场地—结构体系基于性能抗震设计分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于城市建设规模的不断扩展及土地资源的减少,在存在液化、震陷及岸坡失稳等抗震不利地段亦开始大量修建高层建筑,场地非线性及稳定性对结构抗震性能影响显著。本文研究目的是在现有抗震规范“三水准二阶段”设计方法基础上,提升基于性能抗震设计理论的实用性及可实现性,并纳入场地非线性、稳定性影响因素,以服务于工程实践。主要包括以下内容:
     1.在建立的小型工程用强震数据库基础上提出了考虑高阶振型影响的输入地震波的选波原则,即以规范谱为基准,采用平台段反应谱的均值误差和对结构影响较大的前几阶周期附近反应谱的加权误差的双控指标进行选波。提出了完全非平稳多点人工波的模拟方法,强度非平稳特性通过传统的包络函数来考虑,频率非平稳特性通过相位差谱来体现,并且针对Clough-Penzien功率谱密度函数建议了模拟多点地震动的峰值因子的取值。
     2.对多级性能设计目标进行了讨论并特别就“中震不屈服”和“中震弹性”提出了若干建议。以一个多层框架结构和一个高层框架剪力墙结构为例,对小震丙类、小震乙类、中震不屈服和中震弹性四个性能目标进行了研究。工程量分析和增量动力分析表明,6度区按中震设计并不能明显提高结构的抗倒塌能力;7度和8度按中震性能目标设计的结构的抗倒塌能力会明显提高,但是工程量增加显著,所以设计时应谨慎,否则可能会无法实际实现。最后,用汶川强震记录分析了汶川地区按7度(震前)和8度(震后)抗震设防设计的框架结构的抗倒塌能力。
     3.提出了场地-支护结构-高层建筑抗震设计的三水准性能目标准则并具体实现,包括场地的滑移和震陷的判断标准、支护结构的抗震性能目标和支护结构对高层建筑整体稳定性的影响分析。福建某建设场地的抗震稳定分析表明,小震下场地只发生轻微震陷,但不会滑移;中震下场地会发生中等震陷,堤岸附近土体会产生一定滑移;大震下场地会发生严重震陷和滑移,将对结构产生较严重影响。支护结构的地震内力分析表明双排支护桩能够满足小震不开裂、中震不屈服、大震不坏的性能目标。
     4.利用生成的多点人工波分析了基岩多点激励下场地和支护结构的抗震性能。分析表明,大多数情况下多点激励会降低地表的地震动参数,减小地表的水平相对位移和竖向震陷位移,减小支护桩的地震内力反应等,但是也会放大某些地震反应,比如堤岸挡墙的最大弯矩反应和第二排支护桩的桩顶水平相对位移等。
     5.研究了双向地震作用下场地非线性对上部高层结构抗震性能的影响。分析表明对于高层框剪结构,考虑场地非线性反应的影响后,体系的绝对加速度、层间位移,以及构件的地震内力反应在不同的楼层均有放大现象,因此折减有时是偏危险的。场地非线性对构件不同方向地震反应的影响不同,双向地震动作用下,各楼层的层间位移、绝对加速度、构件内力的折减系数也并不相同。因此,规范中只采用单一的折减系数亦不太合理。
As construction scope developing and land resources diminishing continuously in city, mass of high-rise buildings are constructed in disadvantage area where exist liquefaction, subsidence and destabilization slop.The field nonlinearity and stabilization has significant influences on structural seismic performance.Based on the design concept of 'three-level and two-stage',the research scope of this paper is focus on upgrading the practicability and realization of performance-based seismic design theory.The other influences factors,such as field nonlinearity and slope stabilization,are also considered.The primary contents include:
     1.A new wave selection method in time history analysis is proposed based on the small database of strong ground motions,in which the influence of higher vibration modes can be considered in structure design.The principle of the method is both the error at platform segment and weighted error near each period between standard spectra and response spectra of the waves are controlled in a specified scope.On the other hand,Simulation method of artificial wave with complete non-stationarity is proposed.Not only the overall spatial variability and non-stationary amplitude are considered,but also the non-stationary of frequency is also taken into consideration.Non-stationarity of wave amplitude is expressed by the traditional envelope function,and frequency non-stationary is incarnated by phase difference spectrum.Aiming at the power spectral density function of Clough-Penzien model, value of peak ratio of ground motion in simulation is advised.
     2.Multiple performance objectives are discussed and several advices are proposed. Taking one multi-story frame structure and a high-rise frame-shear wall structure as example, four performance objectives of frequent seismic design as buildings of category C,frequent seismic design as buildings of category B,non-yielding design under moderate earthquake as buildings of category C and elastic design under moderate earthquake as buildings of category C are studied.Engineering quantity analysis and incremental dynamic analysis indicate that the collapse resistant capacity can't be improved evidently for frame structure designed according to moderate seismic at 6 intensity fortification zone while the capacity enhanced greatly in 7 or 8 intensity zone.However,the quantity are also increased significantly for moderate seismic design in 7 or 8 intensity zone,so it must be cautious in design,or it is impossible to realize.Finally,collapse resistant capacity of frame structure in Wenchuan is also analyzed with the strong ground motions recorded in Wenchuan,in which the building are designed according to seismic fortification 7(pre-earthquake) and 8(post-earthquake) respectively.
     3.A three level performance objective of seismic capacity evaluation for field-shoring-structure system is proposed and realized in design.It is concluded by the analysis of a real project in Fujian province that only slight subsidence without sliding occurred under frequent earthquake;moderate subsidence and certainly sliding at adjacent river bank generated under moderate earthquake;significant subsidence and sliding will be caused by rare earthquake.The seismic inner force of shoring structure indicate that the scheme of double-row supporting pile can meet the objective of 'no cracks under frequent earthquake,no yielding under moderate earthquake and no collapse under rare earthquake'.
     4.The seismic performance of field and shoring structure under multi-point excitations at bedrock are analyzed using the generated multi-point artificial waves.It is shown that the ground motion parameters,horizontal relative displacement and vertical subsidence of field, as well as the seismic inner force of supporting piles can usually be diminished.However, some seismic responses are still amplified,such as moment of retaining wall at river bank and horizontal relative displacement at the top of supporting piles.
     5.The influences of field nonlinearity on seismic performance of super high-rise building under bidirectional horizontal seismic excitation are analyzed.It is indicate that,for high-rise frame-shear wall structure,the absolute acceleration,story drift and seismic inner force of structural member at different stories may be amplified on the consideration of the field nonlinearity,so it may approach to danger when reduced according to Chinese seismic code.Under bidirectional horizontal seismic excitations,the larger reduction factor shall be taken as the influences of field nonlinearity on seismic response at the two directions are different.As a result,single reduction factor specified in Chinese seismic code is irrational.
引文
[1]李英民.工程地震动的模型化研究[D].重庆,重庆大学,1999.
    [2]王亚勇.我国2000年抗震设计模式规范基本问题研究综述[J].建筑结构学报,2000,21(1):2-4.
    [3]罗文斌,钱稼茹.钢筋混凝土结构基于位移的抗震设计[J].土木工程学报,2003,36(5):22-39.
    [4]白晓红,白国良.基于性能抗震设计理论的研究现状及展望[J].河南科技大学学报,2005,26(6):74-77.
    [5]邹昀,吕西林.基于结构性能的抗震设计理论与方法[J].工业建筑,2006,36(9):1-5.
    [6]黄雅捷.钢筋混凝土异形柱框架结构抗震性能极性能设计方法研究[D].西安建筑科技大学博士学位论文,2003.
    [7]HMSO Publications/1991,Building and Buildings:The Building Regulations[S].
    [8]New Zealand Building Code Handbook/1995,New Zealand Building Code[S].
    [9]CCE Australia limited/1996,Building Code of Australia[S].
    [10]Chris D.Making performance-based engineering useful[C].Proc.of the 14th WCEE,Beijing,China.
    [11]SEAOC Vision 2000 Committee.Performance-based seismic engineering of building.Report Prepared by Structural Engineers Association of California,Sacramento,California,USA,1995.
    [12]ATC-40.Seismic evaluation and retrofit of concrete buildings.Applied Technology Council.Red Wood City,California,1996.
    [13]FEMA 274.NEHRP guidelines for the rehabilitation of buildings.Federal Emergency Management Agency,Washington D.C.,September,1996.
    [14]FEMA 356.Pre-standard and commentary for the seismic rehabilitation of buildings.Federal Emergency Management Agency,Washington D.C.,2000.
    [15]Eurocode 8:Design of structures for earthquake resistance.General rules,seismic actions and rules for buildings.British Standards Institution,London,2003.
    [16]李宏男.建筑抗震设计原理.北京:中国建筑工业出版社,1996.
    [17]建筑抗震设计规范(GB50011-2001),.北京:中国建筑工业出版社,2001.
    [18]王东升.双向地震动作用弹塑性反应谱及结构基于位移的抗震设计研究[R].大连理工大学,2004.
    [19]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37.
    [20]Housner G.W.Characteristics of Strong Motion Earthquakes[J].Bull.of Seism.Soc.of Am.,1947,37(1):19-31.
    [21]Scanlan R.and Sachs H.K.Earthquake Time Histories and Response Spectra[J].J.of Eng.Mech.Div.,ASCE,1974,100(4):635-655.
    [22]Tsai N.C.Spectrum-Compatible Motions for Design Purposes[J].J.of Eng.Mech.Div.,ASCE,1972,98(2):345-356.
    [23]杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [24]Rizzo P.C.,Shaw D.E.and Jareki S.J.Development of Real/Synthetic Time Histories to Match Smooth Design Spectra[C].The 2nd Int.Conf.on SMiRT,1973.
    [25]赵凤新,胡聿贤.地震动反应谱与相位差谱的关系[J].地震学报,1996,18(3):287-291.
    [26]Kaul M.K.Stochastic Characterization of Earthquakes Through Their Response Spectrum[J].EESD,1978,6(5):497-509.
    [27]赵风新,刘爱文.地震动功率谱与反应谱的转换关系[J].地震工程与工程振动,2001,21(2):30-35.
    [28]蒋溥,梁小华,雷军,工程地震动时程合成与模拟[M].北京:地震出版社,1991.
    [29]陈永祈,刘锡荟,龚思礼.拟合标准反应谱的人工地震波[J].建筑结构学报,1981,2(4):34-42.
    [30]Ohsaki Y.On the Significance of Phase Content in Earthquake Ground Motions[J].EESD,1979,7(5):427-439.
    [31]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动,1986,6(2):37-49.
    [32]朱昱,冯启民.相位差谱的分布特征和人造地震动[J].地震工程与工程振动,1992,12(1):37-44.
    [33]赵凤新,胡聿贤,李小军.地震动相位差谱的统计规律[J].自然灾害学报,1995,4(增刊):49-56.
    [34]丁海平,廖振鹏.强地震动场相位谱的一种工程预测方法[J].地震工程与工程振动,1996,16(2):76-86.
    [35]杨庆山,姜海鹏,陈英俊.基于相位差谱的时-频非平稳人造地震动的生成[J].地震工程与工程振动,2001,21(3):10-16.
    [36]谭俊林,张文孝,王增光.用相位差谱统计规律探讨人造地震动方法[J].内陆地震,2006,20(1):40-47
    [37]Kiureghian A.D.,Neuenhofer A.Response spectrum method for multi-support seismic excitations[J].Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    [38]刘春城.混凝土自锚式悬索桥三维地震反应研究[D].大连理工大学博士学位论文,2003.
    [39]史志利.大跨度桥梁多点激励地震反应分析与MR组尼器控制[D].天津大学博士学位论文,2003.
    [40]Olivira,Carlos S,Hao,Hong and Penzien,J.Ground Motion Modeling for Multiple-Input Structural Analysis.Structural Safety,1991,10:79-93.
    [41]Harichandran R.S.Estimating the spatial variation of earthquake ground motion from dense array recordings.Structural Safety,1991,10:219-233.
    [42]王君杰.多点多维地震随机模型结构的反应谱分析方法[J].国家地震工程力学所博士学位论文,1992.
    [43]Wolf J.P.吴世明等译.土-结构动力相互作用[M].地震出版社,1989.
    [44]金星,廖振鹏.地震动相位特性的研究[J].地震工程与工程振动,1993,13(1):1-13.
    [45]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [46]冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动,1981,1(2):1-8.
    [47]Harichandran R.S.,Vanmarcke E.H.Stochastic variation of earthquake ground motion in space and time[J].Journal of Engineering Mechanics,ASCE,1986,112(2):154-175.
    [48]Vanmarcke E.H.,Fenton G.A.Conditioned simulation of local fields of earthquake ground motion[J].Structural Safety,1991,10:247-264.
    [49]Loh C.H.,Yeh Y.T.Spatial variation and stochastic modeling of seismic differential ground movement[J].Earthquake Engineering and Structural Dynamics,1988,16(5):583-596.
    [50]Loh C.H.Spatial variability of seismic waves and its engineering application[J].Structural Safety,1991,10:95-111.
    [51]Oliveira C.S.,Hao H.and Penzien J.Ground motion modeling for multiple-input structural analysis[J].Structural Safety,1991,10:79-93.
    [52]Luco J.E.and Wang H.L.Response of a rigid foundation to a spatially random ground motion[J].Earthquake Engineering and Structural Dynamics,1986,14(6):891-908.
    [53]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [54]Kanai K.An empirical formula for the spectrum of strong earthquake motions[J].Bulletin Earthquake Research Institute,University of Tokyo,1961,39(1):85-95.
    [55]胡聿贤,周锡元.弹性体系在平稳和非平稳化地面运动下的反应[R].地震工程研究所报告集,第一集,1962.
    [56]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53.
    [57]Ruiz P.,Penzien J.Probabilistic study of the behavior of structures during earthquakes[J].Earthquake Engineering Research Center,UCB,CA,Report No.EERC 69-03,1969.
    [58]杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动,1994,14(4):1-5.
    [59]杜修力.水工建筑物抗震可靠性设计和分析用的随机地震输入模型[J].地震工程与工程振动,1998,18(4):76-81.
    [60]李英民,赖明.工程地震动模型化研究综述及展望(Ⅱ)平稳模型及均匀调制过程[J].重庆建筑大学,1998,20(4):111-118.
    [61]Priestley M.B.Evolutionary spectra and non-stationary random process[J].Journal of the Royal Statistical Society,Series B,1965,28(2):204-230.
    [62]Ghafory-Ashtiany M.,Singh M.P.Structural response for six correlated earthquake components[J].Earthquake engineering and Structural Dynamics,1986,14(1):103-119.
    [63]黄玉平,刘季.双向水平地震动的空间相关性[J].哈尔滨建筑工程学院学报,1987,(3):10-14.
    [64]王雪生,薛素铎,曹资.结构多维地震作用研究综述与展望(Ⅰ)——地震动输入[J].地震工程与工程振动,2001,17(4):27-33.
    [65]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.
    [66]白国良.空腹式型钢砼(SRC)框架结构随机地震反应分析[J].西安建筑科技大学学报,1999,31(2):103-107.
    [67]董娣.地震动特性的影响因素与不确定性分析[D].北京工业大学博士学位论文,2006.
    [68]刘启方,袁一凡和金星等.近断层地震动的基本特征[J].地震工程与工程振动,2006,26(1):1-10.
    [69]刘启方,袁一凡和金星.断层附近地面地震动空间分布[J].地震学报,2004,26(2):183-192.
    [70]Moehle,J.P.Displacement-based design of RC structures subjected to earthquakes.Earthquake Spectra,1992,3:403-428.
    [71]王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述[J].建筑结构学报,2000,21(1):2-4.
    [72]Priestley,M.J.N.Kowalsky,M.J.Direct displacement-based design of concrete buildings[J].Bull NZ Soc.Earthquake Engineering 2000,33(4):421-440.
    [73]周锡元.抗震性能设计与三水准设防[J].土木水利,2003,30(5):21-32.
    [74]FEMA 368 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[R].Federal Emergency Management Agency,2000.
    [75]Eurocode 8,Design of structures for earthquake resistance,DRAFT No.6[S].European Committee for Standardization,January 2003.
    [76]S.Otani,H.Hiraishi,etc.New Seismic Design Provisions in Japan.Proc.of International conference on Advanced Technologies in Design,Construction and Maintenance of Concrete Structures,Hanoi,2001:1-10.
    [77]王丰.基于性能的结构多维抗震设计方法研究[D].大连理工大学博士学位论文,2007.
    [78]建筑工程抗震性态设计通则(试用)CECS 160:2004,中国工程建设标准化协会标准,中国计划出版社,北京,2004.
    [79]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计研究[J].土木工程学报,2005,38(1):1-10.
    [80]高层建筑混凝土结构技术规程(JGJ 3-2002).中国建筑工业出版社,北京,2002.
    [81]薛彦涛.带转换层型钢混凝土框架-核心筒混合结构试验与设计研究[D].中国建筑科学研究院博士学位论文,2007.
    [82]建筑抗震设防分类标准(GB50223-2004),中国建筑工业出版社,北京,2004.
    [83]黄嘉.基于非线性动力反应分析的钢筋混凝土乙类建筑抗震设计思路的初步探讨[D].重庆大学硕士学位论文,2003.
    [84]多层及高层建筑结构空间有限元分析与设计软件——SATWE[M].中国建筑的雪研究院,2008.
    [85]翟长海,谢礼力.钢筋混凝土框架结构超强研究[J].建筑结构学报,2007,28(1):101-106.
    [86]韩建平,吕西林和李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,27(4):15-23.
    [87]蔡之瑞,孙柏涛.唐山地震震害与重建唐山[J].世界地震工程,1996,4:48-50.
    [88]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,29(4):10-19.
    [89]王亚勇.汶川地震建筑震害启示——抗震概念设计[J].建筑结构学报,2008,29(4):20-25.
    [90]王亚勇.汶川地震建筑震害启示——三水准设防和抗震设计基本要求[J].建筑结构学报,2008,29(4):26-33.
    [91]叶列平,曲哲,陆新征等.提高建筑结构抗地震倒塌能力的设计思想与方法[J].建筑结构学报,2008,29(4):42-50.
    [92]孙柏涛,闰培雷,胡春峰.汶川8.0级大地震极重灾区映秀镇不同建筑结构震害概述及原因简析[J].地震工程与工程振动,2008,28(5):1-9.
    [93]葛学礼,黄世敏,薛彦涛等.汶川地震都江堰市工程震害分析与恢复重建建议[J].工程抗震与加固改造,2008,30(4):2-11.
    [94]门进杰,史庆轩,陈曦虎.汶川地震对远震区高层建筑造成的震害及设计建议[J].西安建筑科技大学学报,2008,40(5):648-653.
    [95]孙景江,马强,石宏彬.汶川地震高烈度区城镇房屋震害简介[J].地震工程与工程振动,2008,28(3):7-15.
    [96]李鸿晶,陆鸣,温增平等.汶川地震桥梁震害的特征[J].南京工业大学学报(自然科学版),2009,31(1):24-29.
    [97]徐珂.对汶川地震中几种震害的认识[J].工程抗震与加固改造,2008,30(6):19-23.
    [98]泉州中芸州—岛工程地质勘察成果说明.福建省建筑设计研究院,2007.
    [99]Implicit dynamic analysis,Abaqus Theory Manual,section 2.4.1,2007.
    [100]Hilber,H.M.,Hughes,T.J.R.and Taylor,R.L.Collocation,dissipation and 'overshoot' for time integration schemes in structural dynamics[J].Earthquake Engineering and Structural Dynamics,1978,6:99-117.
    [101]Hibbitt,H.D.and Karlsson,B.I.Analysis of pipe whip[R].EPRI,Report NP-1208,1979.
    [102]赵明华,李刚,曹喜仁等.土力学地基与基础疑难释义[M].中国建筑工业出版社,2003.
    [103]建筑地基基础设计规范(GB 50007-2002,).北京:中国建筑工业出版社,2008.
    [104]Rosenblueth,E.,Herrera,I.On a kind of hysteretic damping[J].Journal of Engineering Mechanics Division,ASCE,1964,90(1):37-48.
    [105]Pyke,R.Nonlinear soil models for irregular cyclic loadings[J].Journal of the Geotechnical Engineering Division,ASCE,1979,105(6):715-726.
    [106]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的黏弹塑性模型[J].岩土工程学报,1980,2(3):10-19.
    [107]李小军,廖振鹏.土应力应变关系的黏-弹-塑模型[J].地震工程与工程振动,1989,9(3):65-72.
    [108]Yoshda,N.,Kobayashi,S.and Suetomi,I.et al.Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J].Soil Dynamics and Earthquake Engineering,2002,22:205-222.
    [109]李小军.非线性场地地震反应分析方法的研究[D].哈尔滨:国家地震局工程力学研究所,1993.
    [110]Idriss,I.M.and Sun,J.I."SHAKE91:A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits," User's Guide,University of California,Davis,California,13 pp.1992.
    [111]工程场地地震安全性评价技术规范(GB17741-2005),国家质量技术监督局,2005.
    [112]庄海洋.土-地下结构非线性动力相互作用及其大型振动台试验研究fD].南京:南京工业大学,2006.
    [113]庄海洋,陈国兴和朱定华.土体动力粘塑性记忆型嵌套面本构模型及其验证[J].岩土工程学报,2006,28(10):1267-1272.
    [114]楼梦麟,陈清军.侧向边界对桩基地震反应影响的研究[M].上海:同济大学,1999.
    [115]楼梦麟,王文剑,朱彤.土-结构体系振动台模型试验中土层边界影响问题[J].地震工程与工程振动,2000,20(2):30-36.
    [116]陈昌斌,楼梦麟,陶寿福.二维场地地震反应有限元分析的问题讨论[J].震灾防御技术,2006.1(4):292-301.
    [117]赵杰.边坡稳定有限元分析方法中若干应用问题研究[D].大连理工大学,2006.
    [118]刘汉龙,费康和高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,24(4):553-556.
    [119]王兰民,张振中.地震时黄土震陷量的估算方法[J].自然灾害学报,1993,2(3):85-94.
    [120]宿文姬,刘利艳和林慧常等.浅基础水平场地砂土液化危害性评价[J].华南地震,2006,26(3):9-15.
    [121]王峻,王兰民.地震荷载作用下黄土地基震陷研究[J].世界地震工程,2007,23(4):44-47.
    [122]王兰民,张振中.地震时黄土震陷量的估算方法[J].自然灾害学报,1993,2(3):85-94
    [123]岳茂光,王亚勇和吕振利.工程场地堤岸的抗震稳定性分析[J].建筑结构,2009(已录用).
    [124]岳茂光,王亚勇和吕振利.泉州中芸洲一岛——工程场地抗震稳定性分析报告[R].2008.
    [125]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,18(3):358-363.
    [126]全伟.大跨桥梁多维多点地震反应分析研究[D].大连理工大学博士学位论文,2008.
    [127]岳茂光,李宏男,王东升等。行波激励下输电塔.导线体系纵向地震反应分析[J].中国电机工程学报,2006,26(23):145-150.
    [128]全伟,李宏男,岳茂光.多点激励下输电塔-导线体系纵向地震反应分析[J].振动与冲击,2008,27(10):75-80.
    [129]林清,楼梦麟.浦东机场二期航站楼多点地震反应分析[D].同济大学硕士学位论文,2008.
    [130]白建方,楼梦麟,叶爱君.苏通大桥南引桥场地土层地震反应的数值分析[J].震灾防御技术,2007,2(2):176-186.
    [131]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980.
    [132]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [133]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [134]王霓,严士超.土-群桩-结构系统动力特性及相互作用地震反应分析[J].建筑结构学报,1990,11(3):64-80.
    [135]严士超,杜一平.电视塔-桩-土相互作用地震反应分析[J].土木工程学报,1991,24(3):71-79.
    [136]陈素文,严士超.高层建筑-地下室-桩-土系统的相互作用[J].建筑结构,1999,(12):11-20.
    [137]楼梦麟,吴京宁.桩基-结构体系的地震响应分析[J].土木工程学报,1999,32(5):56-61.
    [138]李永梅,孙国富,王松涛等.桩-土-杆系结构的动力相互作用[J].建筑结构学报,2002,23(1):75-81.
    [139]王凤霞,何政,欧进萍.桩-土-结构动力相互作用的线弹性地震反应分析[J].世界地震工程,2003,19(2):58-66.
    [140]陈波,吕西林,李培振等.均匀土-桩基-结构相互作用体系的计算分析[J].地震工程与工程振动,2002,22(3):91-99.
    [141]Trifunac M.D.,Hao T.Y.7-story reinforced concrete building in Van Nuys,California:Photographs of the damage from the 1994 Northbridge earthquake[R].Report CE 01-05,July,2001,Los Angeles,California.
    [142]Tdfunac M.D.,Ivanovie S.S.,Todorovska M.I.Instrumented 7-story reinforced concrete building in Van Nuys,California:Description of the damage from the 1994 Northbridge earthquake and strong motion data[R].Report CE 99-02,July,1999,Los Angeles,California.
    [143]Ivanovie S.S.,Trifunac M.D.,Novikova E.I.etc.Instrumented 7-story reinforced concrete building in Van Nuys,California:Ambient vibration surveys following the damage from the 1994 Northbridge earthquake[R].Report CE 99-03,July,1999,Los Angeles,California.
    [144]陈跃庆,吕西林,李培振等.分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动,2001,21(3):104-112.
    [145]吕西林,陈跃庆.高层建筑结构地基动力相互作用效果的振动台试验对比研究[J].地震工程与工程振动,2002,22(2):42-48.
    [146]吕西林,陈跃庆,陈波等.结构一地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [147]吕西林,张之颖,曹文清.土-结构相互作用体系合成模态阻尼比的振动台模型试验研究[J].力学季刊,2003,24(1):75-80.
    [148]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993,15(4):1:7.
    [149]陈国兴,王志华,宰金眠.土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程,2002,18(4):47-54.
    [150]楼梦麟,王文剑,马恒春等.土-桩-结构相互作用体系的振动台模型试验[J].同济大学学报,2001,29(7):763-768.
    [151]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,22(4):53-59.
    [152]赵振东,傅铁铭.桩头侧向集中荷载作用下桩-土系统的非线性动力性能分析[J].地震工程与工程振动,1997,17(3):100-109.
    [153]张崇文,赵剑明,张社荣等.桩土作用的动力非线性反应层元法[J].岩土工程学报,1996,18(4):1-10.
    [154]Hifnawy L.E.,Novak M.Uplift in Seismic Response of Pile Supported Buildings[J].Earthquake engineering and structure dynamics,1986,14:573-593.
    [155]Kaynia A.M.,Kausel E.Dynamics of piles and pile groups in layered soil media[J].Soil Dynamic and Earthquake Engineering,1991,10:386-401.
    [156]Gazetas G.,Markis N.Dynamic pile-soil-pile interaction.Part Ⅰ:Analysis of axial vibration[J].Earthquake engineering and structure dynamics,1991,20:115-132.
    [157]Markis N.,Gazetas G.Dynamic pile-soil-pile interaction.Part Ⅱ:lateral and seismic response[J].Earthquake engineering and structure dynamics,1992,21:145-162.
    [158]Han Y.C.,Vaziri H.Dynamic response of pile groups under lateral loading[J].Soil Dynamic and Earthquake Engineering,1992,11:87-99.
    [159]Mylonakis G.,Nikolaou A.,Gazetas George.Soil-pile-bridge seismic interaction:kinematic inertial effects.Part Ⅰ:soft soil[J].Earthquake engineering and structure dynamics,1997,26:337-359.
    [160]Carrabba P.,Maugeri M.Nonlinear effects during dynamic loading on piles[C].Prec.of the 11th WCEE,Acapulco,Mexico.
    [161]Finn W.D.L.,Wu G.Nonlinear seismic analysis of pile foundations[C].Prec.of the 11th WCEE,Aeapulco,Mexico.
    [162]Makoto K.Study on nonlinear dynamic analysis method of pile subjected to ground motion[C].Prec.of the 11th WCEE,Acapulco,Mexico.
    [163]建筑结构荷载规范(GB 50009-2001).北京:中国建筑工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700