基于压电致动器的柔性构件振动主动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对柔性构件的振动主动控制问题,结合国家自然科学基金项目,针对一类空间柔性杆系统的扭转振动及一类两连杆柔性构件系统中的柔性梁、柔性杆之间的弯曲-扭转耦合振动进行系统、深入的理论与实验研究。
     第一章概述了课题研究的背景与意义。从柔性构件的系统建模、典型柔性构件的研究、智能材料的应用、致动器/传感器的优化配置、振动控制中的常用控制算法方面,综述了柔性构件主动控制的研究现状。最后阐述了本文的主要研究内容。
     第二章阐述了压电材料的压电方程及压电应用。设计了一种采用轴向极化方式的压电扭转致动器,导出了此致动器的输出扭矩,分析了其谐振频率,探讨了此类致动器的制作加工工艺。分析了电阻应变片测量扭转振动的基本原理,推导了其扭转角与电桥输出电压之间的关系。
     第三章简要分析了柔性杆的扭转振动。提出一种由柔性杆、压电扭转致动器、电阻应变片传感器所组成的空间柔性杆件系统。针对该柔性杆系统中压电致动器/传感器的位置优化配置问题,推导了系统的动力学方程,建立了系统的状态空间表达式。提出一种基于最小输入能量、最大能量传递、Grammian矩阵最小奇异值最大化的复合优化配置算法,运用遗传算法对压电扭转致动器/传感器的布局位置进行了优化。最后,进行了数值优化仿真研究,确定了致动器/传感器的最优配置位置,并与其它位置作了比较研究。
     第四章基于线性二次型最优控制基本理论,研究了线性二次型最优控制理论中的加权矩阵Q的选择策略,提出一种基于遗传算法并具有约束条件的加权矩阵选择方法。以第三章所建立的系统为例进行了优化仿真研究,表明所提出的加权矩阵选择策略是有效的、可行的。同时也作了致动器/传感器在不同位置的控制研究,验证了相关优化理论的正确性。
     第五章构建了一种由柔性梁与柔性杆所组成的具有弯扭耦合特性的空间两连杆柔性构件系统,将两种不同极化方式的压电致动器应用于此柔性构件系统的弯扭耦合振动主动控制。运用拉格朗日方程和假设模态法推导了此柔性系统的动力学方程。在柔性杆上粘贴压电扭转致动器抑制柔性杆的扭转振动,在柔性梁上粘贴压电弯曲致动器抑制柔性梁的弯曲振动。提出了两种控制策略,第一种是基于Lyapunov稳定性的速度反馈控制策略,第二种是带有饱和环节及低通滤波器的滑模变结构控制策略,对提出的两种控制策略,分别进行了主动控制数值仿真研究,并作了对比分析。
     第六章构建了基于工业PC机为核心的柔性构件实验系统,对实验系统的软、硬件进行了阐述,分别进行了柔性杆系统及两连杆柔性构件系统的主动控制实验研究。实验结果验证了相关位置优化理论及控制理论应用的正确性。
     第七章对全文进行了总结,并对未来的工作进行了展望。
Aiming at the active vibration control of space flexible structures and combined with the National Natural Science Foudation Project, the torsional vibration of a space flexible bar and the bending-torsional-coupled vibration of a two-link flexible structure were investigated theoretically and experimentally.
     In chapter one, the background information and significance of the dissertation were presented. And then the up-to-date research status of the flexible structures was given in the following aspects which are the system modeling of the flexible structures, studies on the typically flexible structures, application of smart materials, optimization placement of the actuators/sensors and conventional control algorithms in active vibration control. At last, the main research content of this dissertation was presented.
     In chapter two, the piezoelectric constitutive equations and the application of piezoelectric materials were presented. A piezoelectric torisonal actuator was designed using axial poling method, and the output torque of the actuator was derived. The torisonal resonant frequency of the piezoelectric torsional actuator was analyzed and its fabrication method was discussed. The fundamental of the strain gauge in testing torsional vibration was investigated and the relationship between the torsional angle and output voltage of the electric bridge was founded.
     In chapter three, the torsional vibration of the flexible bar was analyzed. A space flexible structure consiting of a flexible bar, a piezoelectric torsional actuator and strain gauges was proposed. Aiming at the optimization placement of the actuator/sensor, the dynamic governing equation of the system was derived, and the state-space expression of the dynamic system was developed. A hybrid optimization algorithm combined with minimum input energy, maximum energy transferring and maximum of minmum singular value of controllability Grammian was proposed. The optimization process was carried out using genetic algorithm. And optimal placement position of the actuator/sensor was obtained. Also a comparable research was implemented compared with other positions.
     In chapter four, linear quadratic optimal control theory was summarized. Choosing method of the weight matrix was investigated. A method based on genetic algorithm combined with constraints was proposed. Simulations were implemented using the model founded in chapter three. The results show the proposed choosing method of the weighting matrix is effective and feasible. Also an active control was implemented when the actuator/sensor was placed in other position. Results validate the optimization conclusions made in chapter three.
     In chapter five, a two-link space flexible structure system consisting of a flexible beam and a flexible bar was proposed. Two piezoelectric actuators with different poling methods were used to suppress the bending-torsional-coupled vibration of the system. The dynamic governing equation of the system was derived using Lagrange equation and assumed mode method. Piezoelectric torsional actuators were bonded on the flexible bar to suppress the torsional vibraition of the bar, and piezoelectric bending actuators were bonded on the flexible beam to suppress the bending vibration of the beam. Two control strategies were proposed, the first was a modal velocity control strategy based on the Lyapunov stability. The second was a variable structure control method combined with a saturation element and a low-pass filter. Simulations were carried out. At last, the proposed two control methods were compared.
     In chapter six, experimental system of the flexible structure was founded, and the corresponding soft ware and hard ware of the experimental system were summarized. Active vibration control research of the flexible bar system and the two-link flexible structure system were carried out respectively.
     In chapter seven, some conclusions were made, and the future work was proposed.
引文
[1] 顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997.
    [2] 张景绘,李宁,李新民,李智明等.一体化振动控制—若干理论、技术问题引论.北京:科学出版社.2005.
    [3] G. Song, V. Sethi, H. -N. Lic. Vibration control of civil structures using piezoceramic smart materials: A review. Engineering Structures. 2006, 28(11): 1513-1524.
    [4] Yuji Matsuzaki, Tadashige Ikeda, Christian Boiler. New technological development of passive and active vibration control: analysis and test. Smart Materials and Structures. 2005, 14(2) 343-348.
    [5] Ahmed K. Noor, Samuel L. Venneri, Donald B. Paul, Mark A. Hopkins. Structures technology for future aerospace systems. Computers and Structures. 2000, 74(5):507-519.
    [6] Choi, S-B, Kim, J-S. A Fuzzy-sliding mode controller for robust tracking of robotic manipulators. Mechatronics, 1997, 17(2):199-216.
    [7] Nonami, K., Ide N., Ueyama, H.. Robust control of magnet neticb eating systems using μ-synthesis with description form. JSME International Journal, series C, 1997, 40(4):688-693.
    [8] Porcela, A., Schmitencicrf, W. E.. Design of tuned mass damper for seismic excited buliding via H_∞ output feedback control. Proceedings of the IEEE International Conference on Control Applications. Trieste, Italy 1-4 September, 1998, 663-667.
    [9] Metwally, H. M., Awad, T., L-Chaar, N. A. A. Vibration control of bridges deck under vertical earthquake component. Proceedings of ACC, Chicago. 2000, 3570-3574.
    [10] Tuan, H. D., Ono, E., Apkarian, P., Hosoe, S.. Nonlinear H_∞ control for a integrated suspension system via parameterized linear matrix inequalitycharacterizations. IEEE Transactions on Control Systems Technology. 2001, 9(1): 175-185.
    [11] Simpson, M. T., Hansen, C. H.. Use of genetic algorithms to optimize vibration actuator placement for active vibration control of harmonic interior noise in a cylinder with floor structure. Noise Control Eng. J. 1996, 44 (4):169-184.
    [12] 李克强,黄尚廉.智能结构系统的噪声主动控制方法.压电与声光.1997,19(1):42-46.
    [13] 郝志勇,高文志.汽轮发电机组轴系扭振主动控制模拟实验研究.动力工程,1999,19(5):338-341.
    [14] 于登云.空间站结构颤振特性分析研究综述.空间站技术学术交流会论文集,1997(福建).
    [15] P. W. Chung, E. A. Thomton. Torsional Buckling and Vibrations of a Flexible Rolled-up Solar Array. A IAA Paper 95-1355-cp, 1995.
    [16] 张宪民,郭雪梅,徐杜等.柔性机构振动控制的研究进展及存在的若干问题.机械科学与技术,1998,17(4):523-527.
    [17] 鲍文,王西田,于达仁.汽轮发电机组轴系扭振研究综述.汽轮机技术,1998,40(4):193-203.
    [18] 黄文虎,陈滨,王照林.一般力学(动力学、振动与控制)最新进展.科学出版社,1994.
    [19] 杜海平.结构振动鲁棒控制策略研究(博士学位论文).上海:上海交通大学,2002.
    [20] G. Song, V. Sethi, H. -N. Li. Vibration control of civil structures using piezoelectric smart materials: A review. Engineering Structures. 2006, 28(11): 1513-1524.
    [21] 赵超,周军,周凤岐.大型复合航天器的建模与分散控制技术.飞行力学,1998,16(3):22-27.
    [22] 董卓敏.柔性结构的实验建模与主动控制(博士学位论文).合肥:中国科学技术大学,2002.
    [23] 沈润杰,杜设亮.智能结构振动控制.机电工程,1999,16(5),125-127.
    [24] Newson, J. R., Layman, W E., et al.. The NASA Control-Structures Interaction (CSI) Technology Program, The 41st Congress of the International Astronautical Federation, 1-17, 1990.
    [25] Fanson, J. L., Anderson, E. H., et al. Active Structures for Use in Precision Control of L arge Optical Systems, Optical Engineering, 1990, 29(11): 1320-1327.
    [26] Forward, R. L., Swigert, C. J.. Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast. Journal of Spacecraft and Rockets, 1981, 18(1):11-17.
    [27] Bailey T., Hubbard J. E.. Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam. Journal of Guidance and Control, 1985, 8(5):605-611.
    [28] Plump, J., Hubbard, J. E., Bailey, T.. Nonlinear Control of a Distributed System: Simulation and Experiment Results. Journal of Dynamic Systems, Measurement and control, 1987, 10 (9):133-139.
    [29] Burke, S. E., Hubbard, J. E.. Distributed Parameter Controls Design for Vibrating Beams Using Generalized Functions, 4th IFAC, 1986.
    [30] Burke, S. E, Hubbard, J. E.. Active Vibration Control of a Simply Supported Beam Using a Spatially Distributed Actuator. IEEE Control System Magazine, 1987, 7(4):25-30.
    [31] Spearritt D. J., Asokanthan S. F.. Torsional vibration control of a flexible beam using laminated pvdf actuators. Journal of Sound and Vibration. 1996, 193(5):941-956.
    [32] Shen I. Y., Guo W., Pao Y. C.. Torsional vibration control of a shaft through active constrained layer damping treatments. Journal of Vibration and Acoustics, Transactions of the ASME, 1997, 119(4): 504-511.
    [33] I. Y. Shen. Bending and torsional vibration control of composite beams through intelligent constrained-layer damping treatments. Smart Materials and Structures. 1995, 4(4):340-355.
    [34] Tzou H. S.. A new Distributed Sensor and Actuator Theory for Intelligent Shells, J. of Sound and Vibration, 1992, 153(2):335-349.
    [35] V Balamurugan, S Narayanan. Active vibration control of smart shells using distributed piezoelectric sensors and actuators Smart Materials and Structures. 2001, 10(2):173-180.
    [36] Sethi V. System identificationa and active vibration control smart pultruded fiber-reinforced polymer Ⅰ-beam(Master Thesis). Ohio: University of Akron, 2002.
    [37] Song G, Vlattas J, Johnson SE, Agrawal BN. Truss active vibration control of a space truss using PZT stack actuator. American Society of Mechanical Engineers, Aerospace Division. 1999, 59: 263-268.
    [38] 唐永杰,胡选利.振动主动阻尼控制的理论原理及控制策略.振动工程学报,1992,5(1):53-57.
    [39] 胡选利,唐永杰,张升陛.采用压电机敏元件进行结构振动控制Ⅰ:耦合系统动力分析.压电与声光,1993,15(6):53-56.
    [40] 李岳锋,朱德懋等.压电梁振动的多输入多输出主动控制.振动工程报,1998,11(1):9-17
    [41] 马治国,闻邦椿等.压电智能梁的拉伸-弯曲耦合模型.机械工程学报,1999,35(5):53-56.
    [42] 孙东昌,Xu,Z L.智能板振动控制的分布压电单元法.力学学报,1996,28(6):693-699.
    [43] 邓年春,邹振祝.压电板的主动控制.压电与声光,2004,26(6):517-520.
    [44] 聂润兔,邹振祝.智能桁架机电偶合动力分析与振动控制.宇航学报,1997,10(2);119-124.
    [45] 岳林,刘福强.柔性智能桁架结构振动的主动控制方法实验研究.东南大学学报:自然科学版.2001,31(6):64-67
    [46] 赵国忠,顾元宪.压电智能桁架的振动控制和结构的一体化优化设计.航空学报,24(4):332-33S
    [47] Proceeding international conference on giant magnetostrictive materials and their application, Tokyo, 1992.
    [48] Funankebo H. Shape memory alloys. New York: Gordon & Breach Science Publishers, 1987.
    [49] Rogers C A, Liang C, Jia J. Behavior of shape memory alloy reinforced composite plate. AIAA-89-1331-CP, 1990.
    [50] Rogers C A, Barker D K. Experimental studies of active strain energy tuning of adaptive composites. AIAA-90-1086-CP, 1990.
    [51] Clark R L, Saunders W, Gibbs G P. Adaptive structure, John & Wiley, 1998.
    [52] Johnson B D, Fuller C R. Broadband control of plate radiation using a piezoelectric, double-amplifier active-skin and structural acoustic sensing, Journal of acoustical society of America, 2000, 107(2): 876-884.
    [53] 廖昌荣.汽车悬架系统磁流变阻尼器研究(博士学位论文).重庆:重庆大学,2001.
    [54] 李俊宝,张景绘,任勇生,张令弥.振动工程中智能结构的研究进展.力学进展.1999,29(2):165-177.
    [55] Rao S S, Pan T S. Modeling, control, and design of flexible structures: A survey. Applied Mechanics Review, 1990, 43(5): 99-117.
    [56] 刘福强,张令弥.作动器传感器优化配置的研究进展.力学进展,2000,30(4):506-516.
    [57] 任建亭,云聚,姜节胜.振动控制传感器/作动器的数目和位置优化设计.振动工程学报,2001,14(2):237-241.
    [58] 杜设亮.精密机械生热稳定构件研究(博士学位论文).杭州:浙江大学,2001.
    [59] Vander Velde W E, et al. Number and placement of control system components considering possible failures. Journal of Guidance and Control, 1984, 1(7): 703-709.
    [60] Hiramoto K, Doki H, Obinata G. Optimal sensor/actuator placement for active vibration control using explicit solution of algebraic Riccati equation. Journal of Sound and Vibration, 2000, 229(5): 1057-1075.
    [61] Arbel A. Controllability measures and actuator placement in oscillatory systems. International Journal of Control, 1981, 33(3): 565-574.
    [62] Loongman R W, et al. Actuator placement from degree of controllability criteria for regular slewing of flexible spacecraft. ACTA Astronautica, 1981, 8(7): 703-718.
    [63] Viswanathan C N, Longman R W, et al. A degree of controllability definition: Fundamental concept and application to modal system. J of Guidance Control and Dynamics, 1984, 7(2): 222-230.
    [64] Harnden A M, et al. Measure of modal controllability and observability for first-and second-order linear systems. Journal of Guidance Control and Dynamics, 1989, 12(3): 421-428.
    [65] Lim K B. Method for optimal and sensor placement for large flexible structures. Journal of Guidance Control and Dynamics, 1992, 15(1): 49-57.
    [66] Schuiz G, Heimbold G. Dislocated actuator/sensor positioning and feedback design for flexible structures. Journal of Guidance Control and Dynamics, 1983, 6(5): 361-366.
    [67] Kondoh S, et al. The positioning of sensors and actuators in the vibration control of flexible systems. JSME International Journal, Series C, Vibration Control Engineering, 1990, 33(2): 145-152.
    [68] Chen S T, et al. Effective active damping for suppression of vibration in flexible systems via dislocated sensor/actuator positioning. JSME International Journal, Series C, Vibration Control Egineering, 1994, 37(2):252-259.
    [69] Lee A C, Chen S T. Collocated sensor/actuator positioning and feedback design in the control of flexible structure system. Transactions of ASME Journal of Vibration and Acoustics, 1994, 116: 146-154.
    [70] Horner G C. Optimum damping location for structural vibration control. Proc of the 23rd AIAA SDM Conference, AIAA Paper 82-0636, 1982:29-34.
    [71] Choe K, Baruh H. Actuator placement in structural control. J of Guidance Control and Dynamics, 1992, 15(1): 40-48.
    [72] Lindberg Ir R E, Longman R W. On the number and placement of actuators for independent modal space control. J of Guidance Control and Dynamics, 1984,7(2): 215-221.
    [73] Haftka R T, Adelman H M. Selection of actuator locations for static shape control of large space structures by Heuristic integer programming. Computer Structure, 1985, 20(1-3): 575-582.
    [74] Salama M, Rose T, et al. Optimal placement of excitations and sensors for verification of large dynamic systems. Proc. Of the 28th AIAA SDM Conference, AIAA Paper 87-0782, 1987:1024-1031.
    [75] Chen G S, Bruno R J, et al. Selection of active member location in adaptive structures. Proc. Of the 30th AIAA SDM Conference, AIAA Paper 87-0782, 1989:1127-1133.
    [76] Chen G S, Bruno R J, et al. Optimal placement of active passive members in truss structures using simulated annealing. AIAA Journal, 1991, 29(8): 1327-1334.
    [77] Onada J, Hanawa Y. Actuator placement optimization by genetic and improved simulated annealing algorithms. AIAA Journal, 1993, 31 (6): 1167-1169.
    [78] Rao S S, Pan T S, et al. Optimal placement of actuators actively controlled structures using genetic algorithms. AIAA Journal, 1991, 29(6): 942-943.
    [79] Clark R L. Moving Away from Collocated Control. Journal of Sound and Vibration, 1996, 190(1): 129-136.
    [80] 林嗣廉,徐博侯.柔性结构振动的独立模态H∞控制.浙江大学学报:工学版.2001.31(5):47-52.
    [81] Jinsiang S. Active vibration isolation by adaptive control. Proceeding of the 1999 IEEE International Conference on Control Application. Hawai, USA, August, 1999:1509-1514.
    [82] Wang D A, Huang Y M. Modal space vibration control of a beam by using the feedforward and feedback control loops. International Journal of Mechanical Sciences, 2002, 44(1): 1-19.
    [83] 李山虎,杨靖波等.轴向运动悬臂梁的独立模态振动控制—Ⅰ近似理论分析.应用力学学报.2002,19(1):35-38.
    [84] 王波,王荣秀.结构振动的独立模态和耦合模态的组合控制.振动与冲击.2004,23(4):26-30.
    [85] 吴广玉.系统辨识与自适应控制(下册).哈尔滨:哈尔滨工业大学出版社,1987.
    [86] Jinsiang S. Active vibration isolation by adaptive control. Proceeding of the 1999 IEEE International Conference on Control Application. Hawai, USA, August, 1999:1509-1514.
    [87] Shen Y X, Homaifar A. Active control of flexible structure using Genetic Algorithms and LQG/LTR approaches. Proceedings of the American Control Conference v 6 1999. IEEE, Piscataway, NJ, USA, 99CB36251: 4398-4402.
    [88] 毛剑琴,卜庆忠,张杰等.结构振动控制的新进展.控制理论与应用,2001,18(5):647-652.
    [89] 解学书.最优控制.北京:清华大学出版社,1986.
    [90] 周浩,周韬,陈万春,殷兴良.高超声速滑翔飞行器引入段弹道优化.宇航学报.2006,27(5):970-973.
    [91] Timothy S. Farajian, Ramin S. Esfandiari. Optimal time-delayed open/closed-loop control of a damped beam. Journal of the Franklin Institute, 2007, 344(5): 426-438.
    [92] 郑玲,邓兆祥,李以农.汽车半主动悬架的滑模变结构控制.振动工程学报,2003,16(4):457-462.
    [93] R. -F. FUNG. Vibration and variable structure control with integral compensation in a non-constant rotating disk system. Journal of Sound and Vibration. 1997, 199(2):223-236.
    [94] Qinglei Hu, Guangfu Ma. Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerospace Science and Technology, 2005, 9: 307-317.
    [95] Wang D A, Huang Y M. Application of discrete-time variable structure control in the vibration reduction of a flexible structure. Journal of Sound and Vibration, 2003, 261(3): 483-501.
    [96] Ghaboussi J, Joghataie A. Active control of structures using neural networks. J. Engng. Mech., ASCE, 1995, 12(4): 555-567.
    [97] Scott D S, Tanaka N. Active control of vibration using a neural network. IEEE Transactions on Neural Networks, 1995, 6(4): 819-828.
    [98] Kraft L G, Pallotta J. Real-time vibration control using CMAC neural networks with weight smoothing. Proceedings of the American Control Conference v 6 2000. IEEE, Piscataway, NJ, USA, 0036334: 3939-3943.
    [99] 刘志刚,孙承顺.人工神经网络在柴油机振动有源控制中的研究.船舶工程,2000,2:33-36.
    [100] Alok Madan. Vibration control of building structures using self-organizing and self-learning neural networks. Journal of Sound and Vibration, 2005, 287(4-5):759-784.
    [101] Teng T L, Peng C P, Chuang C. A study on the application of fuzzy theory to structural active control. Computer Methods in Applied Mechanics and Engineering. 2000, 189: 439-448.
    [102] Yamada M. Active vibration control using fuzzy theory-Part 2: optimal membership function. Proc. First World Conf. Struct. Control, Los Angeles, 1994, WPJ: 13-20.
    [103] Furuta H. Application of genetic algorithms to self-tuning of fuzzy active control for structural vibration. Proc. First World Conf. Struct. Control, Los Angeles, 1994, WPJ: 31-40.
    [104] Joghataie A. Neural networks and fuzzy logic in structural control. Proc. First World Conf. Struct. Control, Los Angeles, 1994, FA2: 63-72.
    [105] Indra N K, Kazuto S, Fumio D. Multimode vibration control of a flexible structure using H_∞-based robust control. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 23-31.
    [106] Carsten S, Pascal G, Mahmond Ci. Multiobjective output-feedback control via LMI optimization. IEEE Transactions on Automatic Control, 1997, 42(7): 896-911.
    [107] Nishimura H. H_∞ control with pole assignment for building like structure by using active dynamic vibration absorber. Proc. First World Conf. Struct. Control, Los Angeles, 1994, TP4: 73-82.
    [108] Nishitani A. H_∞ structural response control with reduced-order controller. Proc. First World Conf. Struct. Control, Los Angeles, 1994, TP4: 63-72.
    [109] Katsuhide W, Shinji H, Takahide H, et al. Combination of H_∞ and PI control for an electromagnetically levitated vibration isolation system. Proceeding of the 35th Conference on Decision and Control, Kobe, Japan, 1996: 1223-1228.
    [110] 孙慷,张福学.压电学(上册).国防工业出版社,1984.
    [111] 陶宝祺.智能材料结构.国防工业出版社,1997.
    [112] 魏燕定,吕永桂,陈子辰.基于压电驱动器的微动平台开环精密定位控制研究.机械工程学报:2004,40(12):80-85.
    [113] Dong Sun, James K. Mills, et al. A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics. 2004, 14(4):381-401.
    [114] 吕永桂,魏燕定等.悬臂板振动控制传感器/致动器优化配置.兵工学报。2006,27(1):88-92.
    [115] Glazounov, A.E., Wang, S., Zhang, Q.M., 2000. Piezoelectric stepper motor with direct coupling mechanism to achieve high efficiency and precise control of motion. IEEE Transactions on Ultrasonics, and Frequency Control, 47(4):1059-1067.
    [116] Kim, J., Kang, B.. Performance test and improvement of piezoelectric torsional actuators. Smart Materials and Structures, 2001,10(4):750-757.
    [117] GLAZOUNOV A. E., ZHANG Q. M., KIM C. Torsional actuator based on mechanically amplified shear piezoelectric response. Sensors and Actuators. 2000, 79(1): 22-30.
    [118] Glazounov, A. E., Zhang, Q.M., Kim, C., 1998. A new torsional actuator based on shear piezoelectric response. SPIE Conferece on Smart Materials Technologies, SPIE 3324:82-91.
    [119] 强锡富.传感器.机械工业出版社,1993.
    [120] 刘鸿文.材料力学.高等教育出版社,1991.
    [121] 刘延柱,陈文良,陈立群.振动力学,高等教育出版社,1998.
    [122] 屈维德.机械振动手册.机械工业出版社,1992.
    [123] Sylvaine L. Hisham A. Yuvan B. Piezoelectric actuators and sensors location for active control of flexible structures. IEEE Transacitons on instrumentation and measurement. 2001, 50(6):1577-1582.
    [124] 李富柱,郭玉琴,王小椿,宋维.基于模拟退火的覆盖件回弹预测.机械工程学报,2006 42(8):220-223.
    [125] 顾元宪,项宝卫,赵国忠.桁架结构截面优化设计的改进模拟退火算法.计算力学学报,2006,23(5):546-552.
    [126] SADRI A M, WRIGHT J R, WYNNE R J. Modeling and optimal placement of piezoelectric actuators in isotropie plates using genetic algorithms. Smart Materials and Structures, 1999, 8(4): 490-498.
    [127] Jae-hung Han, In Lee. Optimal placement of piezoelectric sensors and acuators for vibration control of a composite plate, using genetic algorithms. Smart Materials and Structures, 1999, 8(2):257-267.
    [128] Kim-Ho Ip, Ping-Cheung Tse. Optimal configuration of a piezoelectiric patch for vibration control of isotropic rectangular plates. Smart Materials and Structures. 2001, 10(2):395-403.
    [129] 陈艳艳,梁颖,刘小明.公路网布局优化设计的正交枚举法.土木工程学报,2003,36(7):14-17.
    [130] 复兴,张涛.主动控制力在被控结构上的最优位置.哈尔滨建筑大学学报,2002,35(5)5-8.
    [131] Holland, J., Adaptation in nature and artificial systems, The University of Michigan Press, Michigan, United States United of America. 1975.
    [132] Katsuhiko Ogata.现代控制工程(第四版).电子工业出版社,2003.
    [133] C. A. Harvey and G. Stein. Quadraitc weights for asymptotic regulator properties. IEEE Trans. On Automatic Control AC-23, (1978).
    [134] B. E. Stuckman and P. L. stuckman. Finding the "best" optimal control using global search. Computers.Elect. Engng 1993, 19(1): 9-18.
    [135] 吴克恭.埋入压电材料的智能复合材料结构振动主动控制理论和实验研究(博士学位论文).西安:西北工业大学,2003.
    [136] Ho-Cheol Shin, Seung-Bok Choi. Position control of a two-link flexible manipulator featuring piezoelectric actuators and sensors. Mechatronics, 2001,11 (6): 701-729.
    [137] 唐友刚,潘永皓.薄壁结构弯扭耦合振动分析,振动工程学报,1993,6(4):399-405.
    [138] 李俊,沈荣瀛,华宏星.考虑翘曲影响的Bernoulli-Euler薄壁梁的弯扭耦合振动.机械强度,2003,25(5):486-48.
    [139] Hakan GOkdag, Osman Kopmaz. Coupled bending and torsional vibration of a beam with in-span and tip attachments. Journal of Sound and Vibration. 2005, 287(3): 591-610.
    [140] 厉玉鸣,翁维勤.非线性控制系统.北京:化学工业出版社,1985.
    [141] 曾癸铨.李雅普诺夫直接法在自动控制中的应用.上海:上海科学技术出版社,1985.
    [142] 刘豹.现代控制理论.北京:机械工业出版社,2002.
    [143] 蔡国平,洪嘉振.柔性梁结构的时滞主动控制.宇航学报.2003,24(5):518-524.
    [144] 王丰尧.滑模变结构控制.北京:机械工业出版社.2001.
    [145] 刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [146] Su W C, Drakunov S V, Ozguner U, et al. Sliding mode control with chattering reduction in sampled data systems. Proceedings of the 32nd IEEE Conference on Decision and Control, 1993, 2452-2457.
    [147] Kachroo P, Tomizuka M. Chattering reduction and error convergence in the sliding-mode control ofa chlass of nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(7): 1063-1068.
    [148] Yanada H, Ohnishi H. Frequency-shaped sliding mode control of an electrohydraulic servomotor. Jouranal of systems and control and dynamics, 1999, 213(1):411-448.
    [149] Krupp D, Shtessel Y B. Chattering-free sliding mode control with unmodeled dynamics. American control conference, 1999, 530-534.
    [150] Kang B P, Ju J L. Sliding mode controller with filtered signal for bobot manipulators using virtual plant/controller. Mechatronics, 1997, 7(3): 277-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700