正负超磁致伸缩复合薄膜静动态特性及控制关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微系统技术日益广泛地用于医学、生物学、半导体等许多科技和工业领域中,发挥了重要作用。传感和驱动功能是微系统技术的核心,微系统技术的发展要求其材料能对外界信号做出灵敏的响应或输出较大的应力和应变。稀土超磁致伸缩薄膜材料是近年来发展起来的一种新型的功能材料,具有磁致伸缩应变大、响应速度快、能量密度高、各向异性值低,软磁特性好、无涡流损耗和高频驱动等优点,易于实现微型化、智能化和集成化。在微驱动器件中应用时,具有很高的响应速度和较大的输出应力,从而在微系统器件(如悬臂梁驱动器、原子力显微镜探针、超声微马达和微泵等)中处于重要地位。超磁致伸缩薄膜作为一种新兴的功能薄膜材料,特别是正负超磁致伸缩复合薄膜,其有利于开发成微型驱动器件的性能特点还不完全被人们所认知。在国家自然科学基金资助下,本论文以这种新型的薄膜功能材料为基础,以超磁致伸缩薄膜悬臂梁为研究对象,采用理论分析与实验研究相结合的方法,对薄膜的磁致伸缩机理、静动态特性及控制方法进行研究,理论与实验研究结果为推广超磁致伸缩薄膜微型器件在微系统中的应用奠定基础。
     本论文从微观磁致伸缩机理入手,利用弹性小变形理论和微观量子理论建立了薄膜静、动态微观磁致伸缩方程。制备了性能稳定、磁致伸缩应变大、能量密度高、响应速度快的正负超磁致伸缩复合薄膜,超磁致伸缩复合薄膜的基片有两种,分别为聚酰亚胺薄片和铜薄片。研究分析了制备的超磁致伸缩复合薄膜静态磁化的初始磁化曲线、磁滞回线的变化规律,得到制备薄膜的饱和磁化强度、矫顽力以及退磁场等性能参数与相关物理量之间的关系。
     在研究、分析空心圆柱磁场设计方法和计算理论的基础上,针对超磁致伸缩薄膜驱动要求,以磁场强度大小、均匀度分布为目标,对无铁芯、有铁芯两种赫姆霍兹组合线圈的结构尺寸、最优磁场效率系数等进行了设计计算。对设计线圈产生的磁场,以及在这两种磁场作用下,磁致伸缩过程中超磁致伸缩薄膜内部磁场的大小及分布均匀度等方面进行了研究分析。实验结果表明:所研制的两种驱动线圈产生磁场强度的大小足以使超磁致伸缩薄膜产生大的磁致伸缩;线圈产生磁场的均匀度高,能够保证超磁致伸缩薄膜受到一个相对均匀的磁场作用。磁致伸缩过程中,超磁致伸缩薄膜内部磁化磁场的分布非常均匀,大小与薄膜外围磁场强度大小基本一致,方向与薄膜外围磁场方向相反。进一步证明了在薄膜磁-机械耦合模型建立和求解过程中,用超磁致伸缩薄膜外围磁场强度替代薄膜内部磁化磁感应强度的方法是切实可行的。
     根据薄膜磁致伸缩能计算理论,从热力学第一定律出发,建立和求解超磁致伸缩薄膜的磁-机械耦合模型。在超磁致伸缩薄膜梁的磁致伸缩测量原理和方法研究的基础上,结合研制的赫姆霍兹线圈结构形式,完善了正负超磁致伸缩复合薄膜梁磁致伸缩的测量系统。通过对正负超磁致伸缩复合薄膜梁磁致伸缩受力状态的分析研究,从理论上推导出薄膜梁磁致伸缩的挠曲线方程,并对通过实验测得薄膜梁上各个位置偏移量方法得出的薄膜梁挠曲线与利用理论方程得出的挠曲线进行对比分析,结果表明实验挠曲线与理论挠曲线基本吻合。提出了正负超磁致伸缩复合薄膜梁固有频率的计算方法及振动方程,并通过实验对薄膜梁的振动波形进行研究,得出了超磁致伸缩薄
Micro-systems are more and more widely applied in iatrology, biology, semiconductor, and other science and technology fields having played an important role. The functions of micro actuation and micro sensing are the core of the micro-systems technology. The material of the micro-systems is required to produce sensitive response to an outside signal and to output a greater stress and strain. Thulium giant magnetostrictive thin film(GMF) is a new smart material developed recently, which shows many advantages such as large magnetostriction, short response time, high energy density, low anisotropy, soft magnetization and high frequency driving, etc., being able to realize microminiaturization, intellectualization and integration. So, GMF has become a potential material for micro-systems, such as the cantilever driver, the probe of the atomic force microscope, the ultrasonic micro motor. and the micro pump. However, the performance of GMF as a new smart material, especially that of the positive/negative GMF specially suitable for making micro driver, is not yet completely cognized. In this paper, the magnetostriction mechanism, the static and dynamic characteristics and control techniques are studied by combining theoretical analysis with experimental verification. The project is funded by the National Natural Science Foundation of China and the theoretical and experimental achievement will provide a basis for advancing application of GMFs in micro-systems area.Firstly, based on the theory of small elastic deformation and microcosmic quantum mechanics, the static and dynamic magnetostrictive equations are established, and the positive/negative GMF with steady performance, great magnetostrictive strain, high energy density and fast response is formulated. There are two kinds of substrates for positive/negative GMFs made of polyimide (PI) and Cu, respectively. The initial magnetization curve, the magnetic hysteresis loop, the saturation magnetization intensity, the coercive force and the demagnetizing field are measured and analyzed, with the relationship among the performance parameters and relevant physical quantities such as the saturated magnetization intensity, the coercive force and the recessional magnetization, etc. for making positive/negative GMF are obtained.Then, based on the research and analysis of the calculation theory and design method for hollow cylindrical magnetic field, aiming at the requirement for driving, with the intensity of magnetic field and the uniformity of distribution as the objective, two kinds of
    Helmholtz combined coils with and without iron core are designed. The internal magnetic field and the uniformity of distribution in these two magnetic fields are studied and analyzed. The measured results show that, the exciting magnetic filed of the two magnetic fields is strong enough to drive GMFs for large magnetostriction; the uniformity of the exciting magnetic field is high enough to make GMFs under a relatively uniform magnetic field. During the magnetostriction, the internal magnetic field of GMFs is very uniform, with identical magnitude but opposite direction with the exciting magnetic field. As a result, in the process of establishing and solution of the magnetomechanical coupling model, it is feasible and applicable that the internal magnetic field of GMFs is substituted by the external exciting one.According to the magnetoelastic energy theory and the first thermodynamic law, the magneto- mechanical coupling model of GMFs is established and solved. Hence, the measurement system of positive/negative GMFs cantilever is established based on the measurement principle and method of GMFs beam. Through the force analysis of positive/negative GMFs, the flexibility curve equation of GMFs cantilever is deduced. The theoretical flexibility curve is compared with the experimental observations and the results show that the former basically coincide with the latter. Furthermore, based on the static equation, the calculation method for resonant frequency and the vibration equation of positive/negative GMFs are proposed. After studying the vibrating waves of GMFs cantilever, it can be concluded that the vibration equation of GMFs cantilever agrees basically with the harmonic equation of the exciting magnetic field. Finally, with the designed measurement system, the static and dynamic characteristics of the two kinds of GMFs with PI and Cu substrate, respectively, are measured, and the influences of Young modulus of the substrate, the exciting magnetic field and the sizes of GMFs on the static and dynamic characteristics are studied.For the study of control theory and method of GMFs, the control model of GMFs based on Preisach hysteresis model is constituted and the adaptive control arithmetic based on PID controller is also proposed. The static and dynamic control variables are chosen among the exciting current and the magnetic flux density. The experimental results show that, in comparison with the control method based on the exciting current, the control method based on the magnetic flux density exhibits lower magnetic hysteresis and nonlinearity, higher control precision, better repeatability and independence of the change of magnetic field for both static deflection and dynamic vibration magnitude. In order to satisfy the need for short response time, the control theory and method of GMFs based on the vibration frequency are presented. The experimental observations illustrate that with the control methods based on frequency, the vibration responds fast with a higher control precision, which is suitable for control of the vibration response velocity near the resonance frequency of the GMFs micro feed system.Finally, systemic experiments on the magnetostriction of positive/negative. GMFs cantilever and the static-dynamic response properties of two kinds of experimental system
引文
[1] 千东范.微材料学与形状记忆合金薄膜.稀有金属,1995,19(3):211-217
    [2] 杨大智,魏中国.智能材料——材料科学发展新趋势.物理,1997,26(1):6-11
    [3] 董海军,苑伟政,王西彬等.微机械用材料及其特性.航空精密制造技术,1996,32(3):1-4
    [4] 王立鼎,刘冲.微机电系统科学与技术发展趋势.大连理工大学学报,2000,40(5):505-508
    [5] 丁衡高.微机电系统的科学研究与技术开发.清华大学学报(自然科学版),1997,37(9):1-5
    [6] 周兆英,叶雄英,唐飞等.微机电系统技术.电子产品世界,1995,5:19-21
    [7] 程秀兰,蔡炳初,徐东等.形状记忆合金薄膜在微机电系统中的应用.功能材料,2002,33(6):594-597
    [8] 谭茀娃,金如麟.展望21世纪微机电系统的发展.自然杂志,1999,21(2):98-100
    [9] Body C, Reyne G, Meunier G et al. Application of Magnetostrictive Thin Films for Microdevices. IEEE Transactions on Magnetics, 1997, 33 (2): 2163-2166
    [10] 任泰安.微机电系统——二十一世纪的新兴产业.河南机专学报,1996,4(1):5-7
    [11] 张之圣,李晓云,陈金亭.信息功能薄膜器件.仪器仪表学报,2001,22(4):436-437
    [12] Fluitmag J. Microsystems technology: objectives. Sensors and Actuators, 1996, (A56): 151-166
    [13] 吴建生,吴晓东,王征.形状记忆合金薄膜的研究与发展.材料研究学报,1997,11(5):449-455
    [14] 潘俊德,田林海,贺琦等.智能材料研究进展.机械工程材料,1998,22(5):1-3
    [15] 沈润杰,杜设亮,梅德庆等.智能结构振动控制.机电工程,1999,(5):125-127
    [16] Shyy W, Berg M, Ljungqvist D. Flapping and flexible wings for biological and micro air vehicles. Progression Aero space Sciences, 1999, 35 (5): 455-505
    [17] 饶勤.微机电系统的国防应用及其制造技术发展述评(上).航空工程与维修,1998,(3):13-15
    [18] Kuribayashi K, Shimizu S, Nishinohara T, et al. Trial Fabrication of Micron Sized Arm using Reversible TiNi Alloy Thin Film Actuators. In: IEEE/RSJ Proc. of Intelligent Robots and Systems, Yokohama(Japan): IEEE, 1993:1697-1702
    [19] Frazier A. Miniaturization Technologies: Past, Present, and Future. IEEE Transactions on Industrial Electronics, 1995, 42 (5): 423-430
    [20] 路敦武,黄惠杰,沈蓓军等.几种微机械系统组成技术.功能材料与器件学,1998,4(2):138-140
    [21] 刘晓斌.微机电系统的进展分析与研究.机械研究与应用,2002,15(1):72-75
    [22] 杨宜民.新型驱动器及其应用.北京:机械工业出版社,1997
    [23] 汤庭鳌.铁电薄膜的特性、制备及应用.半导体技术,1996,(6):1-7
    [24] 胡正军,王莉,徐东等.PZT压电薄膜在MEMS中的应用.微细加工技术,2001,(4):44-49
    [25] 徐红星,骆英,柳祖亭.PVDF压电薄膜的应用进展.江苏理工大学学报(自然科学版),1999,20(5):88-91
    [26] 李青.形状记忆合金薄膜.金属功能材料,1999,6(1):12-16
    [27] 庄大明,张弓,刘家浚.几种功能薄膜及其产业化应用现状与前景.新材料产业,2001,25(8):27-30
    [28] 谢海涛,斯永敏,杨德明等.超磁致伸缩薄膜材料及其应用.中国有色金属学报,2000,10(增1):266-270
    [29] 杨大智.智能材料与智能系统.天津:天津大学出版社,2000
    [30] 时东陆.功能薄膜与功能材料.北京:清华大学出版社,2002
    [31] 神山雅英,菅田泶治.薄膜工学.东京:一社,1964
    [32] 庄大明,张弓,刘家浚.功能薄膜的研究现状与应用前景.中国表面工程,2001,53(4):1-6
    [33] 欧阳光耀,施引.磁致伸缩材料及其作动器设计.海军工程学院学报,1998,82(1):44-48
    [34] 杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究:(博士学位论文).大连:大连理工大学,2001
    [35] Clark A E. Magnetostrictive rare earth-Fe_2 compounds. In: Ferromagnetic Materials. Edited by Wohlfarth E P roll. Amsterdam North-Holldand Publishing Company, 1980: 531-538
    [36] Fahlander M. New material for the conversion of electric energy to mechanical motion. Proceeding of the 10th International Workshop on Rare-Earth Magnets and their Applications, Japan, 1989: 289-302
    [37] 朱厚卿.稀土超磁致伸缩材料的应用.应用声学,1998,17(5):3-10
    [38] 伊豆,博昭.超磁歪特集材料技术.金属,1993,(3):20-25
    [39] 李成英,袁惠群,周卓.我国稀土超磁致伸缩材料研究与应用开发情况.辽宁工学院学报,1999,19(3):14-20
    [40] 何国,周寿增.我国稀土超磁致伸缩材料的研究与应用现状.材料导报,1996,(5):12-17
    [41] 王槐仁,张友纯,李张明.稀土超磁致伸缩材料及在地球物理领域的应用.物理装备,2003,13(2):73-76
    [42] 稀土材料国家工程研究中心.蓬勃发展的稀土磁性材料.稀土信息,2002,(8):7-11
    [43] 张文旭.磁致伸缩理论及复合磁致伸缩厚膜的研究:(硕士学位论文).成都:电子科技大学,2002
    [44] Lim S H, Kim H J, Na S M et al. Application-related properties of giant magnetostrictive thin films. Journal of Magnetism and Magnetic Materials, 2002, (239): 546-550
    [45] Honda T, Aral K I, Yamaguchi M. Fabrication of magnetostrictive actuators using rare-earth(Tb, Sm)-Fe thin films(invited). J. Appl. Phys., 1994, 76 (10): 6994-6999
    [46] Quandt E. Giant magnetostrictive thin film materials and applications. Journal of Alloys and Compounds, 1997, (258): 126-132
    [47] Grundy P J, Lord D G, Williams P I. Magnetostriction in TbDyFe thin films. J. Appl. Phys., 1994, 76 (10): 7003-7005
    [48] Quandt E, Gerlach B, Seemann K. Preparation and applications of magnetostrictive thin films. J. Appl. Phys., 1994, 76 (10): 7000-7002
    [49] Ruiz D, Angulo L, Abell L et al. Influence of hydrogen on the magnetic properties of Terfenol-D. J. Appl. Phys., 1994, 76 (10): 7157-7159
    [50] Wu L, Zhan W S, Chen X C. The effects of boron on Tb_(0.27) Dy_(0.73)Fe_2 compound. J. Magn. Magn. Mater., 1995, (139): 335-338
    [51] Ren W J, Zhang Z D, Markosyan A S et al. The beneficial effect of the boron substitution on the magnetostrictive compound Tb_(0.27) Dy_(0.73)Fe_2. J. Phys. D: Appl. Phys., 2001, (34): 3024-3027
    [52] Schatz F. Magnetic anisotropy and giant magnetostrictive amphous TbDyFe films. J. Appl. Phys., 1994, 76 (9): 5380-5382
    [53] Prdos C, Panagiotopoulus L. High magnetostriction in low applied magnetic fields in amorohous Tb-Fe (hard)/Fe-B (soft) multilayer. IEEE Trans. On Magn., 1997, 33(5): 3712-3714
    [54] Quandt E, Ludwig A, Mencik J et al. Giant magnetostrictive TbFe/Fe multilayers. J. Alloys Compounds, 1997, 258 (2): 133-137
    [55] 本田崇,荒井賢一.磁性薄膜力驱勤原理関考察.日本应用磁気学会誌,1997,(21):817-820
    [56] Ludwig A, Quandt E. Giant magnetostrictive thin films for applications in microelectromechanical systems(invited). Journal of Applied Physics, 2000, 87 (9): 4691-4695
    [57] EI M, Benbouzid H. Finite Element Modeling of Giant Magnetostriction in Thin Films. IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (6): 3563-3565
    [58] Rengarajan S, Lee B H, Choe G et al. Measurement of Very Low Magnetostrictions in Thin Films. IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (6): 3391-3393
    [59] Tremolet E du. Magnetostriction, Theory and Applications. Boca Raton: CRC, 1993
    [60] Tiercelin N, Pernod P, Preobrazhensky V et al. Non-linear actuation of cantilevers using giant magnetostrictive thin films. Ultrasonics, 2000, (38): 64-66
    [61] 陈海燕,杨庆新,刘素贞等.超磁致伸缩薄膜致动器磁-机械特性研究.低压电器,2004,(8):7-10
    [62] Quandt E, Seemann K. Magnetostrictive thin film microflow devices. In: H. Reichl, A. Heuberger(Eds.), Micro Systems Technologies 96, VDE-Vertag, Berlin, 1996:451-455
    [63] 本田崇,荒井賢一.磁歪薄膜用微小走行横構动作特性.日本应用磁气学会誌,1996,20(2):537-540
    [64] Quandt E, Seemann K. Fabrication of Giant Magnetostrictive Thin Film Actuators. Proceedings of the 1999 IEEE Micro Electro Mechanical Systems Conference, Neth Amsterdam, 1995:273-277
    [65] Lim S H, Choi Y S, Hart S H et al. Magnetostriction of Sm-Fe and Sm-Fe-B thin films fabricated by RF magnetron sputtering. Journal of Magnetism and Magnetic Materials, 1998, (189): 1-7
    [66] Honda T. Basic Properties of Magnetostrictive Actuators Using Tb-Fe and Sm-Fe Thin Films. IEICE TRANS. ELECTRON, 1997, E80-C(2): 232-237
    [67] 本田崇,林嘉隆,山口正洋等.磁歪驱动力薄膜试作.日本应用磁气学会誌,1997,(18):477-480
    [68] Quandt E, Ludwig A, Seemann K. Giant Magnetostrictive Multilayers.for Thin Film Actuators. TRANSDUCERS' 97, International Conference on Solid-State Sensors and Actuators, Chicago, 1997:1089-1092
    [69] Kleman M, Labrune M, Miltat J et al. MAGNETOSTRICTION AND MAGNETOSTRICTIVE EFFECTS IN MAGNETIC MATERIALS. J. Appl. Phys., 1978, 49 (3): 1989-1991
    [70] Lieven V, Jan A A. Modeling of Magnetoelastic Material. IEEE TRANSACTIONS ON MAGNETICS, 38 (2): 993-996
    [71] 王力衡.薄膜技术.北京:清华大学出版社,1991
    [72] 田民波.薄膜科学与技术手册(上册).北京:机械工业出版社,1991
    [73] Yong L. Thin film magnetostrictive sensor with on-chip readout:( Ph.D. Thesis). Ontario, Canada: the University of Waterloo, 1997
    [74] 钟文定.铁磁学(中册).北京:科学出版社,1987
    [75] Lim S H, Kim H J, Na S M et al. Application-related properties of giant magnetostrictive thin films. Journal of Magnetism and Magnetic Materials, 2002, (239): 546-550
    [76] Duc N H. Development of giant low-field magnetostriction in a-TerfecoHan-based single layer, multilayer and sandwich films. Journal of Magnetism and Magnetic Materials, 2002, (242-245): 1411-1417
    [77] Speliotis A, Kalogirou O, Niarchos D. Magnetostrictive properties of amorphous and partially crystalline TbDyFe thin films. J. Appl. Phys., 1997, 81 (8): 5696-5698
    [78] 薛增泉.薄膜物理.北京:电子工业出版社,1991
    [79] 周福洪.水声换能器及基阵.北京:国防工业出版社,1984
    [80] Henryk S. Elastic and Magnetoelastic Behaviour of Nanoscale Magnetic Multilayers. IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (2): 702-707
    [81] 万红,李再轲,邱轶.TbDyFe超磁致伸缩薄膜的低场磁敏特性.中国有色金属学报,2004,14(1):37-41
    [82] 唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,1998
    [83] 万红,斯永敏,谢海涛.NdFeB薄膜制备及对TbFe薄膜磁致伸缩性能的影响.金属功能材料,2001,8(3):13-16
    [84] 卢志红,周白杨,邓光华等.工艺参数对Sm-Fe超磁致伸缩薄膜沉积速率的影响.稀土,2004,25(3):9-12
    [85] 谢海涛,刘希从,斯永敏等.热处理对Tb0.27Dy0.73Fe2巨磁致伸缩薄膜性能的影响.2001,19(3):38-42
    [86] Seong Y H, Kim K S, Yu S C. A Magnetization Behavior of Giant Magnetostrictive Amorphous Sm-Fe Thin Films. IEEE TRANSACTIONS ONMAGNETICS, 1999, 35 (5): 3808-3810
    [87] Yamaki T, Sekine M, Haraki T et al. Giant magnetostrictive thin film formation by plasma process. Surface and Coatings Technology, 2003, (169-170): 613-615
    [88] Inoue M, Fujii T. Improvement of Low Field Magnetostriction of Amorphous TbFe Sputtered Films by Thermal Annealing. IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (5): 4758-4760
    [89] Honda T, Hayashi Y, Arai K I et al. Magnetostriction of Sputtered Sm-Fe Thin Films. IEEE TRANSACTIONS ON MAGNETICS, 1993, 29 (6): 3126-3128
    [90] Williams P I, Lord D G, Grundy P J. Magnetostriction in polycrystalline sputter-deposited TbDyFe films. J. Appl. Phys., 75 (10): 5257-5261
    [91] Toshiyuki S, Hiroyasu F. An accurate measurement of magnetostriction of thin films by using nano-indentation system. IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (5): 3832-3834
    [92] Arai K I, Yamaguchi M, Muranaka C S. MEASUREMENT OF THIN FILM' S MAGNETOSTRICTION WITH PIEZOELECTRIC CERAMIC SUBSTRATES. IEEE TRANSACTIONS ON MAGNETICS, 1989, 25 (5): 4201-4203
    [93] 张宝裕,刘恒基.磁场的产生.北京:机械工业出版社,1987
    [94] 雷银照.轴对称线圈磁场计算.北京:中国计量出版社,1991
    [95] 丁守谦.磁篇转线圈设计理论基础.北京:国防工业出版社,1994
    [96] 易沅屏.电工学.北京:高等教育出版社,1993
    [97] 卡兰塔罗夫.电感计算手册.北京:机械工业出版社,1992
    [98] 徐武安.电感器件设计与计算.成都:四川科学技术出版社,1985
    [99] 唐兴伦.ANSYS工程应用教程 热与电磁学篇.北京:中国铁道出版社,2003
    [100] Del Moral A, Alqarabel P A, Arnaudas J J et al. Magnetostriction effects. Journal of Magnetism and Magnetic Materials. 2002, 242-245 (2):788-796
    [101] Faehnle M, Furthmueller J, Pawellek R et al. Magnetostriction in amorphous ferromagnets, Theory and interpretation of experiments. Proceedings of the 5th International Conference on Physics of Magnetic Materials, Madralin Pol, 1990: 204-210
    [102] 张福学.现代压电学.北京:科学出版社,2002
    [103] Batoz J L, Dhatt G. Finite Element Modeling of Structures(I-Elastic Solids). Paris: Hermes, 1990
    [104] Sohonnadiere J C. Finite Elements in Electrical and Magnetic Field Problems. New York: Wiley, 1980
    [105] Benbouzid M E H. Modelling of giant magnetostriction and application to electromagnetic devices using Terfenol-D: (Ph. D. Thesis). France: National Polytechnic Institute of Grenoble, 1994
    [106] Klokholm E. MEASUREMENT OF MAGNETOSTRICTION IN FERROMAGNETIC THIN FILMS. Jt MMM

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700