 1995, 31(10):1738~1741.
    [30] 董俊,邓佩珍等,Cr~(4+),Yb~(3+):YAG晶体的生长和吸收特性[J]。人工晶体学报,1999,28(2):140~144。
    [31] Ishibashi S, Naganuma K et al, Cr, Ca Y_3Al_5O_(12):laser crystal growth by the laser-heated pesdestal growth method[J]. J. Crystal Growth, 1998, 182: 612~621.
    [32] Sugimoto A et al. Crystal Growth and. Optical characterization of Cr, Ca:Y_3Al_5O_(12)[J]. J. Crystal Growth, 1994, 140(3):349~354.
    [33] 沈永行,童利民等,YAG激光晶体上自饱和吸收体Cr~(4+):YAG的外延生长,人工晶体学报,29(5):146。
    [34] 雷海容,张国威。Cr~(4+):YAG激光器特性。激光技术,1996,20(1):20~25
    [35] Shimony Y, Burshtein Z, Kalisky Y. Cr~(4+):YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser. IEEE J. Quantum Electron., 1995, 31(10):1738~1741.
    [36] 欧阳斌,丁彦华,万小柯等。Cr~(4+):YAG的可饱和吸收特性与被动调Q开关性能研究。光学学报,1996,16(12):1665~1669。
    [37] 雷海容,刘宏发,严柏生等。一种新型固体开关—Cr~(4+):YAG的实验研究。光学学报,1996,16(8):1191~1193。
    [38] 万小柯,林礼煌,欧阳斌等。Cr~(4+):YAG被动调Q与激光激发态吸收饱和。光学学报,1997,17(11):1567~1570。
    [39] 王明伟,邢歧荣,王清月等。CW Nd:YAG激光器中Cr~(4+):YAG被动调Q的实验研究。中国激光,1998,25(10):872~875。
    [40] 何京良,候伟。全固化连续波Nd:YVO_4激光器中Cr~(4+):YAG被动调Q的实验研究。量子电子学报,16(15):618~619。
    [41] Wang Jiaxian, Zhang Wenzhen, Xing Qirong, et al. Investigation of Cr~(4+):YAG passive mode-locked in a pulse Nd:YAG laser. Optice & Laser Technology, 1998, 30(5):303~305
    [42] 王加贤,张文珍,王清月等。Cr~(4+):YAG在对撞脉冲锁模的Nd:YAG激光器中被动锁模的研究。光学学报,1998,18(8):983~987。
    [43] 王加贤,张文珍。Cr~(4+):YAG被动锁模与被动调Q的研究。华侨大学学报(自然科学版),1999,20(1):25~29。
    [44] Yung-Fu Chen, S W Tsai, S C Wang. High-power diode-pumped Q-switched Q-switched and mode-locked Nd:YVO_4 laser with a Cr~(4+):YAG saturable absorber. Opt. Lett., 2000, 25(19): 1442~1444.
    
    
    [45] French, P.M.W, Mellish R., All-solid-state diode-PuMPed Modelocked Cr:LiSAF laser, Electronics Letters, 1993, 19(14): 1262~1263.
    [46] Sennaroglu A, Pollock C R, Nathel H. OSA Proceedings on Advanced Solid-State Lasers, Washing DC, Optical Society of America, 1994:4.
    [47] Alphan Sennaroglu, Clifford R. Pollock. Continuous-wave self-mode-locked operation of a femtosecond Cr~(4+):YAG laser. Opt. Lett., 1994,19(6):390~392.
    [48] Yuzo Ishida, Kazunori Naganuma. Compact diode-pumped all-solide-state femfosecond Cr~(4+):YAG laser. Opt. Lett., 1996,21(1):51~53.
    [49] Tong Y P, Taylor J R, French P M W et al. Opt. Comm., 1997,136, 235.
    [50] Spariosu K, W Chen, Stultz R, et al. Dual Qswitching and laser action at 1.06μm and 1.44μm in a Nd:YAG oscillator at 300K. Opt. Lett., 1993, 18(10):814~816.
    [51] Koetke J, Kueck S, Petermann K, et al. Quasi-continuous wave laser operation of Cr~(4+)-doped Y_2SiO_5 at room temperature. Opt Commun., 1993, 101(3-4):195~198.
    [52] Moncorge R, Mannaa H, Deghoul, et al. Spectroscopic study and laser operation of Cr~(4+)-doped (Sr, Ca)Gd_4(SiO_4)_3O single crystals. Opt. Commun., 1995, 116(4-6):393~398.
    [53] 张国威。可调谐激光技术。国防工业出版社,北京,2002年。
    [54] W.克希耐尔著。固体激光工程。科学出版社,北京,2002年。
    [55] Wagner W. Solid-state Laser Engineering, Spreinger-Verlag, 1988
    [56] 杨杨,刘宏发,张国威。掺钛蓝宝石激光器的增益开关特性研究。激光技术,1995,19(4):204~208
    [57] 王加贤,梁宏业,戴建明等.低功率泵浦三镜腔结构的Cr:LiSAF激光器各种运转特性的研究。中国激光,1998,A25(9):769~773.
    [58] 王加贤。紧凑型像散补偿的克尔透镜锁模腔。华侨大学学报,2001,1:26~30。
    [59] 卢亚雄,吕百达。矩阵光学。大连理工大学出版社,大连,1989:221~223
    [60] Evans J M, Spence D E. Double-wavelength self-mode locked Ti:sapphire laser. Opt. Lett., 1993, 18(13):1074~1076.
    [61] Wang Y, Bourkoff E. Ar~+ pulses from the double mode-locked Ar~+-dye laser in the CPM tegime. Opt. Commun., 1988, 65(4):264~268.
    [62] P.J. Conlon, Y. P. Tong, P. M. W. French et al.. Femtosecond pulse generation from a synchronously pumped, self-mode-locked Cr~(4+):YAG laser. J. Mod. Opt., 1995, 42(4): 723~726.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700