脉冲喷射开关阀理论及其在BCP应用中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲喷射装置是工业包装喷印、生物化学分析、电子封装等行业中实现微量流体喷射的执行装置,但现有脉冲喷射装置不能满足大流量、高速响应、性能稳定的要求,本文把高速开关阀的特性和脉冲喷射装置中喷嘴的结构结合起来,设计了一种新的脉冲喷射装置——脉冲喷射开关阀。在系统研究开关阀的性能的基础上,提出了开关阀的设计方法。针对大字符喷码机(Big Character Printer,简称BCP)的应用,建立了基于GMA的脉冲喷射开关阀的模型,阐述了开关阀的性能变化规律,对脉冲喷射开关阀的设计具有重要的参考价值。
     论文主要内容包括:
     第一章 绪论,论述了各种脉冲喷射方式的优缺点和可能的应用,提出了综合利用高速开关阀和喷射装置结构实现脉冲喷射的新途径,进而阐述了高速开关阀的发展历史和研究现状,阐明了本课题的来源和主要内容。
     第二章 把高速开关阀的特性和脉冲喷射装置的喷嘴结构结合起来,设计了一种新的脉冲喷射装置——脉冲喷射开关阀,在详细阐述开关阀的性能基础上,提出了脉冲喷射开关阀的设计方法,为脉冲喷射开关阀的设计分析提供理论指导。
     第三章 简要分析了BCP的工作原理,提出了一种适用于工业环境的字符点阵结构和控制方法。系统论述了开关阀喷印效果的影响因素,对BCP中的开关阀进行了设计分析,确定了超磁致伸缩式的驱动方式。
     第四章 建立了基于GMA的脉冲喷射开关阀的动态模型,仿真分析了开关阀各参数对开关阀静、动态性能的影响,提出了开关阀的性能变化规律和提高性能的措施,为改善开关阀的性能提供了理论依据。
     第五章 根据脉冲喷射开关阀的性能仿真结果和GMA的工作特性,对脉冲喷射开关阀中的GMA进行了设计和优化。
     第六章 为验证脉冲喷射开关阀的性能,对开关阀和GMA的性能进行了实验研究,实验结果表明基于GMA的脉冲喷射开关阀能满足BCP的使用要求。
     第七章 结论和展望,概括本课题的主要研究结果,并展望今后需要进一步开展的工作。
Pulse jet device is the performing unit in industrial package, biochemical analysis, electrical package and other businesses, which can jet fluid with micro flux. But the present jet devices cannot fulfill the demand of large-flux, high-speed and stable in some applications. In this dissertation, we designed an on-off pulse jet device, combined the advantage of high-speed on-off valve and pulse jet device. The design method of this jet device is set up, based on the systemic property research of the device. The analysis model of pulse jet on-off valve actuated by GMA is built for the big character printer (BCP) ; the property regulation of the device is disserted by simulation. These works can offer important guidance for the design of this type of pulse jet device.
    In the first chapter, the advantages and shortages of different jet methods and the possible applications were discussed; then a new design method was put forward, combined the advantages of high-speed on-off valve and pulse jet device; the development history and the research situation of high-speed on-off valves were analyzed; and the source of the project and the main contents of the research were pointed out
    In the second chapter, the character of on-off valve and the structure of nozzle were combined, and a new pulse jet device - pulse jet on-off valve was designed. The design method of pulse jet on-off valve was built up based on the systemic discuss of on-off valve properties. These works offer the academic guidance for the on-off valve design and development.
    In the third chapter, the application background and working theory of BCP was analyzed briefly; a character matrix structure and the control method for industry environment application were put forward. The factors affected the on-off valve jet effect were systemic discussed; and the on-off valve working in the BCP was designed; the actuator was made certain as GMA.
    In the fourth chapter, the dynamic model of pulse jet on-off valve based on GMA was built up. The effect of different factors on the on-off valve dynamic properties were simulated; development regulation of the valve properties and the measures for improve were also studied, which provide a valuable reference for the on-off valve property improvement.
    In the fifth chapter, the structure of GMA in the on-off valve was designed and optimized based on the dynamic property simulation results of the valve and the
引文
[1] Nielsen, N. J. History of ThinkJet Printhead Development, Hewlett-Packard Journal, 1985,May,4-10.
    [2] http://www.videejet.com.cn/chanpinxilie.htm
    [3] http://www.heirojet.com/chanpin.htm
    [4] http://www.heirojet.com/fuwu.htm
    [5] http://detail.china.alibaba.com/buyer/offerdetail/23-1032928-19034758.html
    [6] Stribling R, Brunette E, Liggitt D, et al. Aerosol gene deliv2 ery in vivo. Proc Natl Acad Sci USA, 1992,89:112.
    [7] Luginbuhl, P., et al., Micromachined Injector for DNA Spectrometry, IEEE Transducers'99, Sendal, Japan,1999, 1130-1133.
    [8] Miliotis, T., Eficsson, D., Marko- Varga, G., Ekstrom, S., Nilsson, J., and Laurell, T., Interfacing Protein and Peptide Separation to Maldi-tof MS Using Mcirodispensing and On-target Enrichment Strategies, Proc. ?TAS'00, 2000,387-391.
    [9] Wang, X. Q., Desai, A., Tai, Y. C., Licklider, L., Lee, T. D., Polymer-based Electrospray Chips for Mass SpectromeUy, Proc. IEEE MEMS'99, 1999, 523-528.
    [10] Shah, P., Kevrekides, Y., and Benziger J., Ink-Jet Printing of Catalyst Patterns for Electroless Metal Deposition, Langmuir, 1999,15, 1584-1587.
    [11] Qingbin Liu, High precision solder droplet printing technology and the state-of-the-art, Journal of Materials Processing Technology, 2001,5140, 1-13
    [12] 葉吉田,,噴墨列印技術在電子工業之應用,電子與材料,1999,2,52-55.
    [13] Hayes, D. J., Grove, M. E., and Cox, W. R., Development and Application by Ink-Jet Printing of Advanced Packaging Materials, 1999 International Symposium on advanced Packaging Materials, 1999, 88-93.
    [14] Stewart Xu Cheng, Tiegang Li, Sanjeev Chandra, Producing molten metal droplets with a pneumatic droplet-on-demand generator, Journal of Materials Processing Technology, 2005,159, 295-302
    [15] Qingbin Liu, Changzheng Huang, and Melissa Orme, Mutual Electrostatic Interactions Between Closely Spaced Charged Solder Droplets, Journal of Atomization and Sprays, 1999,10.
    [16] Teng, K. F., and Vest, R. W., Metallization of Solar Cells with Ink Jet Printing and Silver Metallo-Organic Inks, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1988, 11 (3), 291-297.
    [17] Teng, K. F., and Vest R. W., Application of Ink Jet Technology on Photovoltaic Metallizatio n, IEEE Electron Device Letters, 1988, 9 (11).
    [18] Somberg, H., Inkjet Printing for Metallization on Very Thin Solar Cells, Photovoltaic Specialists Conference, Conference Record of the Twenty First IEEE, 1990, 666-667.
    [19] Cox, W. R., Chen, T., et al., Microjet Fabrication of Mierolens Arrays, IEEE Photonics Technology Letters, 1994, 6(9), 1112-1114.
    [20] Hayes, D.J., and Cox, W.R., Micro Jet Printing of Polymers for Electronics Manufacturing in Adhesive Joining and Coating Technology in Electronics Manufacturing, Proc. 3rd Int. Conf., 1998, 168-173.
    [21] Chang S C, Liu J, et al. Adv.Mat, 1999,11(9),734-737.
    [22] Tseng, F.G., Droplet Impinging Micro Cooling Arrays, proposal for NSC project, 2001.
    [23] Jacobs, P. F., Stereolithography and Other BP&M Technologies, Dearborn, MI: Society of Manufacturing Engineers, 1996.
    [24] Beaman, J. J., Barlow, J. W., et al., Solid Freeform Fabrication: A New Direction in Manufacturing, Boston, MA: Kluwer Academic, 1997.
    [25] E; Cima, M; Williams, P; Brancazio, D; Cornie, J ,Three-Dimensional Printing: Rapid Tooling and Prototypes Directly From a CAD Model Sachs, Journal of Engineering for Industry (Transactions of the ASME) (USA). 1992,114(4),481-488.
    [26] Tseng, M. H. Lee, B. Zhao, Design and Operation of a Droplet Deposition System for Freeform Fabrication of Metal Parts, Transactions of the ASME, 2001,123, JANUARY, 74-84.
    [27] Orme, M., Huang, C., and Courter, J., Precision Droplet-Based Manufacturing and Material Synthesis: Fluid Dynamics and Thermal Control Issues, Atomization Sprays, 1996, 6, 305-329.
    [28] Melissa Orme and Anthony Bright, RECENT ADVANCES IN HIGHLY CONTROLLED MOLTEN METAL DROPLET FORMATION FROM CAPILLARY STREAM BREAK-UP WITH APPLICATIONS TO ADVANCED MANUFACTURING, 2000 TMS Annual Meeting, Nashville TN, 2000,March 12-16.
    [29] Fuller, S., and Jacobson, J., Ink Jet Fabricated Nanoparticle MEMS, Proc.IEEE MEMS conference, 2000, 138-141.
    [30] Yamaguchi, K., Sakai, K., Ymanaka, T., Hirayama, T., Generation of Three-dimensional Micro Structure Using Metal Jet, Precision engineering 2000,24, 2-8.
    [31] 章艳林、倪泓等,柴油机燃油喷射系统出油阀偶件的试验研究,现代车用动力,2004,3(115),20-27,
    [32] 卢启龙、欧阳明高、杜传进,电控柴油喷射系统用高速强力电磁阀的性能研究,内燃机工程,1997,18(3),18-23.
    [33] 孙清池、杜青等,压电振子作为激励源在液体燃料雾化中的应用,硅酸盐学报,2002,30(6),749-754
    [34] Tseng, F.G., Linder, C., Kim, C.J., and Ho, C.M, Control of Mixing with Micro Injectors for Combustion Application, Micro-Electro-Mechanical Systems (MEMS), Atlanta, 1996, 59, 183-187.
    [35] Endo, Y. Sato, S. Saito, etc., Liquid jet recording process and apparatus, UK Patent no.2007162(1979), to Canon.
    [36] J.L.Vaught, F. L. Cloutier, etc., Thermal inkjet printer, US Patent no.4490728(1984), to Hewlett-Packard.
    [37] Allen, R. R., Meyer, J. D., and Knight, W. R., Thermodynamics and Hydrodynamics of Thermal Ink Jets, Hewlett-Packard Journal, 1985, May, 21-27.
    [38] Nielsen, N. J., History of The ink Jet Printhead Development, Hewlett-Packard Journal, 1985 May, 4-10.
    [39] Bhaskar, E. V., and Aden, J. S.,Development of the Thin- film Structure for the Thinkjet Printhead, Hewlett-Packard Journal, 1985,May, 27-33.
    [40] Endo,Y. Sato, S. Saito, T. Nakagiri, S. Ohno, and Canon, Inc., Bubble jet recording method and apparatus in which a heating element generates bubbles in multiple liquid flow paths to project droplets, U.S. Pat. 4 740 796, Apr. 1988.
    [41] B.J. keefe, M. F. Ho, K. J. Courian, S. W. Steinfield, W. D. Chiders, E. R. Tappon, K. E. Trucba, T. I. Chapman, W. R. Knight, J. G. Mortz, and Hewlett-Packard Company, Inkjet printhead architecture for high speed and high resolution printing, U. S. Pat. 5 648 805, Oct. 6, 1994.
    [42] P. A. Torpey, and R. G. Markham, Thermal Inkjet Printhead, Xerox Corporation, U.S. Patent No.4638337, Jan. 1987.
    [43] P. Krause, E. Obermeier, and W. Wehl, Backshooter- A New Smart Micromachined Single-Chip lnkjet Printhead, Tech. Dig. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers'95), Stockholm, Sweden, June 1995, 325-328.
    [44] F.-G. Tseng, C.-J. Kim, and C.-M. Ho, A Novel Microinjector with Virtual Chamber Neck, prec. IEEE Micro Electro Mechanical Systems, Heilderberg, Germany, Jan., 1998, 57-62,
    [45] Fan-Gang Tseng, Chang-Jin Kim, and Chih-Ming Ho, A High-Resolution High-Frequency Monolithic Top-Shooting Microinjector Free of Satellite Drops—Part I: Concept, Design, and Model, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2002,11(5), 427-436
    [46] Fan-Gang Tseng, Chang-Jin "CJ" Kim*, and Chih-Ming Ho, A MICROINJECTOR FREE OF SATELLITE DROPS AND CHARACTERIZATION OF THE EJECTED DROPLETS, Symposium on Applications of Micro- Fabrication to Fluid Mechanics,1998 ASME International Mechanical Engineering Congress and expositions.
    [47] S. L. Zoltan, Pulse drop let ejection system, US Patent no.3857049 (1974), to Clevite Corporation.
    [48] N. Bugdayci, D. B. Bogy, F. E. Talke, Axisymmetric Motion of Radially Polarized Piezoelectric Cylinders Used in Ink Jet Printing, IBM J. RES. DEVELOP, 1983,27(2),171-180.
    [49] W. T. Berggren, M. S. Westphall, and L. M. Smith, Single-pulse nanoelectrospray ionization, Anal. Chem. 2002, 74, 3443.
    [50] C.-Y. Kung, M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Single-molecule analysis of ultradilute solutions with guided streams of 1-mm water droplets, Appl. Opt. 1999,38, 1481.
    [51] 2B. de Heij, B. van der Schoot, H. Bo, J. Hess, and N. F. de Rooij, Characterization of a fL droplet generator for inhalation drug therapy, Sens. Actuators, A 2000,85, 430.
    [52] 4S. Yuan, Z. Zhou, G. Wang, and C. Lin, MEMS-based piezoelectric array microjet, Microelectron. Eng. 2003,66, 767.
    [53] Gokhan Perc,ina) and Butrus T. Khuri-Yakub, Piezoelectric droplet ejector for ink-jet printing of fluids and solid particles, REVIEW OF SCIENTIFIC INSTRUMENTS, 2003,74(2), 1120-1127.
    [54] Gokhan Perqin, Lament Lel-int, Butrus T. Khuri-Yakub, Piezoelectricallv Actuated Transducer and Droplet Ejector, 1996 IEEE ULTRASONICS SYMPOSIUM, 913-916.
    [55] 11G. Percin and B. T. Khuri-Yakub, Micromachined droplet ejector arrays for controlled ink-jet printing and deposition, Rev. Sci. Instrum. 2002,73, 2193.
    [56] Meacham, M. J. Varady, F. L. Degertekin, and A. G. Fedorov, Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling, PHYSICS OF FLUIDS, 2005,17, 100605.
    [57] Bugdayci, N., Bogy. D. B., and Talke, F. E., Axisymmetric Motion of Radially Polarized Piezoelectric Cylinders used in Ink jet Printing, IBM J, Res.Develop., 1983,27(2),171-180.
    [58] Darling, R. H., Lee, C.-H., Kuhn, L. O, Multiple-Nozzle Ink Jet Printing Experiment, IBM J, Res. Develop., 1984,28(3),300-306.
    [59] Lee, F. C., Mills, R. N., Talke, F. E.,The Application of Drop-on Demand Ink Jet Technology to Color Printing, IBM J, Res. Develop., 1984, 28(3),307-313.
    [60] Yang JC, Chien W, King M, Grosshandler WL, A simple piezoelectric droplet generator. Exp Fluids 1997,23,445-447
    [61] E.L. Kyser, S. B. Sears, Method and apparatus for recording with writing fluids and drop projection means, US Patent no. 3946398 (1976), to Siionics Inc.
    [62] Mikalesen, Apparatus and method employing phase change ink, US Patent no.4742364(1988), to Data Products Corporation.
    [63] H. Le, Ink Jet Printing, Tenth International Congress on Advances in NON-IMPACT PRINTING TECHNOLOGIES, IS&T s, 1994,Oct. 30.
    [64] Jurgen Brunahl, Alex M. Grishin, Piezoclectric shear mode drop-on-demand inkjet actuator, Sensors and Actuators, A, 2002,101,371-382.
    [65] 张昌凡,非接触喷码机的喷印技术分析,包装工程,1998,19(4):31-33.
    [66] Songmei Yuan, Zhaoying Zhou, Guohui Wang, Changgeng Liu, MEMS-based piezoelectric array microjet, Microelectronic Engineering, 2003,66, 767-772
    [67] Gokhan PerCin, and Butrus T. Khuri-Yakub, Piezoelectrically Actuated Flextensional Micromachined Ultrasound Droplet Ejectors, IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, 2002, 49(6), 756-766.
    [68] LUGINBUHL P. INDERMUHLE P, GRETILLAT M , et el. Micromachined injector for DNA mass spectrometry. Japan: Sendai, 1999: 1130—1133.
    [69] Melissa Orme and Anthony Bright, RECENT ADVANCES IN HIGHLY CONTROLLED MOLTEN METAL DROPLET FORMATION FROM CAPILLARY STREAM BREAK-UP WITH APPLICATIONS TO ADVANCED MANUFACTURING, 2000 TMS Annual Meeting, Nashville TN, 2000.
    [70] P.F. Blazdelll, J. R. G. Evans, Application of a continuous ink jet printer to solid freeforming of ceramics, Journal of Materials Processing Technology, 2000,99, 94-102.
    [71] EDERER I, RAETSCH P, SCHULLERUS W, et el. Piez0eleetricallydrivermicropump for on— demand fuel-drop generation in an automobile with continuously adjustable power output. Sensors and Actuators, 1997, A62(8): 752—755.
    [72] Hirata, S., Ishii, Y., Matoba, H., and Inui, T., An Ink-jet Head Using Diaphragm Microactuator, Proc. of the 9th IEEE Micro Electro Mechanical Systems workshop, San Diego, California, USA, 1996, 418-423.
    [73] Antonio Cabal, David S. Ross, John A. Lebens, David P. Trauemicht, Thermal actuator with optimized heater for liquid drop ejectors, Sensors and Actuators A, 2005,123-124, 531-539.
    [74] Jermam, Digest of IEEE Solid-State Sensors and Actuators, 1990,65.
    [75] Kamisuki, S., Fuji, M , Takekoshi, T., Tezuka, C., and Atobe, M., A High Resolution, Electrostatieally-Driven Commercial Inkjet Head, Proc. IEEE MEMS'00, 2000, 793-798.
    [76] David Biegelsen, Andrew Berlin, etc., AirJet paper mover, SPIE Int. Symposium on Micromachining and Microfabrication, 4176-11, Sep. 2000.
    [77] S. Cheng, S. Chandra, A pneumatic droplet-on-dernand generator, Experiments in Fluids,2003, 34, 755-762
    [78] Chandra S, Jivraj R, Apparatus and method for generating uniform sized droplets. U.S. Patent No. 6446878, 2002.
    [79] H. OHUCHI, H. AKASAKA, T. OSADA, PNEUMATIC PULSE FLOW CONRTOL VALVE DRIVEN BY SUCCESSIVE IMPULSIVE FORCE OF A PIEZOELECTRIC MULTILAYER ACTUATOR.
    [80] Masumi Yamada and Minoru Seki, MICROFLUIDIC CHAMBER ARRAY FOR GENERATING CONCENTRATION GRADIENTS, 2003 IEEE., 347-350.
    [81] Chun-Ping Jen and Yu-Cheng Lin, BI-DIRECTIONAL CONTROL SYSTEMS FOR MICROFLUIDS, 2002 IEEE,129-132.
    [82] Stewart Xu Cheng, Tiegang Li, Sanjeev Chandra, Producing molten metal droplets with a pneumatic droplet-on-demand generator, Journal of Materials Processing Technology, 2005, 159, 295-302.
    [83] 罗玉元,钢铁产品标识设备的现状及技术分析,冶金设备,2001,130(6),33-36.
    [84] 赵岽,赵鸿生,张晓维,钢管全自动喷印/(冲印)标记设备,焊管,2001,24(6),32-34.
    [85] 王晓红,印码和打标技术综述,印刷工艺技术,2001(3),50-53.
    [86] http://www.videojet.com.cn
    [87] http://www.translaser.com.cn/
    [88] http://www.hzwdj.com/
    [89] http://www.unison.com.cn/
    [90] http://www.unisonpack.net/
    [91] 梁天才、梁磊、孔一忠,一种新型液压控制元件——高速电磁开关阀,山西机械,2003.(4),13-16
    [92] Zhang Shengchang, Xu Yangzeng, Shi Gnangiin, Zhong Tingxiu, Study on Extra-High Speed Digital Valve, Hangzhou: ICFP 2001.
    [93] Takeo Kushida. High Speed, Powerful and Simple Solenoid Actuator "Disole" and its Dynamic Analysis Results. SAE 850373
    [94] A.H.Seilly, Colenoid Actuators-Further Developments in Extremely Fast Acting Solenoids, SAE 810462, 1440-1781.
    [95] Cul, R.T.Burton, P.R.Ukralnetz, Development of High Speed On/Off Valve, SAE 911815.
    [96] J.P.Karidis, S.R.Turns, Fast-Acting Electromagnetic Actuators Computer Model Development and Verification, SAE 8200202.
    [97] William G. Wolber, An Overview of Automotive Control Actuators, SAE 840306.
    [98] 秦明波,PWM比例方向节流阀机理分析,上海工业大学硕士学位论文,1989
    [99] A.H.Seilly, HELENOID Actuators-A New Concept in Extremely Fast Acting Solenoids, SAE 790119, p426-435.
    [100] A. H. SeilIy, COLENOID Actuators-Further Developments in Extremely Fast Acting Solenoids, SAE 810462, p1770-1781.
    [101] David B. Mohler. Rotary and linear DC proportional solenoids.SAE 860759.p41-46
    [102] Ralph E. Mishler. Work solenoids-environmental and design consideration for earthmoving equipment application. SAE 860760.p4.7-4.13
    [103] William G.Wolber. An overview of automotive control actuators. SAE 840306. p2.539-2.550.
    [104] Takeo Kushida. High speed powerful and simple solenoid actuator "DISOLE" and its dynamic analysis results. SAE 850373.p3.127-3.136.
    [105] Shinichi YOKOTA and Kotarou AKUTU. A Fast-Acting Electro-Hydraulic Digital Transducer (A Poppet-Type On-Off Valve Using a Multilayered Piezoelectric Device). JSME International Journal, Series II, Vol.34, No.4,1991.
    [106] Keizo Takeuchi, Masaki Shimizu and Keiichi Okazaki. Fast Actuator Modeling by Finite Element Method. IEEE Trans. On Magnetics, Vol.30,No.6, November 1994.
    [107] 田静,高速开关阀PWM控制电路的开发,中国民航学院学报,2003,Vol.21(6),p.26-30.
    [108] 高朝辉,中压共轨柴油系统用高速大流量电磁阀性能研究,内燃机工程,2003,Vol.24(1),p.22-24.
    [109] 夏胜枝,周明等,高速强力电磁阀的动态响应特性,清华大学学报(自然科学版),2002,Vol.42(2),p.258-261,277.
    [110] 田静,高速开关阀非定常磁场的有限元计算,中国民航学院学报,2002,Vol.20(6),p.25-29.
    [111] 刘少军、黄中华等,一个高速开关阀控液压系统的模糊控制研究,机床与液压,2003,(1),p.73-75,92.
    [112] 汤东胜、吴光强、周凡华,基于有限元法的ABS高速开关电磁阀性能分析,同济大学学报,2003,Vol.31(6),p.724-727.
    [113] 李玉贵、杨晓明、高学杰,PWM高速开关阀静特性研究,太原重型机械学院学报,2002,Vol.23(1),p.68-71.
    [114] 郁秀峰等,电控柴油机高速数字开关阀(HSV)的特性与应用研究,兵工学报,1995,No.4(Serial No.58,),p.12-17.
    [115] 周福章等,高速开关阀的设计与研究,机械工程学报,1998,Vol.34(5),p.101-105.
    [116] 刘新亮、张建武、陈兆能,高速开关阀功率驱动特性研究及电路实现,液压气动与密封,1998(2),p.9-11.
    [117] 刘少军等,高速开关电磁阀的PWM控制及改进技术,机床与液压,1998(4),p.52-53.
    [118] 杜巧连、陈旭辉等,PWM高速开关阀的特性分析与应用研究,液压气动与密封,2002,No.3(Serial No.93),p.10-11.
    [119] 苗建中、郑云川,螺纹插装式高速开关阀,液压与气动,1993(6),p.29-30.
    [120] 郁秀峰、姜丁等,电液执行器在车用柴油机电控系统中的应用研究,内燃机,1995(12),p.54-58.
    [121] 葛宜远,流体传动及控制技术的新成就,液压与气动,1998(2),p.1-3.
    [122] 范瑞丽、李勇等,微小型高压力流体电磁控制阀,微纳电子技术,2003(7/8),452-460.
    [123] Piezo Valve Could Improve Ink Jet Printing, Academic Research Library, Jun 19,2000,p.71.
    [124] T. Rogge, Z. Rummler, W.K. Schomburg, Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process, Sensors and Actuators, 2004, (110), p. 206-212.
    [125] 刘少军,高速开关电磁阀的现状及应用,液压与气动,1995,(6),p.12-14.
    [126] 何伟、徐波、高峻,压电陶瓷阀用于柴油机电控喷油系统的探讨,内燃机燃油喷射和控制,2001(2),p.30-33.
    [127] 赵四海、朱红秀等,压电晶体型电液开关阀,中国矿业大学学报,1997,Vol.26(4),p.99-101.
    [128] 金国庆,新型压电式高速开关阀的研究,江苏大学硕士学位论文,2003.
    [129] 房汝建、侯丽雅、章维一,数字微阵列点样喷头实验研究,中国机械工程,2005,16(1),46-50.
    [130] 晋绥更、刘湘林、蒋志红,稀土超磁致伸缩器件的设计与应用,稀土,1992,Vol.13(1).
    [131] Goodfriend, M.Sewell, C.Jones. Application of a Magnetostrictive Alloy, Terfenol-D to Direct Control of Hydraulic Valves. SAE International off-Highway and Powerplant Congress and Exposition, Sep 10-13,1990.
    [132] T. Urai, T.Sugiyama. Development of a Direct Drive Serve Valve Using a Giant Magnetostrictive Material, Transactions of the Japan Society of Mechanical Engineers, Part C, 1993,Vol.59(563), p.146-149.
    [133] H.Tanaka, Y.Sato, Development of a Common-Rail Proportional Injector Controlled by a Tandem Arrayed Giant-Magnetostrictive-Actuator, 2001 SAE International and Messe Düsseldorf, 2001.
    [134] H. Tanaka, Y. Sato, T. Urai, Development of a Common-Rail Proportional Injector Controlled by a Tandem Arrayed Giant-Magnetostrictive-Actuator, JSAE, 2001 (22), p.369-371.
    [135] 夏春林,超磁致伸缩电—机械转换器及其在流体伺服元件中的应用基础研究,浙江大学博士学位论文,1998.
    [136] 丁凡、王传礼等,基于GMM的气动伺服阀和蠕动机械的实验研究,煤炭学报,2002,Vol.27(4),p.440-443.
    [137] 夏春林、丁凡、路甬祥,超磁致伸缩材料特性参数测量及应用研究,仪器仪表学报,1999,Vol.20(4), p.368-370,379.
    [138] 吕福在、项占琴、戚宗军,稀土超磁致伸缩材料高速强力电磁阀的研究,内燃机学报,2000,Vol.18(2),p.199-202.
    [139] 吕福在,用于柴油机电喷系统的GMM高速强力电磁阀和电控系统的研究,浙江大学博士学位论文,2000.
    [140] 石延平、张永忠,一种基于超磁致伸缩效应的新型液压高速开关阀的研究,工程机械,2004(1),p.26-28.
    [141] 石延平、张永忠,一种新型液压高速开关阀的研究与设计,机械科学与技术,2004,Vol.23(1),p.71-73.
    [142] 石延平、张永忠、刘成文,超磁致式高速开关阀的研究与设计,中国机械工程,2003,Vol.14(21),p.1824-1826
    [143] 林青,超磁致伸缩高速开关阀的研究,上海大学硕士学位论文,2002
    [144] F. Claeyssen, N. Lhermet, T Mafflard, MAGNETOSTRICTIVE ACTUATORS COMPARED TO PIEZOELECTRIC ACTUATORS, European Workshop on Smart Structures in Engineering and Technology, Brian Culshaw, Editor, Proceedings of SPIE, 2003, 4763, 194-200.
    [145] McMasters O.D. Proc Int. Conf on giant magnetostrictive materials and their application. Tokyo,1992:69.
    [146] S. SHERRIT, G. CATOIU AND B.K. MUKHERJEE, THE CHARACTERISATION AND MODELLING OF ELECTROSTRICTIVE CERAMICS FOR TRANSDUCERS, Ferroelectrics, 1999, 228(1-4), 167-196.
    [147] Roth R. C. Proc Int Conf on giant magnetostrictive materials and their application. Tokyo, 1992:109.
    [148] Clark A. E., Ed. E.P.Wohlfarth, US,Tome l, 1980, pp.531-588.
    [149] 李碚、伍虹,国外稀土超磁致伸缩材料的研究状况,稀土,1990,11(6):20-26。
    [150] 朱厚卿,稀土超磁致伸缩材料的应用,应用声学,1998,17(5):3-10
    [151] 卢长耿、李金良,液压控制系统的分析与设计,北京:煤炭工业出版社,1991.
    [152] 王裕清、韩成石,液压传动与控制技术,北京:煤炭工业出版社,1996.
    [153] Wladyslaw Wlosinski,修复机器零件的现代焊接和喷镀方法,中国设备管理,1989(9),29-30.
    [154] 于玉平、常焕良、乔德军,屏蔽电泵上推力盘德喷焊加工,防爆电机,1996,4(89),19-22
    [155] 南书予,奇特的压力铸造
    [156] 李克让、陈明,喷水织机喷水动力学分析研究,东华大学学报(自然科学版),2001,27(2),38-41.
    [157] 李克让、麻巍伟、陈明,喷水织机上喷水参数对水射流速度的影响,丝绸,2002(9),9-11.
    [158] 李克让、陈明,喷水织机喷嘴口射流速度的理论研究,纺织学报 2003,24(5),25-27.
    [159] 栾湘梅,数码喷墨印花与印花墨水,影像材料,27-28.
    [160] 张明、陈庆寿,湿喷混凝土喷射速度特性解析,探矿工程,2000(3),12-14.
    [161] 黄维纲,王旭永,王显正,钟廷修,高速电磁开关阀开关特性的机理研究,上海交通大学学报,1998,32(12),38-41.
    [162] 杜巧连、陈旭辉等,PWM高速开关阀的特性分析与应用研究,液压气动与密封,2002,3(93),10-11.
    [163] 梁天才,梁磊,孔一忠,一种新型液压控制元件——高速电磁开关阀,山西机械,2003,4(121),13-16.
    [164] 金国庆,新型压电式高速开关阀的研究,江苏大学硕士论文,2003.
    [165] 李玉贵,杨晓明,高学杰,PWM 高速开关阀静特性研究,太原重型机械学院学报,2002,23(1),68-71.
    [166] 左建民,液压与气压传动,北京:机械工业出版社 1991.9
    [167] Harrg L. Stewart. PNEUMATICS AND HYDRAULICS.
    [168] 贾铭新,液压传动与控制,北京:国防工业出版社,2001.
    [169] 王春行,液压控制系统,北京:机械工业出版社,1999.
    [170] 李洪人,液压控制系统,北京:国防工业出版社,1981.
    [171] Katsuhiko Ogata,卢伯英、于海勋(译),Modem Control Engineering,北京:电子工业出版社,2000.
    [172] 戴忠达,自动控制理论基础,北京:清华大学出版社,2003.1
    [173] 张宝珍,针型喷嘴结构对射流特性影响的实验研究,天津科技大学,硕士学位论文,2003.
    [174] 陈卓如,工程流体力学,北京:高等教育出版社,1992.
    [175] 纳.扎.富兰凯尔,水力学,北京:高等教育出版社,1965
    [176] ISO/IEC 10646.1-1993,信息技术 通用多八位编码字符集(UCS)
    [177] GB11460-89,信息处理设备中汉字点阵字模数据的检测方法
    [178] 罗玉元,段松林,钢铁产品点阵式打印机字符成形系统的研究—字符成形原理及字形控制,机床与液压,2004(2),89-90.
    [179] 吴贤官,沈志聪,王塘,影响涂料防腐蚀质量的因素,涂料指南,2005(1),9-12.
    [180] 王塘、沈志聪,2003年度上海重点工程钢结构的防护涂装,腐蚀与防护,2005,26(2),80-81.
    [181] 沈国良,钢结构涂装工作中的涂层厚度检测,上海涂料,2004,42(5),36-40.
    [182] 李春甫,液态感光抗蚀抗电镀油墨(二),丝网印刷,2001.6,24-27.
    [183] 原田正一、尾崎省太郎,射流工程学,北京:科学出版社,1977.
    [184] 陆宏圻,喷射技术理论及应用,武汉:武汉大学出版社,2004.
    [185] 徐爱群 项占琴 陈子辰 吕福在,基于GMM的高速点阵式喷头研究,中国机械工程,2005,16(6),537-541.
    [186] 雷天觉,新编液压工程手册(上册),北京:北京理工大学出版社,1998。
    [187] 林锐,高速开关阀的研究及数字仿真,武汉理工大学硕士论文,2005.3.
    [188] 金国庆,新型压电式高速开关阀的研究,江苏大学硕士论文,2003.6。
    [189] 陈铭邦,正确认识打印速度,中国计算机用户,1999,11,32.
    [190] 赵岽、赵鸿生、张晓维,钢管全自动喷印/(冲印)标记设备,焊管,2001,24(6),32-34.
    [191] 路甬祥,液压气动技术手册,北京:机械工业出版社,2003.
    [192] 孙慷、张福学,压电学,北京:国防工业出版社,1984.
    [193] LeAnn E. Faidley, Marcelo J. Dapino, Alison B. Fiatau, Characterization of a small Terfenol-D transducer in mechanically blocked configuration. Proceedings of SPIE, 2001,4327, 521-532.
    [194] 杨大智、魏中国,智能材料——材料科学发展新趋势,物理,1997,26(1),6-11.
    [195] Goran Engdahl, Handbook of Giant Magnetostrictive materials, Sa Diego: Academic Press, 2000.
    [196] 左鹤声、彭玉莺,振动实验模态分析,北京:中国铁道出版社,1995.
    [197] Bryant M.D. and Wang N., Audio Range Controllability of Linear Motion Terfenol Actuators, Journal of Intelligent Materials Systems and Strctures, 1994,Vol.5,431-436.
    [198] D. M. Dozer, Shankar Jagannathan,etc., High Force to Volume Terfenol-D Reaction Mass Actuator. Modeling and Design, SPIE Vol. 2717, 576-586
    [199] Goran Engdahl, Handbook of giant magnetostritive materials, Sa Diego: Academic Press, 2000.
    [200] 电气工程师手册(第二版),北京:机械工业出版社,2002.
    [201] 励子伟、宋建平编,普通物理学.电磁学,北京:北京大学出版社,1988.
    [202] J. L. Butler, Application manual for the design of ETREMA Teffenol-D magnetostdctive transducers, ETREMA Products, Inc., Ames, IA, 1988.
    [203] Frederick Theodore Calkins, Design, analysis, and modeling of giant magnetostrictive transducers, Iowa State University (Ph.D), Ames, Iowa, 1997.
    [204] 陆文遂,碟形弹簧的计算、设计与制造,上海:复旦大学出版社,1988.
    [205] DAPINO M. J., SMITH R. C., FLATAU A. B., An active and structural strain model for magnetostrictive transducers[A]. SPIE Conference on Smart Structures and Integrated Systems, San Diego, 1998, 3329: 198-209.
    [206] Goran Engdahl, Handbook of giant magnetostrictive materials, San Diego: Academic Press, 2000: 229-235.
    [207] LeAnn E. Faidley, Brian J. Lundt, Alison B. Flatau ,Frederick T. Calkins, Terfenol-D elasto-magnetic properties under varied operating conditions using hysteresis loop analysis, the SPIE Conference on Smart Structures and Integrated Systems· San Diego, California· March 1998 SPIE Vol. 3329, 856-865.
    [208] William D. Armstrong, The strain behavior of magnetostrictive particulate composites, the SPIE Conference on Smart Materials Technolqgies, Newport Beach, California. March 1999, SPIE Vol. 3675,214-222.
    [209] 宛德福,马兴隆,磁性物理学,北京:电子工业出版社,1999.
    [210] A.E.Clark, M.L.Spano, H.T.Savage, Effect of Stress on the Magnetostriction.and Magnetization of Rare Earth-Re1.95 Alloys. IEEE Transactions on Magnetics, 1983,19(5): 1964-1966.
    [211] 李远,秦自楷,周志刚,压电与铁电材料的测量,北京:科学出版社,1984.
    [212] A. B Flatau, M. J. Dapino and ET. Calkins, High bandwidth tenability in a smart vibration absorber, 1998 SPIE Smart Structures and Materials Cof., paper# 3327-4A.
    [213] Marcelo J. Dapino, On magnetostrictive materals and their use in smart material transducers,
    [214] D.C. Jiles and J.B. Thoelke. Theoretical modelling of the effects of anisotropy and stress on the magnetization and magnetostriction of Tb0:3Dy0:7FeA. J. Magn. Magn. Mater., 1994, 134:143-160.
    [215] Rachod Dhaouadi, Fathi H. Ghorbel, Prasanna S. Gandhi, A New Dynamic Model of Hysteresis in Harmonic Drives, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50(6): 1165-1171.
    [216] F. T. Calkins, R. C. Smith, and A. B. Flatau, Energy-Based Hysteresis Model for Magnetostrictive Transducers, IEEE TRANSACTIONS ON MAGNETICS, 2000, 36(2): 429-439
    [217] Peter R. Wilson, J. Neil Ross, and Andrew D. Brown, Optimizing the Jiles-Atherton Model of Hysteresis by a Genetic Algndthm, IEEE TRANSACTIONS ON MAGNETICS, 2001,37 (2): 989-993.
    [218] A.E. Clark, J.B. Restorff, etc. Magnetoelastic coupling and the effect in ThxDyl-x single crystals, J. Appl. Phys. 1993,73(10):6150-6151.
    [219] J. L. Butler, Application manual for the design of ETREMA Terfenoi-D magnetostrictive transducers, ETREMA Products, Inc., Ames, IA, 1988.
    [220] A.E. Clark, High power rare earth magnetostrictive materials, Recent Advances in Adaptive and Sensory Material and Their Applications, C.A. Rogers, editor, Technomic Publishing, Lancaster, PA, 1992:387-397.
    [221] A.E. Clark, Magnetostrictive rare earth-Fe2 compounds, Ferromagnetic Materials, Volume 1, E.P. Wohlfarth, editor, North-Holland Publishing Company, Amsterdam, 1980:531-589.
    [222] 王博文,超磁致伸缩材料制备与器件设计,北京:冶金工业出版社,2003:65.
    [223] F. Claeyssen, N. Lhermet, T. Mafflard, MAGNETOSTRICTIVE ACTUATORS COMPARED TO PIEZOELECTRIC ACTUATORS, European Workshop on Smart Structures in Engineering and Technology, Brian Culshaw, Editor, Proceedings of SPIE, 2003, 4763:194-200.
    [224] Rick Kellogg, Alison Flatau, Stress-strain relationship in Terfenol-D, Smart Structures and Materials 2001: Smart Structures and Integrated Systems, L. Porter Davis, Editor, Proceedings of SPIE, 2001, 4327: 541-549,
    [225] http://www.etrema-usa.com/documents/Terfenol.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700