列车脱轨机理及运行安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全问题是铁路交通运输的永恒主题,高速和重载铁路的飞速发展对列车运行安全提出了新的挑战。一方面,高速和重载列车一旦脱轨将引起更大危害,尤其是高速列车脱轨有可能造成毁灭性的灾难。另一方面,高速列车的运行规律、性能以及运行环境等本质上有别于低速列车。然而,由于脱轨问题的复杂性,对于脱轨机理的认识目前仍停留在初级阶段,即使对于准静态脱轨仍未有统一的准确判别标准,源于1896年Nadal脱轨判别准则以及后来的修正准则是目前判别脱轨安全的基本准则,由于其建立基础为车轮准静态爬轨时的最保守力平衡条件,对于准静态滑轨、碰撞跳轨以及复杂因素引起的动态脱轨行为有相当的局限性。因此,基于深刻理解脱轨机理的基础上,提出具有广泛适用性的量化评价指标是列车运行安全研究的首要问题。
     本文针对列车脱轨机理以及运行安全评价,以轮轨相互作用为核心,对以下方面进行了系统的研究:
     (1)从轮轨接触约束特点和型面外形出发,对轮轨几何约束以及多点接触问题进行了深入研究,指出轮轨型面的轨向接触线曲率决定了两点或多点接触的可能性,而轮轨动态平衡条件决定了轮轨接触约束的存在条件,建立了考虑多点接触以及接触脱离的轮轨约束模型,分析了轮轨接触的不连续特性以及由此引起的接触冲击。轮轨型面曲率半径决定了轮缘接触时可能存在Hertz接触无效区域,给出了Hertz理论有效接触条件。建立了精确的轮轨单面约束动态模型,可考虑多点接触及接触脱离等引起的系统拓扑结构变化,并应用IAVSD基准模型进行了验证。
     (2)开展了单轮对准静态脱轨机理研究,分析了车轮脱轨临界状态时横向蠕滑力和法向力比值与冲角的变化规律,提出了考虑冲角影响的脱轨判别公式。改进的脱轨判别公式既保持了Nadal脱轨判别准则简单易用的优点,又能够考虑冲角、摩擦系数、轮缘角的影响,可统一判别准静态爬轨、滑轨脱轨,通过与JNR和TTCI试验结果的对比验证了改进准则的正确性。
     (3)建立了轮轨横向碰撞动力学模型,对轮轨横向碰撞的跳轨脱轨机理进行了探索性研究,同时对车轮跳轨脱轨的影响参数进行了详尽分析。研究发现,轮重、摩擦系数及横向碰撞速度对车轮跳轨影响显著。
     (4)以系统动态角度阐释了列车脱轨机理,提出了以轮轨相对横移函数为基础的动态脱轨评价方法,可用于准静态、动态以及跳轨脱轨的判别。动态脱轨准则包括脱轨危险系数及其一、二阶时间导数,其中脱轨危险系数可直接判别脱轨危险程度,而脱轨危险系数的一、二阶时间导数反映了车轮相对钢轨的运动速度及加速度。分别通过两种轮轨型面配合的接触几何学以及单轮对动态脱轨仿真对动态脱轨准则的有效性进行了验证。
     (5)研究了单轮对动态脱轨行为,包括外载荷作用下具有摇头刚度的轮对动态脱轨过程以及自由轮对的蛇行脱轨机理。对前者的研究表明,车轮以正冲角脱轨所需的横向力要远小于负冲角时。通过对单轮对蛇行脱轨机理的研究表明,轮轨系统存在脱轨临界速度,最大蛇行稳定极限环对应于脱轨临界速度,当运行速度超过脱轨临界速度时,任何微弱激扰将可能导致脱轨。同时,通过单轮对动态脱轨仿真,对比分析了动态脱轨评价方法和传统评价指标在评价脱轨时的效果。动态脱轨评价准则准确地判别了所有的工况,而脱轨系数及轮重减载率仅在一定程度上反映了脱轨危险,而进行准确判别时会出现误判。
     (6)从轮轨接触几何学、运动学和力平衡角度论述了车轮的脱轨条件。系统地分析了传统脱轨评价指标,研究了脱轨系数与轮重减载率的上下限及其与脱轨的关系,解释了脱轨系数以及轮重减载率超标而未必脱轨的现象。介绍了应用本文提出的考虑冲角影响准静态脱轨准则、轮轨碰撞跳轨准则以及动态脱轨准则的脱轨评价方法,对比分析了各脱轨准则的特点和适用条件,提出了脱轨安全性的综合评价方法。
     (7)建立了车辆系统动态分析模型,应用脱轨安全综合评价方法研究了曲线通过和蛇行失稳时车辆系统的运行安全性规律,分析了车辆蛇行脱轨的动态过程,对动态脱轨准则的正确性进行了进一步的验证。
Safety is the eternal subject of railway transportation, the rapid development of high-speed and heavy-load railways brings new challenges for the running safety of trains. On the one hand, the derailment of high-speed or heavy-load train will cause more serious damage, especailly, if a high-speed train derailed, a catastrophe may be brought. And on the other hand, the running principles, performance, and dynamical enviroment of high speed train are essentially different with those of the ordinary train. However, due to the complexity of derailment problem, the knowledge on the derailment mechanism still stays at elementary stage; even there is no exact evaluation criterion for quasi-steady derailment. Nadal's derailment criterion, founded in 1896, and its amendents laterward are the fundamental criteria for derailment evaluation nowadays. These criteria have considerable limitations for assessing dynamical derailment since they are based on the most conservative equilibrium condition for quasi-steady flange-climbing derailment. Therefore, to propose quantitative evaluation criteria with wide applicability based on thorough unstanding of derailment mechanism is the fundamental problem for the running safey research of trains.
     Aiming at derailment mechanism and running safety assessment, the following aspects are extensively studied based on the wheel/rail interactions:
     (1) The geometrical constraint and multi-point contact between wheel and rail are thoroughly studied based on the wheel/rail contact characteristic and profile shapes. It's found that the probability of two-point or multi-point contact is determined by the curvatures of track-projected lines of wheel and rail profile, while the wheel/rail constraints are determined by the dynamical equilibrium of wheelset and rail. A wheel/rail constraint model which takes the multi-point contact and contact lose into account is set up, and the non-smooth effect and contact impact between wheel and rail are analyzed. The main curvatures of wheel and rail profiles determine the effective area of Hertz contact theory during flanging. An exact dynamical model with unilateral contact between wheel and rail which can take the multi-point-contact and contact lose into account is established, and the new model is verified by passing the IAVSD benchmark model.
     (2) The quasi-steady derailment mechanism of a single wheelset is investigated, the changing law between the ratio of lateral creep force to normal force and angle of attack is analysed. The improved derailment criteria are proposed, which maintain the simplicity of Nadal's criterion, while take the effects of angle of attack, friction coefficient and flange angle into account. The new criteria are suitiable for evaluating quasi-steady flange-climbing and flange-sliding derailment, and the general applicality is verified by the comparision between experimental results of JNR and of TTCI and the results of the proposed criteria.
     (3) The wheel/rail lateral collision equation is set up, and the jumping derailment mechanism induced by the wheel/rail lateral impact is studied exploringly. The parametric study of wheel jumping derailment indicates that the wheel load, friction coefficient and lateral pre-collision velocity of wheelset have significant influence on the jumping derailment.
     (4) The derailment mechanism is explained in the viewpoint of the system dynamics. A novel dynamic derailment evaluation method based on the function of wheel/rail lateral displacment is suggested, and can applies to evaluating quasi-steady, dynamic and jumping derailment. The proposed dynamic derailment evaluation method includes derailment safety coefficient and its first and second time derivatives, of which the derailment safety coefficient can determine the degree of derailment risk directly, while the first and second time derivatives of derailment safety coefficient can reflect the relative lateral velocity and acceleration between wheel and rail in lateral direction. The geometrical contact of two wheel/rail profile pairs and the dynamic derailment simulation of a single wheelset are carried out to validate the dynamic derailment evaluation method.
     (5) The dynamic behaviours of a single wheelset during derailment are explored, including the dynamic derailment process of a single wheelset with yaw stiffness and external loads and the hunting derailment mechanism of free wheelset. The studies on the former case show that the lateral force to derail a wheel in positive angle of attack is much less than that to derail a wheel in negative angle of attack. And the simulation results of hunting derailment indicates that there is a derailment critical velocity which corresponds to the maximal stable limit cycle during hunting for wheel-rail system, any weak excitation will induce a derailment if the running velocity exceeds the derailment critical velocity. Furthermore, the comparsions between the dynamic derailment evaluation method and the traditional derailment criteria are performed through the hunting derailment simulation of single wheelset. It is found that the dynamic derailment evaluation criteria judges all of the cases correctly, while the derailment coefficient and wheel unloading ratio, although reflect the derailment risk to some extent, misjudges some of the cases.
     (6) From the point of view of the wheel/rail contact geometry, wheel/rail kinematics and force equilibrims, the derailment conditions of a wheel are discussed. The traditional derailment criteria are analyzed systematically, and their upper and lower limits and the relationship with derailment are studied. The phenomenon of no derailment occurring are explained even when derailment quotient and wheel unloading ratio exceed their critical values. The application of the proposed derailment criteria including the improved quasi-steady derailment criterion which takes the angle of attack into accout, the jumping derailment criterion for wheel/rail collision and the dynamic derailment criterion are introduced in detail, and the feathers and applicable conditions of these criteria are analyzed, the comprehensive derailment evaluation method are suggested.
     (7) The dynamic model of vehicle system is established, the running safety of curve passing and hunting are analyzed by virtue of the comprehensive derailment evaluation method, the dynamic process of vehicle hunting derailment is analyzed, and the correctness of the dynamic derailment criterion is further verified.
引文
[1]沈志云,张卫华,金学松,曾京,张立民.轮轨接触力学研究的最新进展[J].中国铁道科学,2001,22(2):1-14.
    [2]翟婉明.车辆-轨道耦合动力学[M].北京:科学出版社,2007.
    [3]铁道部科学研究院.铁路行车安全译文集-脱轨研究专辑[M].北京:铁道部科学研究院机车车辆研究所,1998.
    [4]曾庆元,向俊,周智辉,娄平.列车脱轨分析理论与应用[M].长沙:中南大学出版社,2006.
    [5]Nadal, M. J. Theorie de la stabilite des locomotives. Part Ⅱ: movement de lacet[J]. Annla Mines,1896,10:232-255.
    [6]Nadal, M. J. Locomotives a Vapeur, Collection Encyclopedie Scientifique[J]. Bibliotheque de Mecanique Appliquee et Genie,1908, 186(1):56-67.
    [7]Matsudaira, T. Safety and Ride Comfort of High-Speed Railway Cars[J]. Quarterly Report of RTRI, Special Issue:Researches for Super High-Speed Railway,1960,13-19.
    [8]Matsudaira, T. Dynamics of High Speed Rolling Stock[J]. Quartely Reports of RTRI, Special Issue,1960,57-65; 1961,20-26; 1962,13-22; 1963,21-27; 1964,21-26.
    [9]横瀬景司.一轴车轮の脱线[J],铁道研究所报告,1965,504(11):1-20.
    [11]Yokose, K. Experiment of Hunting Derailment with a One-fifth Model Wheelset [J]. Quarterly Report of RTRI,1970,11(4):228-231.
    [12]松井信夫,国枝正春,横瀬景司等.脱线に对すゐ安全基準[J].铁道技衍研究报告,1968,11(3).
    [13]松井信夫.狩勝実験线にねけゐ货车の脱线试验[J]. Journal of JSME,1968,71(54):108-114.
    [14]国枝正春.轮重拔けにょゐ脱线[J].JREA,1968,11(3):10-13.
    [17]Ikemori, M. Actual Derailment Test on the Karikachi Test Track[J]. Permanent Way,1972,14(1):1-18.
    [18]松尾雅树.轮轴の脱线限界[R].铁道技术研究速報,1986, 3(A-86-51):1-50.
    [19]石田弘明,手塚和彦,植木健司,深沢香敏,松尾雅榭.脱线に対すゐ安全性评価指標の研究[J].铁道総研报告,1995,9(8):49-54.
    [20]宫本昌幸.车両の脱线メカニズム[J].铁道総研報告,1996,10(3):31-38.
    [21]Ishida, H. and Matsuo, M. Safety Criteria for Evaluation of Railway Vehicle Derailment[J]. Quarterly Report of RTRI,1999,40(1):18-25.
    [23]Gilchrist A. O., and Brickle, B. V. A Re-Examination of the Proneness to Derailment of a Railway Wheelset[J]. Journal of Mechanical Engineering Science,1976,18(3):131-141.
    [24]Sweet, L.M., and Karmel, A. Evaluation of Time-Duration Dependent Wheel Load Criteria for Wheelclimb Derailment[J]. ASME Trans, Journal of Dynamic Systems, Measurement, and Control,1981,103(3):219-227.
    [25]Karmel, A. Analytical and Experimental Studies of Derailment Processes of Railway Vehicles[D]. Princetion University,1982.
    [26]Karmel, A., and Sweet, L.M. Wheelset Mechanics during Wheelclimb Derailment[J]. ASME Trans, Journal of Applied Mechanics,1984, 51:680-686.
    [27]Weinstock, H. Wheel Climb Derailment Criteria for Evaluation of Rail Vehicle Safety[C]. ASME Winter Annual Meeting, Phoenix, Az,1984. ASME,1984, No.84-WA/RT-1,1-7.
    [28]Shust, W C., Thompson R. and Elkins J A. Controlled Wheel Climb Derailment Tests Using a Force Measuring Wheelset and AAR's Track Loading Vehicle[C]. Proceedings of 12th International Wheelset Congress, Qingdao,1998.
    [29]Shust, W. C., and Elkins, J. A. Wheel Forces during Flange Climb Part I: Track Loading Vehicle Tests[C]. IEEE/ASME Joint Railroad Conference, Pueblo, Colorado,1997,137-147.
    [30]Elkins, J. A., and Shust, W. C. Wheel Forces during Flange Climb Part II: NUCARS Simulations[C]. IEEE/ASME Joint Railroad Conference, Pueblo, Colorado,1997,149-156.
    [31]Elkins, J. and Wu, H. Angle of Attack and Distance-Based Criteria for Flange Climb Derailment[J]. Vehicle System Dynamics,1999, 33(Sup.):293-305.
    [32]Wu Huimin. Investigation of Wheel/Rail Interaction on Wheel Flange Climb Derailment and Wheel/Rail Profile Compatibility[D]. Chicago:Illinois Institute of Technology,2000.
    [33]Elkins, J. and Wu, H. New Criteria for Flange Climb Derailment[C]. IEEE/ASME Joint Railroad Conference, Newark, New Jersey,2000,1-7.
    [34]Shu, X., Wilson N., Wu, H. and Tunna, J. A Bi-Parameter Distance Criterion for Flange Climb Derailment[C]. Proceedings of 2005 Joint Rail Conference, Pueblo, Colorado,2005, RTD2005-70007,9-17.
    [35]Wu H. and Wilson N. Handbook of Rail Vehicle Dynamics Chapter VIII[M]. Taylor & Francis Group, LLC,2006,209-237.
    [36]Barbosa, R. S. A 3D Contact Force Safety Criterion for Flange Climb Derailment of a Railway Wheel[J]. Vehicle System Dynamics,2004, 42(5):289-300.
    [37]Braghin, F., Bruni, S. and Diana, G. Experimental and Numerical Investigation on the Derailment of a Railway Wheelset with Solid Axle[J]. Vehicle System Dynamics,2006,44(4):305-325.
    [38]杨国桢.铁道车辆脱轨安全性的设计(上、下)[J].铁道车辆,1974,11:8-26;12:12-32.
    [39]杨国桢.二轴转向架脱轨安全性的研究[J].铁道学报,1979,2:12-24.
    [40]郭荣生.铁道车辆在曲线上脱轨问题的基本轮轨关系-轮对的导向能力[J1.铁道车辆,1981,1:9-17.
    [41]李富达,黄建苒,樊建民,张京军.小半径曲线上棚车脱轨安全性研究[J].中国铁道科学,1986,2:35-50.
    [42]俞展猷,李富达,李谷.车轮脱轨及其评价[J].铁道学报,1999,21(3):33-38.
    [43]俞展猷.防脱轨性能的评定[J].机车电传动,1999,(5):1-5.
    [44]曾宇清,王卫东,舒兴高,于卫东.车辆脱轨安全评判的动态限度[J].中国铁道科学,1999,20(4):70-76.
    [45]陈光雄,罗赞.轮对脱轨判断原理的初步分析[J].铁道车辆,1990,8:13-18.
    [46]陈光雄,鲍维千.缓和曲线上周期性线路不平顺对车辆脱轨的影响[J].铁道车辆,2000,38(4):1-5.
    [47]薛弼一.脱轨机理及试验研究[D].成都:西南交通大学,1998.
    [48]张卫华,薛弼一,吴学杰,胡柳嘉.单轮对脱轨试验及其理论分析[J].铁道学报,1998,20(1):39-44.
    [49]曾京.车辆系统的蛇行运动分叉及极限环的数值计算[J].铁道学报,1996,18(3):13-19.
    [50]Zeng, J and Wu, P. Stability Analysis of High Speed Railway Vehicles[J]. JSME International Journal,2004,47(2):464-470.
    [51]曾京.轮对稳态脱轨准则的研究[J].铁道学报,1999,21(6):15-19.
    [52]曾京,胡松.轮轨摩擦碰撞及脱轨的研究[J].振动工程学报,2001, 14(1):1-6.
    [53]Zeng J. and Guan Q. Study on Flange Climb Derailment Criteria of a Railway Wheelset[J]. Vehicle System Dynamics,2008,46(3):239-251.
    [54]曾京,关庆华.铁道车辆运行安全评判的轮对爬轨脱轨准则[J].交通运输工程学报,2007,7(6):1-5.
    [55]翟婉明,陈果.根据车轮抬升量评判车辆脱轨的方法与准则[J].铁道学报,2001,23(2):17-26.
    [56]Xiao X., Jin, X. and Wen, Z. Effect of Disabled Fastening Systems and Ballast on Vehicle Derailment[J]. Journal of Vibration and Acoustics,2007, 129(2):217-229.
    [57]Xiao, X., Jin, X., Deng, Y. and Zhou, Z. Effect of Curved Track Support Failure on Vehicle Derailment[J]. Vehicle System Dynamics,2008, 46(11):1029-1059.
    [58]Xiao X., Jin, X., and Wen, Z., Zhu M., and Zhang, W. Effect of Tangent Track Buckle on Vehicle Derailment[J]. Multibody System Dynamics,2010, 25(1):1-41.
    [59]曾庆元,向俊,娄平.车桥及车轨时变系统横向振动计算中的根本问题与列车脱轨能量随机分析理论[J].中国铁道科学,2002,23(1):1-10.
    [60]Xiang, J. and Zeng, Q. Y. A Study on Mechanical Mechansim of Train Derailment and Preventive Measures for Derailment[J]. Vehicle System Dynamics,2005,43(2):121-147.
    [61]Xiang, J. and Zeng, Q. Y. Mechanism and Energy Random Analysis of Train Derailment on Railway Bridges[J]. International Journal of Structural Stability and Dynamics,2009,9(4):585-605.
    [62]沈钢,王福天.轮对蛇行失稳导致脱轨的机理研究[J].上海铁道大学学报,2000,21(8):1-6.
    [63]Garg, V. K. and Dukkipati, R. V. Dynamics of Railway Vehicle Systems[M]. Canada:Academic Press,1984(中译本:铁道车辆系统动力学,沈利人译,成都:西南交通大学,1998.)
    [64]Pearce, T. G. Wheelset Guidance-Conicity, Wheel Wear and Safety[J]. Proceedings of IMechE, Journal of Rail and Rapid Transit,1996,210:1-9.
    [65]Thomsen, P. G. and True, H. (ed.) Non-smooth Problems in Vehicle Systems Dynamics-Proceedings of the Euromech 500 Colloquium[M]. Berlin Heidelberg:Springer-Verlag,2010.
    [66]Wickens, A. H. Fundamentals of Rail Vehicle Dynamics: Guidance and Stability[M]. Netherlands:Taylor & Francis,2003.
    [67]Klingel W. Uber den Lauf von Eisenbahnwagen auf gerader Bahn (On the Performance of Railway Vehicles on a Straight Track)[J]. Organ fur die Fortschritte des Eisenbahnwesens,1883,38(4):113-123.
    [68]Matsudaira, T. Hunting Problem of High-Speed Railway Vehicles with Special Reference to Bogie Design for the New Tokaido Line[J]. Proc. Instn. Mech. Engrr.,1965-66,180(3F):58-66.
    [69]Cooperrider, N. K., Law, E. H., Hull, R., Kadala, P. S. and Tuten, J. M. Analytical and Experimental Determination of Nonlinear Wheel/Rail Geometric Constraints[C]. Symposium on Railroad Equipment Dynamics, Trans. ASME,1976.
    [70]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究[J].西南交通大学学报,1983,(3):40-48.
    [71]王开文.车轮接触点轨迹及轮轨接触几何参数的计算[J].西南交通大学学报,1984,(1):89-99.
    [72]De Pater, A. D. The Geometrical Contact between Track and Wheelset[J]. Vehicle System Dynamics,1988,17(3):127-140.
    [73]Yang, G. Dynamic Analysis of Railway Wheelsets and Complete Vehicle Systems[D]. Netherlands:Delft University of Technology,1993.
    [74]Fisette, P. and Samin, J. C. A New Wheel/Rail Contact Model for Independent Wheels[J]. Archive of Applied Mechanics,1994,64:180-191.
    [75]贾书惠.刚体动力学[M].北京:高等教育出版社,1989,25-26.
    [76]孙翔,金鼎昌.磨耗形踏面与钢轨的两点接触[J].西南交通大学学报,1985,(2):45-57.
    [77]吴大任.微分几何讲义[M].第4版.北京:人民教育出版社,1981.
    [78]陈开明.非线性规划[M].上海:复旦大学出版社,1991.
    [79]铁道部标准计量研究所.TB/T449-2003机车车辆车轮轮缘踏面外形[S].北京,2003.
    [80]中华人民共和国铁道部.TB/T 2341.3-93 60kg/m钢轨型式尺寸[S].北京,1993.
    [81]ERRI. Development of the S1002 wheel profile on the DB network[S]: Utrecht:ERRI,1979.
    [82]Moreau, A. Characteristics of Wheel/Rail Contact[J]. Rail Engineering International Edition,1992,3:15-22.
    [83]Shabana, A. A., Zaazaa K. E. and Sugiyama H. Railroad Vehicle Dynamics-A Computational Approach [M]. USA:CRC Press,2008.
    [84]Haug, E. J. Computer Aided Kinematics and Dynamics of Mechanical Systems, I:Basic Methods[M]. USA:Allyn and Bacon,1989.
    [85]Knothe, K. and Bohm, F. History of Stability of Railway and Road Vehicles[J]. Vehicle System Dynamics,1999,31:283-323.
    [86]Kalker, J. J. Three-Dimensional Elastic Bodies in Rolling Contact[M]. Netherlands:Kluwer Academic Publishers,1990.
    [87]Kalker, J. J. A Fast Algorithm for the Simplified Theory of Rolling Contact[J]. Vehicle System Dynamics,1982,11(1):1-13.
    [88]Shen, Z., Hedrick, J. K. and Elkins, J. A. A Comparison of Alternative Creep-Force Models for Rail Vehicle Dynamic Analysis[C]. Proceedings of the 8th IAVSD Symposium, MIT, Cambridge,1983. Lisse: Swets&Zeitlinger,1984:591-605.
    [89]Polach, O. A Fast Wheel-Rail Forces Calculation Computer Code[C]. Proc. of the 16th IAVSD Symposium, Pretoria,1999. Vehicle System Dynamics, 33(Sup.):728-739.
    [90]Goldsmith, W. IMPACT. The Theory and Physical Behaviour of Colliding Solids[M]. New York:Dover Publications, Inc.2001,83-91.
    [91]Shabana, A. A., Zaazaa, K. E., Escalona, J. L. and Sany, J. R. Development of Elastic Force Model for Wheel/Rail Contact Problems[J]. Journal of Sound and Vibration,2004,269:295-325.
    [92]Lankarani, H. M. and Nikravesh, P. E. A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems[J]. Journal of Mechanical Design,1990,112:369-376.
    [93]Shabana, A. A., Tobaa M., Marquis, B. and El-Sibaie, M. Effect of the Linearization of the Kinematic Equations in Railroad Vehicle System Dynamics[J]. Journal of Computational and Nonlinear Dynamics,2006, (1):25-34.
    [94]Schiehlen, W. (ed.) Dynamical Analysis of Vehicle Systems[M]. CISM Courses and Lectures,497. Wien:Springer,2007.
    [95]Pfeiffer, F. and Glocker, C. Multibody Dynamics with Unilateral Contacts[M]. USA:John Wiley & Sons,1996.
    [96]Zhai, W. M. Two Simple Fast Integration Methods for Large-Scale Dynamic Problems in Engineering[J]. International Journal for Numerical Methods in Engineering,1996,39(24):4199-4214.
    [97]Kortum, W., Sharp, R. S. and De Pater, A. D. Application of Multibody Computer Codes to Vehicle System Dynamics, Progress Report to the 12th IAVSD Symposium on a Workshop and Resulting Activities[R]. Oberpfaffenhofen, Society for Engineering and Scientific Education,1991.
    [98]Barbosa, R. S. Aplicacao de Sistemas Multicorpos na Dinamica de Veiculos Guiados[D]. Brasil:Escola de Engenharia de Sao Carlos-USP,1999.
    [99]舒兴高.基于多体动力学的轮轨关系与摆式客车控制的仿真研究[D].上海:上海交通大学,1997.
    [100]关庆华,曾京,陈哲明.考虑冲角影响的改进脱轨准则[J].中国铁道科 学,2009,30(3):
    [101]Elkins, J. A. Prediction of Wheel/Rail Interaction:The-State-of-the-Art[J]. Vehicle System Dynamics,1992,20(6):1-27.
    [102]Yokose, K. A Theory of the Derailment of Wheelset[J]. Quarterly Report of RTRI,1966,7(3):30-34.
    [103]Arai, S. and Yokose, K. Simulation of Lateral Motion of 2-Axle Railway Vehicle in Running[C]. The Dynamics of Vehicles on Roads and on Railway Tracks, Proceedings of IUTAM Symposium. Deft, Netherlands,1975. Lisse: Swets and Zeitlinger B.V.,165-169.
    [104]Guan Q. and Zeng, J. Wheel Rail Lateral Impact and Derailment Safety Assessment[J]. Journal of Mechanical Systems for Transportation and Logistics,2010,3(1):326-337.
    [105]Brach, R.M. Mechanical Impact Dynamics-Rigid Body Collisions[M]. USA:John Wiley & Sons,1991,147-159.
    [106]Mirtich, B. V. Impulse-Based Dynamic Simulation of Rigid Body Systems[D]. USA:University of California at Berkeley,1996.
    [107]Stronge, W. J. Impact Mechanics[M]. UK:Cambridge University Press, 2000.
    [108]Elkins, J. A. and Carter, A. Testing and Analysis Techniques for Safety Assessment of Rail Vehicles:The State-of-the-Art[J]. Vehicle System Dynamics,1993,22(3):185-208.
    [110]Matsui, S. A Study on the Derailment of Two-Axle Freight Car Due to Interaction Between Track and Vehicle-Mechanism of the Phenomenon and Factors Affecting the Safety[J]. Quarterly Reports of RTRI.1973, 14(4):214-223.
    [111]Ikemori M. A Study of Track Maintenance for the Derailment due to the Interaction between Track and Vehicle[J]. Quarterly Reports of RTRI,1978, 19(1):1-6.
    [112]Matsuura, A. Dynamic Interaction of Vehicle and Track[J]. Quarterly Reports of RTRI,1992,33(1):31-38.
    [113]O'Donnell, C. A. and Carter A. K. Factors Influencing Derailment Risk[M]. Railway Engineering Systems and Safety. UK:IMechE,1996, C511/17/068, 87-96.
    [114]Kunieda, M. Several Problems about Rolling Stock Which Can Run on Curves at High Speed[J]. Quartely Reports of RTRI,1972,13(1):1-7.
    [115]王福天(主编).车辆系统动力学[M].北京:中国铁道出版社,1994.
    [116]吕可维.车辆系统非线性动力学问题研究[D].成都:西南交通大学,2004.
    [117]刘宏友.高速列车中的关键动力学问题研究[D].成都:西南交通大学,2003.
    [118]石田弘明,松尾雅树,手塚和彦,植木健司.铁道车両ゐ新しぃ论重,横压,脱线係数连続测定法(测定装置の開発)[J].日本机械学会论文集(C编),1997,63:97-103.
    [119]陈建政.轮轨作用力和接触点位置在线测量理论研究[D].成都:西南交通大学,2008.
    [120]侯卫星,王卫东,曾宇清.高精度高速连续测量轮轨动态作用力的研究[J].铁道学报,2010,32(1):24-29.
    [121]Miyamoto, M.; Fujimoto, H.; Okabe, T.; Sato, E. New Measuring Methods for Wheelset Angle of Attack of Railway Vehicle on Curves[J]. JSME International Journal, Series C,1994,37(2):292-299.
    [122]Matsumoto, A., Sato, Y., Ohno H., Tomeoka, Masao. and Matsumoto, K. etc. A new measuring method of wheel-rail contact forces and related considerations[J]. Wear,2008,265(9-10):1518-1525.
    [124]杨吉忠.考虑空气动力效应时高速列车运行安全平稳性研究[D].成都:西南交通大学,2009.
    [125]Schiehlen, W. (ed.) Multibody Systems Handbook[M]. Berlin: Springer-Verlag,1990.
    [126]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学,2000.
    [127]Esveld, C. Modern Railway Track[M]. Second Edition. Netherlands: MRT-Production,2001.
    [128]童大埙(主编).铁路轨道[M].北京:中国铁道出版社,1995,21-25.
    [129]国家标准局,GB5599-85铁道车辆动力学性能评定和试验鉴定规范[S].北京,1985.
    [130]中华人民共和国铁道部,高速动车组整车试验规范[S].北京,2008.
    [131]TSI L84/132,26.3.2008, Concerning a Technical Specification for Interoperability Relating to'Rolling stock'Sub-system of The Trans-European High-Speed Rail System[S]. Belgian:Official Journal of the European Union,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700