聚电解质表面修饰聚丙烯微孔膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯微孔膜具有价格低廉、化学和热稳定性好、机械强度高、无毒、孔隙率容易控制等优点。但是聚丙烯的强疏水性导致聚丙烯膜材料表面亲水性差、易带静电、生物相容性差、膜污染严重,这些缺点制约了聚丙烯微孔膜的应用,对聚丙烯膜材料进行适当改性十分必要。本论文的主要研究内容是采用多种聚电解质对聚丙烯微孔膜进行表面改性,包括弱碱型的聚甲基丙烯酸二甲胺乙酪、弱酸型的聚丙烯酸及其盐、聚阳离子型的聚甲基丙烯酰氧乙基三甲基铵盐以及两性离子聚磷脂酰胆碱。
     通过改进的自由基接枝和光引发接枝两种方法制备甲基丙烯酸二甲胺乙酯表面接枝改性的聚丙烯微孔膜。考察了反应温度、单体浓度、引发剂用量、反应时间以及反应介质对接枝反应的影响,用红外光谱对膜表面官能团的变化进行表征,发现以水为反应介质时,甲基丙烯酸二甲胺乙酯在聚合过程中发生水解反应。扫描电镜照片显示,接枝后膜的部分微孔被堵塞。接触角和牛血清白蛋白吸附试验显示,经过接枝改性,提高了聚丙烯膜的亲水性能和抗污染性能。当接枝率为1.6wt.%~2.5wt.%时,改性膜的水通量增加,且稳定性提高。
     合成并表征了几种磷脂中间体:2-烷氧基2-氧-1,3,2-二氧磷杂环戊烷,其中烷氧基的碳原子数为8,12,14,16,18等。采用甲基丙烯酸二甲胺乙酯接枝聚丙烯膜与2-烷氧基-2-氧-1,3,2-二氧磷杂环戊烷进行开环反应来制备磷脂改性聚丙烯膜。发现磷脂改性膜中长链烷基存在分子翻转现象,提出了磷脂分子会形成疏水表面和亲水表面两种结构,在一定条件下两种表面会相互转化。考察了分子翻转对接触角、水通量的影响,发现磷脂改性聚丙烯膜具有良好的耐蛋白质污染性能和血液相容性。
     将甲基丙烯酸二甲胺乙酷改性聚丙烯膜进行季铵化反应,得到了聚甲基丙烯酰氧乙基三甲基铵盐改性的聚丙烯微孔膜,研究了膜的表面官能团变化以及对膜的亲水性、水溶胀性、水通量的影响。将改性膜用于蛋白质和酶的固定化,发现蛋白质和酶的固定量先随着接枝率增加而减少,接枝率达到2.5wt%~3wt%时,蛋白质和酶的固定量又随接枝率增加而上升。固定到膜上的酶具有较高的活性保留率,达57%。
    
     采用过氧化苯甲酞为引发剂,制备了聚丙烯酸改性聚丙烯膜,研究了反应温
    度、反应时间、引发剂用量、单体浓度、溶剂以及交联剂对接枝反应的影响,发
    现加入交联剂后接枝率迅速上升。对聚丙烯酸改性膜的表面成分、结构变化、亲
    水性能、抗蛋白质污染性能等进行了研究,发现聚丙烯酸改性膜具有很好的亲水
    性能和抗蛋白质污染性能。当接枝率达到ZOwt.%以上,聚丙烯膜可以从微孔结
    构变为致密结构,并用改性膜作为渗透汽化膜研究了醇水混合物的分离行为。研
    究了接枝率、交联度、进料温度、配对离子等对分离性能的影响,发现聚丙烯酸
    改性膜和金属离子化后的丙烯酸改性膜都具有优先透水性,用金属离子置换丙烯
    酸中的H十,能提高膜的选择性。不同金属离子对选择性和渗透通量具有很大的
    影响,分离因子按下列次序递减:A尸十>K--+>ca“+>Na+>Li十,渗透通量按下列次
    序递增:A尸+    置换后,渗透通量明显增加,但是分离因子没有下降。
Microporous polypropylene membrane has many desirable properties including high void volumes, well-controlled porosity, chemical intertness and low cost. However, polypropylene membrane is hydrophobic and poor-biocompatible, which lead to serious fouling and limit the membrane use in many fields. In order to enlarge the applications of the microporous polypropylene membrane, it is very necessary to alter the chemical and physical properties of PP membrane surface. Polyeletrolytes are an important class of functional polymers used to modify polymeric membrane. In this thesis, four kinds of polyelectrolyte, including poly(N,N-dimethylaminoethyl methacrylate), poly(phosphorylcholine), poly(methacryloyloxyethyl
    trimethylammonium) and poly(acrylic acid), are used to modify the surface of microporous polypropylene membrane.
    N,N-dimethylaminoethyl methacrylate (DMAEMA) is well-known for its biocompatibility and amphiphilicity. Surface modification of microporous polypropylene membranes was performed by radical-induced and photo-induced graft polymerization of N,N-dimethylaminiethyl methacrylate. The factors effected the graft polymerization, such as temperature, monomer concentration, the amount of initiator, were studied respectively. It was found that the monomer hydrolyzed during the graft polymerization when water was used as solvent. Scanning electron microscopy (SEM) pictures demonstrated that part of the micropore was plugged, especially at high grafting degree. Water contact angle measurement showed that moderate grafting degree could improve the membrane hydrophilicity. At the range of 11.30wt.%~12.05wt.% grafting degree, the contact angle reached its minimum (about 74?. The modified membrane at low grafting degree near 1.59~2.52wt.% showed high and stable flux for ultrapure water. The BSA adsorption experiment indicat
    ed that DMAEMA had a dual effect on protein adsorption. At the first stage, the amount of membrane absorbed BSA reduced with the increase of DMAEMA grafting degree. After 14.62wt% grafting degree, the absorbed BSA increased with the increase of DMAEMA graft degree.
    After grafting with DMAEMA, the DMAEMA-grafted polypropylene membranes were reacted with 2-alkyloxy-2-oxide-l,3,2-dioxophospholanes to form
    HI
    
    
    poly(phosphorylcholine)-modified polypropylene membranes. Five
    2-alkyloxy-2-oxide-l,3,2-dioxophospholanes, containing octyloxy-, dodecyloxy-, tetradecyloxy-, 2-hexadecyloxy- and octadecyloxy- groups in the molecular structure respectively, were synthesized and used for the above reation. The FT-IR spectra of the original, the DMAEMA-grafted and the phospholipid polymer modified membranes were used to confirm the change of chemical components on the membrane surface. The turning-over of phospholipid molecules were found, which gave an effect on the water contact angle and water flux. The adsorption experiment of BSA demonstrated that the five kinds of phospholipid-modified membranes had better anti-fouling ability than the unmodified PP membrane and the DMAEMA-modified membranes. For hexadecyloxy-including and octadecyloxy-including membranes, above 6% grafting degree, the membrane was protein-resistant. Platelet adhesion was well suppressed on the phospholipid-modified membranes.
    DMAEMA-grafted polypropylene membranes were also used to form poly(methacryloyloxyethyl trimethylammonium)-modified PP membranes by treating with methyl iodide. The characteristics of poly(methacryloyloxy ethyl trimethylarnmonium)-modified PP membrane, such as the change of functional group on the membrane surface, the hydrophilicity, water swelling and water flux, were studied. BSA and Candida rugosa lipase were immobilized on the ammonium-modified PP membranes. It was found the protein immobilized on the membrane surface decreased with increasing of the graft drgree before the graft degree reach 2.5wt%~3wt%. Above this point, the protein amount immobilized on membrane surface increased. The enzyme immobilized on the ammonium-modified
    PP membrane showed high yi
引文
[1] 时钧、袁权、高从堦主编.膜技术手册.化学工业出版社,第一版,2001年
    [2] 高以炬、叶凌碧编著.膜分离技术基础.科学出版社,第一版,1989年
    [3] R Rautenbach著,王乐夫译.膜工艺—组件和装置设计基础.化学工业出版社,第一版,1998年
    [4] 刘茉娥编著.膜分离技术.化学工业出版社,第一版,2000年
    
    
    [5] M.Mulder著,李琳译.膜技术基本原理.清华大学出版社,2nd,1999年
    [6] 王湛编.膜分离技术基础.化学工业出版社,2000年
    [7] R.E.凯斯廷著,王学松,赵宝泉,张永泰译.合成聚合物膜.化学工业出版社,1992年
    [8] M. Gryta. Concentration of saline wastewater from the production of heparin. Desalination, 129(1), 35~44 (2000)
    [9] M. Gryta, K. Karakulski, A. W. Morawski. Purification of oily wastewater by hybrid UF/MD. Water Research, 35 (15), 3665~3669 (2001)
    [10] S. Nene, S. Kaur, K. Sumod, B. Joshi, K. S. M. S. Raghavarao. Membrane distillation for the concentration of raw cane-sugar syrup and membrane clarified sugarcane juice. Desalination, 147 (1~3), 157~160 (2002)
    [11] J.-M. Li, Z.-K. Xu, Z.-M. Liu, W.-F. Yuan, H. Xiang, S.-Y. Wang, Y.-Y. Xu. Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination. Desalination, 155 (2), 153~156 (2003)
    [12] M. Gryta, M. Tomaszewska, J. Grzechulska, A. W. Morawski. Membrane distillation of NaCl solution containing natural organic matter. Journal of Membrane Science, 181 (2), 279~287 (2001)
    [13] D. Bhaumik, S. Majumdar, K. K. Sirkar. Pilot-plant and laboratory studies on vapor permeation removal of VOCs from waste gas using silicone-coated hollow fibers. Journal of Membrane Science, 167 (1), 107~122 (2000)
    [14] P. H. M. Feron, A. E. Jansen. CO_2 separation with polyolefin membrane contactors and dedicated absorption liquids: performances and prospects. Separation and Purification Technology, 27 (1), 231~242 (2002)
    [15] D. H. Garg, W. Lenk, S. Berwald, K. Lunkwitz, F. Simon,, K.-J. Eichhorn, Hydrophilization of microporous polypropylene celgard membrane by the chemical modification technique. Journal of Applied Polymer Science, 60, 2087~2104 (1996)
    [16] D. Briggs, D. M. Brevis, M. B. Konieczov. X-ray photoelectron spectroscopy studies o polymer surfaces. Part 1: chromic acid etching of polyolefins.
    
    Journal of Material Science, 11, 1270 (1976)
    [17] H. A. Willis and V. J. I. Zichy, in Polymer Surfaces, D. T. Clark and W. J. Feast, Eds., Wiley, New York, 1978, Chap. 15.
    [18] J. Peeling, D. T. Clarkv. Surface ozonation and photooxidation of polyethylene film. Journal of Polymer Science: Polymer Chemistry Edition, 21, 2047 (1983)
    [19] J. Yamauchi, A. Yamaoka, K. Ikemoto, T. Matsui. Graft copolymerization of methyl methacrylate onto polypropylene oxidized with ozone. Journal of Applied Polymer Science, 43, 1197 (1991)
    [20] D. E. Bergbreiter. Polyethylene surface chemistry. Progress in Polymer Science, 19, 529~560 (1994)
    [21] 邓建平,杨万泰.表面光接枝技术及其在分离膜中的应用.膜科学与技术,19(3),13(1999)
    [22] G. Oster, O. Shibata. Graft copolymer of polyacrylamide and natural rubber product produced by means of ultraviolet light. Journal of Polymer Science, 26, 233~237 (1957)
    [23] H. Ma, C. N. Bowman, R. H. Davis. Membrane fouling reduction by backpulsing and surface modification. Journal of Membrane Science, 173, 191~200 (2000)
    [24] H. Ma, R. H. Davis, C.r N. Bowman. Principal factors affecting sequential photoinduced graft polymerization. Polymer, 42 (20), 8333~8338 (2001)
    [25] H. Borcherding, H.-G. Hicke, D. Jorcke, M. Ulbricht. Surface functionalized microfiltration membranes for affinity separation. Desalination, 149, 297~302 (2002)
    [26] 平冈一幸,et al.高分子加工[日],36,605(1987)
    [27] 金关泰主编,高分子化学的理论和应用进展.中国石化出版社,第一版,2001年,第167页
    [28] J. Goodman. The formation of thin polymer films in the gas discharge. Journal of Polymer Science, 44, 551 (1960)
    [29] T. Hirotsu. Water-ethanol separation by pervaporation through plasma graft
    
    polymerized membranes. Journal of Applied Polymer Science, 34, 1159(1987)
    [30] T. Hirotsu, S. Nakajima. Water-ethanol permseparation by pervaporation through the plasma graft copolymeric membranes of acrylic acid and acrylamide. Journal of Applied Polymer Science, 36, 111 (1988)
    [31] L. Liang, M. Shi, V. V. Viswanathan, L. M. Peurrung, J. S.Young. Temperature-sensitive polypropylene membranes prepared by plasma polymerization. Journal of Membrane Science, 177(1~2), 97~108 (2000)
    [32] C. Oehr, M. Müller, B. Elkin, D. Hegemann, U. Vohrer. Plasma grafting—a method to obtain monofunctional surfaces, Surface and Coatings Technology, 116~119, 25~35(1999)
    [33] J. K. Shim, H. S. Na, Y. M. Lee, H. Huh, Y. C. Nho. Surface modification of polypropylene membranes by γ-ray induced graft copolymerization and their solute permeation characteristics. Journal of Membrane Science, 190 (2), 215~226 (2001)
    [34] J. L. Gineste, G. Poucelly. Polypropylene separator grafted with hydrophilic monomers for lithium batteries. Journal of Membrane Science, 107 (1~2), 155~164 (1995)
    [35] N. I. Shatanto, N. I. Zhitariuk. Water flow through polypropylene track membranes modified by radiation-induced grafting. Radiation Measurements, 25(1~4), 721~722 (1995)
    [36] N. I. Shtanko, V. Y. Kabanov, P. Yu. Apel, M. Yoshida. The use of radiation-induced graft polymerization for modification of polymer track membranes. Nuclear instruments and methods in physics research B: Beam Interactions with Materials and A toms, 151, 416~422 (1999)
    [37] N. I. Shtanko, V. Y. Kabanov, P. Yu. Apel, M.Yoshida, A. I. Vilenshii. Preparation of permeability-controlled track membranes on the basis of 'smart' polymers. Journal of Membrane Science, 179(1~2), 155~161 (2000)
    [38] M. Onishi, K. Shimura, Y. Seita, S. Yamashita. Design of a new plasma separation membrane by graft copolymerization. Radiation Physics and Chemistry, 46 (2), 219~223 (1995)
    
    
    [39] Y. Wang, J.-H. Kim, K.-H. Choo, Y.-S. Lee, C.-H. Lee. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 169 (2), 269~276(2000)
    [40] J. O. Karlsson, P. Gatenholm. Solid-supported wettable hydrogels by ozone induced grafting. Polymer, 37 (19), 4251~4256 (1996)
    [41] A. M. Mika, R. F. Childs, J. M. Dickson. Ultra-low pressure water softening: a new approach to membrane construction. Desalination, 121 (2), 149~158 (1999)
    [42] A. M. Mika, R. F. Childs, M. West, J. N. A. Lott. Poly(4-vinylptridine)-filled microfiltration membranes: Phisicochemical properties and morphology. Journal of Membrane Science, 136(1~2), 221~232 (1997)
    [43] B. Glad, K. Irgum, P. H(?)rstedt. Photopolymerization and characterization of methacrylate-based reactive composite membranes. Journal of Membrane Science, 100 (2), 171~179 (1995)
    [44] J. M. Dickson, R. F. Childs, B. E. McCarry, D. R. Gagnon. Development of a coating technique for the internal structure of polypropylene microfiltration membranes. Journal of Membrane Science, 148 (1), 25~36 (1998)
    [45] 聂康明、罗筱烈、王铁群.新型聚丙烯基磺酸性阳离子交换膜的制备和膜体结构研究.离子交换与吸附,5(5),418~424(1999)
    [46] B. Bae, B.-H. Chun, D. Kim. Surface characterization of microporous polypropylene membranes modified by plasma treatment. Polymer, 42, 7879~7885 (2001)
    [47] B. Bae, B.-H. Chun, H.-Y Ha, I.-H Oh, D. Kim. Preparation and characterization of plasma treated PP composite electrolyte membranes. Journal of Membrane Science, 202 (1~2), 245~52 (2002)
    [48] T. Carroll, N. A. Booker, J. Meier-Haack. Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water. Journal of Membrane Science, 203 (1~2), 3~13 (2002)
    [49] D. L. Cho and O. Ekengren. Composite membranes formed by plasma-polymerized acrylic acid for ultrafiltration of beach effluent. Journal
    
    of Applied Polymer Science, 47, 2125 (1993)
    [50] A.M. Mika, R.F. Childs, J.M. Dickson, B.E. McCarry, D.R. Gagnon. A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity. Journal of Membrane Science, 108(1~2), 37~56 (1995)
    [51] L. Liang, X. Feng, L. Peurrung, V. Viswanath. Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. Journal of Membrane Science, 162(1~2), 235~246 (1999)
    [52] M. Ulbricht. Photograft-polymer-modified microporous membranes with environment-sensitive permeabilities. Reactive & Functional Polymer, 31, 165~177 (1996)
    [53] Y. Hideyuki, T. Masakazu. Manufacture of blood compatible artificial lung membrane. Jpn. Kokai Tokkyo Koho JP0515586(1993)
    [54] Y. Y. Petrou, W. M. Charles. Phospholipid polymic coating for blood-containing medical devices. PCT Int. Appl. WO 9221386 (1992)
    [55] 胡克良,黄允兰,李凡庆,杨嘉玲,胡建芳,钱露茜.胶原改性聚丙烯微孔膜的研究.中国科学技术大学学报,29(5),616~618(1999)
    [56] A. Eremenko, I. Kurochkin, S. Chernov, A. Barmin, A. Yaroslavov, T. Moskvitina. Monomolecular enzyme films stabilized by amphophilic polyelectrolytes for biosensor devices. Thin Solid Films, 260, 212~216 (1995)
    [57] S. Kaku, S. Nakanishi, K. Horiguchi. Amperometric enzyme immunoassay for urinary human serum albumin using plasma-treated membrane. Analytical ChimicaActa, 272, 213 (1993)
    [58] H. Okushita, T. Shimidzu. Selective separation of Ga~(3+) through membrane impregnated with N-octadecanoyl-N-phenylhydroxylamine. Journal of Membrane Science, 105(1~2), 43~49 (115)
    [59] B. Glad, K. Irgum, P.H(?)rstedt. Influence of monomer functionality on the formation and ion exchange properties of methacrylate-based interpenetrating polymer network type membranes. Journal of Membrane Science, 101(1~2), 53~59 (1995)
    
    
    [60] I. Osamu, Y. Tomohito, N. Yozo, I. Hiroyuki. Separators for alkaline batteries. Jpn Kokai Tokkyo Koho JP 06140015 (1994)
    [61] M. Toshio. Separators for secondary alkaline batteries. Jpn Kokai Tokkyo Koho JP 0652844 (1994)
    [62] S. A. Piletsky, H. Matuschewski, U. Schedler, and A. Wilpert. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water. Macromolecules, 33, 3092~3098 (2000).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700