湿式双离合器自动变速器换档过程关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着车辆自动操纵技术的迅速发展,自动变速器呈现蓬勃发展的趋势,自动变速器性能的充分发挥可使整车具有降低燃油消耗率、改善排放、提高动力传动系统使用寿命及减轻驾驶者劳动强度等优点,因此得到了越来越广泛的应用。
     双离合器自动变速器(Dual Cluth Transmission,简称DCT)是一种新型自动变速器,它是在平行轴式变速器基础上发展而来,将奇、偶数档位分别布置在两个离合器上,通过两个离合器交替实现换档。它既保持了传统手动变速器结构简单、机械效率高等优点,又能实现动力无中断换档,提高车辆动力性和经济性,改善换档品质。因此近年来DCT已成为国际变速器领域研究开发的热点。
     本文基于国内外DCT研究现状,结合国家“863”高技术研究发展计划资助项目“6档双离合器自动变速器开发”,对湿式双离合器自动变速器换档过程关键技术进行了深入研究,主要研究内容如下:
     (1)在分析了湿式双离合器自动变速器电液系统组成和原理基础上,对DCT换档过程中的电液系统相关电液阀特性进行了分析与建模仿真,并进行了试验验证,仿真结果和试验数据能够较好的吻合。
     (2)对DCT预选档过程的预选档特性和换档力控制技术进行了研究,并针对换档力控制技术,对同步器工作过程进行了分析,在此基础上建立了同步过程数学模型和预选档过程换档阻力模型,并对预选档过程换档拨叉的目标位置及该位置对应的换档力进行了研究。在此基础上,进行了整车试验,验证了所制定的换档力模糊控制策略的有效性,对改善DCT换档品质有实际意义。
     (3)对DCT换档过程离合器控制的最佳目标扭矩确定方法进行了研究。在对双离合器自动变速器不同工况的换档过程进行分析的基础上,制定了分阶段换档策略,建立了各阶段换档动力学模型。根据二次型最优控制理论,结合换档品质评价指标,选定滑磨功和冲击度作为二次型性能指标函数,建立了换档过程的状态空间模型,依此求得换档过程各个阶段的离合器最优目标扭矩,并结合试验车参数进行了不同权重系数的换档过程仿真,通过仿真对比,表明了通过调整权重系数,可以使滑磨功和冲击度得到有效平衡,通过运用基于二次型最优的DCT换档过程离合器目标扭矩决策技术可以获得较好的换档品质。
     (4)对DCT换档过程的湿式离合器压力控制方法进行了研究。在对湿式双离合器结构、工作原理和扭矩传递特性进行分析的基础上,建立了湿式离合器扭矩模型,为湿式离合器基于数学模型的控制奠定基础。鉴于数学模型控制中精确度不足及长期使用后性能改变的问题,将PSD控制算法引入到单神经元PID控制中,形成单神经元自适应PSD智能控制器并应用到湿式离合器控制系统中,建立离合器压力智能控制算法并进行整车试验,试验结果表明基于单神经元自适应PSD的湿式离合器控制算法跟随性好,控制精度高,使车辆具有较好的换档特性。
     (5)在分析驾驶员类型基础上,进行了有关DCT换档过程中基于驾驶员类型的DCT换档规律及其确定方法的研究。采用BP神经网络分类器对驾驶风格进行辨识,再采用贝叶斯融合决策方法先后对同类操纵的驾驶风格辨识结果和所有操纵类型驾驶风格辨识结果进行了数据融合决策,最终辨识出驾驶员类型。根据驾驶员类型,制定了基于驾驶员类型的DCT换档规律,通过对不同驾驶员类型的DCT换档规律仿真对比,表明了基于驾驶员类型的DCT换档规律能够适应不同类型的驾驶员需求。
     本文通过理论分析与试验研究相结合的方法,对湿式双离合器自动变速器换档过程关键技术进行了深入研究,试验结果表明获得了较好的换档品质,对湿式双离合器自动变速器换档技术的开发具有一定的参考价值。
With the rapid development of automatic control technology, automatic transmission has been developing vigorously. It has the virtues of reducing fuel consumption, improving emissions, enhancing the life of driveline and relieving labour intensity of drivers etc. Thus, it has been applied more and more frequently.
     Dual clutch transmission is a new type of transmission. It is based on the parallel axis type transmission. Odd and even gears are respectively arranged with two clutches and shift by exchanging the two clutches. It not only maintains the merits of simple structure, low cost and high mechanical efficiency compared with conventional manual transmission, but also attains shifting without power interruption, and improves power performance, fuel economy and shifting quality. So in recent years, DCT has been a focus of the research in the field of international transmission.
     This paper is based on the current situation of the research on DCT, combining with the national 863 Science Plan of China-Imlpementing Scheme on "the development of six-speed dual clutch transmission".The key technologies during the shifting process of wet dual cluth transmission are studied. The main contents of research are as follows:
     (1) Based on the analysis of the functions, compositions and operation principles of electrohydraulic system, the hydraulic characteristics of shifting force control and clutch pressure control are studied. The models of shifting force control module and clutch pressure control valve are established and simulations are carried out. And solenoid valve test is conducted on a hydraulic pressure colligation test-bed, the test results show that the simulating outcomes are in coincidence with the experimental data, reflecting the basic properties of electromagnetic pressure control.
     (2) Characteristics of pre-select gears and control technology of shifting force are researched. Mathematical model of synchronous process and resistance model of pre-select gears process are established based on the working process of synchronizer. The target position of shifting fork in the process of pre-select gears and the shifting force corresponding to the position are determined. The fuzzy control strategy of shifting force is proved to be effective by the vehicle test.
     (3) The determination method of cluth optimum target torque in the shifting process is studied. Staged shift strategy is formulated and shifting dynamical models in different stages are established based on analysis of dual clutch transmission in the shifting process of different working conditions. An optimal control trajectory of clutch pressure at every shift stage is obtained by optimal control algorithm in which longitudinal jerk and friction work are chosen to form quadratic performance index functions, and the optimal control of clutch pressure in the shift process is realized using optimal control trajectories. Jerk and friction during shifting process can be well equilibrated by adjusting weight coefficients.
     (4) The structure of wet dual clutch, its operating principles and torque transfer characteristics are analysed, then the troque model of wet clutch is established based on the analysis. Considering the accuracy of mathematical control model is not precise enough and the quality change after using for a long time, PSD control arithmetic is introduced into the single neuron PID control, and the single neuron adaptive PSD intelligent controller is formed and applied into wet clutch control system. The clutch pressure intelligent control algorithm is built and the real vehicle tests are done. Test results show that the wet clutch control arithmetic based on the single neuron adaptive PSD possesses good following performance and high control precision. Based on the optimal theory of the clutch target torque, the determination technique keeps slipping work and jerk well balanced and supplies the vehicle with good shift characteristics.
     (5) The DCT shift schedule based on driver type is studied. After identifying the driving style with BP neural network classifier, the data fusion decision is made based on the driving style identification result of manipulation and the driving style identification result of all different manipulation with bayesian fusion decision method, and the driver type is identified in final. DCT shift schedule based on driver type is established with the identification result, and the simulation is carried out. The validity of the shift schedule is verified by the simulation results.
     In this paper, the key technologies during the shifting process of wet dual cluth transmission are studied by theoretical analysis associated with experimental research. The results show that a good shifting quality is achieved, which has some reference value to the shifting technology development of wet dual cluth transmission.
引文
[1]冯巍.湿式双离合器自动变速器起步与换档控制技术研究[D].长春:吉林大学汽车工程学院,2010.
    [2] Kégresse,A.Zahn der wechselgetriebe für Kraftfahzeuge[P].München:Patent.De 894204.1939.
    [3] H.Flegl,R.Wüest,N.Stelter,I.Szodfridt.Das Porsche-Doppelkupplungs (PDK-)Getriebe[J].ATZ Automobiltechnische Zeitschrift,1987,89(9):439-452.
    [4] Manish Kulkarni,Taehyun Shim,Yi Zhang.Shift dynamics and control of dual-clutch transmissions[J].Mechanism and Machine Theory,2007,42(2):168-182.
    [5] Wheals J,Turner A,Ramasy K,et al.Double Clutch Transmission (DCT) Using Multiplexed Linear Actuation Technology and Dry Clutches for High Efficiency and Low Cost[C].SAE Paper 2007-01-1096,2007.
    [6] Razzacki S,Hottenstein J.Synchronizer Design and Development for Dual Clutch Transmission (DCT) [C].SAE Paper 2007-01-0114,2007.
    [7] Y.Zhang,X.Chen,X.Zhang,et al.Dynamic Modeling and Simulation of a Dual-Clutch Automated Lay-Shaft Transmission[J].Journal of Mechanical Design,Transactions of the ASME,2005,127(2):302-307.
    [8] S.Hurley,C.D.Tipton,S.P.Cook.Lubricant Technology for Dual Clutch Transmissions [C].SAE Paper 2006-01-3245,2006.
    [9] Wagner U,Wagner A.Electrical Shift Gearbox (ESG)-Consistent Development of the Dual Clutch Transmission to a Mild Hybrid System[C].SAE Paper 2005-01-4182,2005.
    [10] Goetz M,Levesley M,Crolla D.Integrated Powertrain Control of Gearshifts on Twin Clutch Transmissions.SAE Paper 2004-01-1637,2004.
    [11] Goetz M,Levesley M,Crolla D.Dynamics and Control of Gearshift on Twin-Clutch Transmissions[J].Journal of Automobile Engineering,2005,219(8):951-963.
    [12] Bernd Matthes . Dual Clutch Transmissions-Lessons Learned and Future Potential[C].SAE Paper 2005-01-1021,2005.
    [13]杨伟斌,吴光强,秦大同.双离合器式自动变速器传动系统建模及换档特性[J].机械工程学报,2007,43(7):188-194.
    [14]姚晓涛,秦大同,刘振军.双离合器自动变速器起步控制仿真分析[J].重庆大学学报(自然科学版),2007,30(1):13-17.
    [15]张金乐,马彪,张英锋,等.双离合器自动变速器换档特性与控制仿真[J].农业机械学报,2010,41(5):6-11.
    [16]程秀生,冯巍,陆中华,等.湿式双离合器自动变速器起步控制[J].农业机械学报,2010,41(1):18-22.
    [17]胡宏伟,王向红,武和全.基于遗传算法的双离合器式变速器换档过程离合器摩擦力矩优化控制[J].机械科学与技术,2011,30(3):489-492.
    [18]李瑜婷,赵治国,章桐.DCT变速器双离合器压力最优控制方法仿真研究[J].中国机械工程,2010,21(12):1496-1501.
    [19]吴明翔,鲁统利,倪春生,等.双离合器自动变速器双离合器起步与换档的反馈线性化控制的研究[J].机械科学与技术,2010,29(10):1285-1290.
    [20]张建国,雷雨龙,刘洪波,等.干式双离合器自动变速器快速控制原型与台架试验[J].吉林大学学报(工学版),2010,40(4):901-905.
    [21]胡宏伟.湿式自动离合器接合过程特性的研究[D].杭州:浙江大学机械与能源工程学院,2008.
    [22] Xiusheng Cheng,Xi Liu.Research on Starting Control of Wet Dual Clutch Transmission[C].2010 International Conference on Computer,Mechatronics, Control and Electronic Engineering (CMCE 2010),2010.
    [23]吴光强,杨伟斌,秦大同.双离合器式自动变速器控制系统的关键技术[J].机械工程学报,2007,43(2):13-20.
    [24]胡丰宾,孙冬野,秦大同,等.DCT双离合器联合起步模式建模与仿真[J].江苏大学学报(自然科学版),2010,31(1):19-25.
    [25] ZHANG Jin-le,MA Biao,ZHANG Ying-feng,et al.Simulation study on starting of dual clutch transmission for tracked vehicles[J].Journal of Beijing Institute of Technology,2011,20(1):77-83.
    [26]郭晓林,胡纪滨,苑士华,等.DCT系统换档品质的控制方法[J].机械科学与技术,2006,25(6):698-701.
    [27]刘振军,郝宏伟,董小洪,等.湿式双离合器自动变速器换档控制与仿真分析[J].重庆大学学报,2011,34(1):7-14.
    [28]陆中华,程秀生,冯巍.湿式双离合器自动变速器的升档控制[J].农业工程学报,2010,26(5):132-136.
    [29]翁晓明.湿式双离合器变速器换档品质的研究[J].汽车工程,2009,31(10):927-931.
    [30]何宁,赵治国,李瑜婷.双离合器自动变速器换档规律及其仿真评价[J] .中国机械工程,2011,22(3):367-373.
    [31] H.E.Merritt.Hydraulic Control Systems [M].New York:Wiley,1967.
    [32] N D Vanghan,J B Gamble.The modeling and simulation of a proportional solenoid valve [J].ASME Journal of dynamic system Measurement and Control, 1996,118(2):120-125.
    [33]张齐.基于Ansoft的比例电磁铁电磁力的有限元分析[J].沈阳师范大学学报(自然科学版),2009,27(3):306-309.
    [34]李其朋,丁凡.比例电磁铁行程力特性仿真与实验研究[J].农业机械学报,2005,36(2):104-107.
    [35]路甬祥,胡大纥.电液比例控制技术[M].北京:机械工业出版社,1988.
    [36]宋鸿尧,丁忠尧.液压阀设计与计算[M].北京:机械工业出版社,1979.
    [37]毕乾坤,张东波,程秀生.CVT电液系统中电磁阀特性的仿真与试验研究[J] .汽车技术,2007(6):29-32.
    [38] Baek-Hyun Cho,Gyu-Hong Jung,Jae-Woong Hur,et al.Modeling of Proportional control solenoid valve for automatic transmission using system identification theory[C].SAE Paper 1999-01-1061,1999.
    [39] K. Dasgupta,J. Watton.Dynamic analysis of proportional solenoid controlled piloted relief valve by bondgraph[J].Simulation Modelling Practice and Theory,2005,13(1):21-38.
    [40] Harold Klee,Randal Allen.Simulation of Dynamic Systems with MATLAB and Simulink[M].Florida:CRC Press,2007.
    [41] Mohammad Nuruzzaman.Modeling and Simulation In SIMULINK for Engineers and Scientists[M].Indiana:AuthorHouse,2005.
    [42]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [43]李颖.Simulink动态系统建模与仿真[M].西安:西安交通大学出版社,2009.
    [44] R B Walters.Hydraulic and Electro-Hydraulic Control Systems [M].New York:Elsevier Science,1991.
    [45] Frederick A, Lloyd.Parameters Contributing to Power Loss in Disengaged Wet Clutches[C].SAE Paper 740676,1974.
    [46] Hu Jibin,Peng Zengxiong,Yuan Shihua.Drag Torque Prediction Model for the Wet Clutches[J].Chinese Journal of Mechanical Engineering (English Edition),2009,22(2):238-243.
    [47]杨伟斌.双离合器式自动变速器电子控制系统关键技术的研究[D].上海:同济大学汽车学院,2007.
    [48] T.M.Cameron,T.McCombs,M.Devlin,et al.ATF Friction Properties and Shift Quality[C].SAE Paper 2004-01-3027,2004.
    [49]上海汽车股份有限公司.三锥面同步:中国,200320108196.3[P].2004-12-15.
    [50]陈家瑞.汽车构造[M].北京:人民交通出版社,2005.
    [51] Lovas László,Play Daniel,János Márialigeti,et al.Modelling of Gear Changing Behaviou[J]. Periodica Polytechnica Ser,2006,34(1-2):35-58.
    [52] Hiroaki Hoshino . Simulation on Synchronization Mechanism of Transmission Gearbox[C].International ADAMS User Conference,1998.
    [53] N.A.Abdel-Halim,D.C.Barton,D.A.Crolla,et al.Performance of multicone synchronizers for manual transmissions[J].Journal of Automobile Engineering,2000,214(1):55-65.
    [54]赵世琴,黄宗益,陈明,等.同步器换档接合过程的数学模型[J].同济大学学报,1999,27(6):676-680.
    [55] Lee M.Sykes.The Jaguar XJ220 Triple-Cone Synchronizer A Case Study[C].SAE Paper 940737,1994.
    [56]余盼霞.机械自动变速器电动换档执行机构动态特性分析[D].重庆:重庆大学机械工程学院,2010.
    [57]董荷强.重型车AMT选换档执行机构系统特性研究[D].长春:吉林大学汽车工程学院,2011.
    [58] Joohyung Kim,Sangjoon Park,Hanlim Song,et al.Statistical simulation of shift force for a manual transmission[J].Journal of Mechanical Science and Technology,2004,18(3):471-480.
    [59] S.J.Park,W.S.Ryu,J.G.Song.Development of DCT Vehicle Performance Simulator to Evaluate Shift Force and Torque Interruption[J].International Journal of Automotive Technology,2006,7(2):161-166.
    [60] Rohit Kunal,Ganesh Adiga,Sanjay Gill,et al.Simulation of Gear Shift Force Curve and Shift Rail Ramp Profile[C].SAE Paper 2010-01-0896,2010.
    [61] A.Majumdar,B.Bhushan.Fractal Model of Elastic-Plastic Contact Between Rough Surfaces[J].Journal of Tribology,1991,133(1):1-11.
    [62]陈国安,葛世荣.基于分形理论的磨合磨损预测模型[J].机械工程学报,2000,36(2):29-33.
    [63]戴丰,鲁统利,张建武.基于分形理论的同步器接触磨损模型[J].汽车技术,2009(5):15-18.
    [64]易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,1999.
    [65]师黎.智能控制理论及应用[M].北京:清华大学出版社,2009.
    [66]朱红萍,张振东.汽车电子节气门模糊控制仿真研究[J].汽车科技,2010(01):23-61.
    [67] ZhiYi zhang,DingXuan zhao,Bei sun.Study on fuzzy automatic transmission stratey of vehicles [C].2008 IEEE conference on cybernetics and intelligent systems,2008.
    [68]石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,2001.
    [69] W.武科维奇,M.凯尼格,A.维尔希.控制双离合器变速装置的方法:中国,200410005883.1[P].2004-09-22.
    [70] M.布坎南,R.莱蒙,M.凯尼格.控制双离合器变速装置的方法:中国,200410005885.0[P].2004-08-25.
    [71]陈伟,桂鹏程,翁晓明,等.双离合自动变速器顺序换档控制过程研究[J].合肥工业大学学报(自然科学版),2009,32(11):171-174.
    [72]王建华.车辆电控限滑差速器结构及控制技术研究[D].长春:吉林大学汽车工程学院,2006.
    [73]金伦.双离合器自动变速器建模与控制策略的研究[D].长春:吉林大学汽车工程学院,2006.
    [74]翁晓明.湿式双离合器变速器换档品质的研究[J].汽车工程,2009,31(10):927-931.
    [75] Mikael Holgerson.Optimizing the smoothness and temperatures of a wet clutch engagement through control of the normal force and drive torque[J].Journal of Tribology,2000,122(1):119-123.
    [76]谢克明.现代控制理论[M].北京:清华大学出版社,2007.
    [77] A.Haj-Fraj,F.Pfeiffer.Optimal control of gear shift operations in automatic transmissions[J].Journal of the Franklin Institute,2001,338(2-3):371-390.
    [78] Luigi Glielmo,Francesco Vasca.Optimal Control of Dry Clutch Engagement[C]. SAE Paper 2000-01-0837,2000.
    [79]吴光强,张德明.基于最优控制理论的DCT离合器升档作动方式研究[J].汽车工程,2009,31(3):258-261.
    [80]薛殿伦,冯显武,郑联珠,等.基于最优理论的CVT多片湿式离合器片间压力的确定[J].汽车技术,2007(10):17-20.
    [81]秦大同,陈清洪.基于最优控制的AMT/DCT离合器通用起步控制[J].机械工程学报,2011,47(12):85-90.
    [82]张志刚.关于湿式离合器几个工作特性研究[D].杭州:浙江大学机械与能源工程学院,2010.
    [83] Timothy M.Cameron,Samuel H.Tersigni,Tracy McCombs,et al.ATF effects on friction stability in slip-controlled torque converter clutches[C] . SAE Paper 2003-01-3255,2003.
    [84] E.J.Berger,F.Sadeghi,C.M.Krousgrill.Analytical and numerical modeling of engagement of rough,permeable,grooved wet clutches[J].Journal of Tribology,1997,119(1):143-148.
    [85] Kitabayashi Hisanao,Chen Yuli,Hiraki Henry.Analysis of the various factors affecting drag torque in multiple-plate wet clutches[C].SAE Paper 2003-01-1973,2003.
    [86] Hisayuki Wada,Toru Matsuoka.Initial wet clutch frictional characteristics of ATF/BCVTF under low speed sliding conditions[C].SAE Paper 2003-01-1969,2003.
    [87]冯挽强.CVT湿式离合器接合过程非线性模型及特性研究[D].长春:吉林大学汽车工程学院,2008.
    [88] Yubo Yang,Robert C.Lam.Prediction of torque response during the engagement of wet friction clutch[C].SAE Paper 981097,1998.
    [89] Josko Deur,Josko Petric,Jahan Asgari,et al.Modeling of Wet Clutch Engagement Including a Thorough Experimental Validation[C].SAE Paper 2005-01-0877,2005.
    [90] Shinichi Natsumeda,Tatsuro Miyoshi.Numerical Simulation of Engagement of Paper Based Wet Clutch Facing[J] .Journal of Tribology,1994,116(2):232-237.
    [91] H.Gao,G.C.Barber,M.Shillor..Numerical Simulation of Engagement of a Wet Clutch With Skewed Surface Roughness[J].Journal of Tribology,2002,124(2):305-312.
    [92]张志刚,周晓军,沈路,等.湿式离合器动态接合特性的仿真与试验[J].中国公路学报,2010,23(3):115-120.
    [93]程启明,万德钧,黄林.船舶自动舵的单神经元自适应PID/PSD控制[J] .东南大学学报,1997,27(6):133-137.
    [94]王顺晃,舒迪前.智能控制系统及其应用[M].北京:机械工业出版社,2005.
    [95]杭勇.柴油发动机控制模型及控制算法的设计与仿真研究[D].镇江:江苏大学能源与动力工程学院,2002.
    [96] Marsik J.A new conception of digital adaptive PSD control [J].Problems of Control and Information Theory,1983,12(4):267-279.
    [97]孙跃东,周萍,黄锐.单神经元PSD控制在汽车ABS上的应用[J].合肥工业大学学报(自然科学版),2007,30(6):705-708.
    [98]李长德,鲁五一,王莉.一种自适应PSD伺服控制器的研究[J].计算机工程与科学,2008,30(3):139-141.
    [99]华顺刚,曾令宜,苏铁明.基于线性降维技术和BP神经网络的热红外人脸图像识别[J].大连理工大学学报,2010,50(1):62-66.
    [100] Yi Li,Indriyati Atmosukarto,Masaharu Kobashi,et al.Object and Event Recognition for Aerial Surveillance [J].SPIE Optics and Photonics in Global Homeland Security,2005,5781(4):139-149.
    [101]郭小宾,王壮,胡卫东.基于贝叶斯网络的目标融合识别方法研究[J].系统仿真学报,2005,17(11):2713-2716.
    [102] Sankaran Mahadevan,Ramesh Rebba.Validation of reliability computational models using Bayes networks[J].Reliability Engineering and System Safety,2005,87(2):223-232.
    [103]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700