微小孔电火花加工排屑方法及振动器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的不断发展,具有微小孔的零件被广泛的应用在航空、航天、汽车、医疗器械等重要行业的核心装备中。微细电火花加工技术因其具有非接触式加工、无宏观切削力、对工具的强度和刚度要求低、材料适用范围广的特点,在微尺度加工领域有着无可比拟的优越性,是一种特别适合用于加工微小孔的方法。但是这种方法存在自身的弊端,即加工间隙极其细微,加工爆炸力小,电蚀产物排除困难,电蚀产物堆积在加工间隙内容易造成短路并且极易产生二次放电的现象,使加工稳定性大大降低。为了改善微小孔电火花加工中电蚀产物的排除状况,本文就工件振动、电极旋转等工艺手段对排屑效果的影响进行了一系列研究。
     以电蚀产物的有效排出为目标采用流体动力学方法进行了间隙内电蚀产物颗粒排除的仿真研究。建立了电蚀产物排出的流体动力学分析模型,并应用流体动力学分析软件Fluent对电极旋转、电极振动、电极旋转振动、工件振动、电极旋转工件振动五种加工方式下电蚀产物的排出情况进行了仿真,仿真结果表明:电极旋转工件振动的加工方式下间隙内电蚀产物的排出情况最好。
     研制了一台超磁致伸缩执行器,并将其作为微小孔电火花加工中的工件振动器使用。通过振动器带动工件振动,辅助电蚀产物迅速排除,创造良好的放电环境,提高放电机率,进而提高微小孔电火花的加工效率。
     对所设计的超磁致伸缩振动器的静动态特性进行了测试,从而为微小孔电火花加工实验提供准备。在自主研发的加工设备上进行微小孔电火花加工实验。实验对比了电极旋转、工件振动和电极旋转工件振动三种加工方式下的加工时间。由实验结果可知:工件振动电极旋转时所用的加工时间最短,从而验证了流体动力学的仿真结果。最后针对工件振动频率对加工效率的影响进行了实验研究。实验结果表明:工件的振动频率越高,微小孔电火花加工的加工时间越短。所以提高工件振动频率是减小加工时间、提高加工效率的有效手段。
With the development of technology, parts with micro-hole have been widely in aviation, aerospace, automotive, medical equipment and other important industries. Micro-EDM has the advantages of non-contact processing, no macroscopic cutting force, and low requirement of strength and stiffness of the tools, wide material application range, is especially suitable for micro-hole processing method. However, this method also has its own drawbacks, that is its machining gap is extremely subtle and its processing explosive force is very small, electric erosion products is hard to exclude, electric erosion products deposited on the processing of the content could easily lead to short-circuit the gap. Greatly reduce the processing stability, easy to produce secondary discharge phenomenon. In order to improve the debris exclusion phenomenon, a series of researches are carried out in this paper.
     In chapter two we conducted a simulation focus on debris using fluid dynamics method and established a fluid dynamics model.Then the debris excluding phenomenon under the conditions that there is only electrode rotation, there is only electrode vibration, there are electrode rotation and vibration, there is only work piece vibration, there are electrode rotation and work piece vibration has been studied using software FLUENT. Simulation results show that, under the condition that there are electrode rotation and work piece vibration, the debris excluding phenomenon is the best.
     In this paper, a giant magnetostrictive actuator is designed and built using as the vibration table of the micro-hole EDM to aid the process of EDM debris exclusion, and create an ideal discharge environment, enhance discharge probability, thereby increase the machining efficiency.
     Experiments are carried out to test about the static and dynamic characteristics of the giant magnetostrictive vibration table in this paper, so that do prepare for the next research. In the micro-hole EDM processing experiments, the processing time under the working condition that there is no electrode rotation none work piece vibration, there is only electrode rotation, there is only work piece vibration, there are electrode rotation and work piece vibration are compared. Through the experimental results, we can find the best processing condition, and proof the simulation result. At last, the experiment about the relationship between vibration frequency and working efficiency is carried out. The experiment results show that the higher vibration frequency, the shorter the working time, that is the higher working efficiency. So to increase the work piece vibration frequency is an effective mean to improve the working efficiency.
引文
[1]杨彦涛,李自鹏,黄志伟.特种加工技术在微小孔加工中的应用[J].黄河水利职业技术学院学报.2010,(01).
    [2]应人龙.微小孔加工技术综述[J].机床与液压,2008, (06)
    [3]胡凤兰,董丽君,高为国.利用激光进行微小深孔的特种加工[J].煤矿机械.2009,(02)
    [4]贾宝贤,王振龙,赵万生.基于特种加工的微小孔加工技术[J].电加工与模具,2005,(02)
    [5]马星辉,高国富,赵波,董小磊.精密微小孔加工技术进展[J].电加工与模具.2008,(05)
    [6]赵万生.先进电火花加工技术[M].北京:国防工业出版社,2003.
    [7]刘晋春,赵家齐,赵万生.特种加工[M].北京:机械工业出版社,1999.
    [8]段绍值,杨树宇,刘庆军.深小孔电火花加工工艺[J].机械工艺师.1995,(1)
    [9]李文卓,赵万生,王振龙等.我国微小型电火花加工装置最新研究与进展[J].电加工与模具,2001,2:5-9.
    [10]赵万生,李文卓,王振龙.高精度微细电火花加工系统的研制[J].电加工与模具,2004,(01).
    [11]李勇,王显军,郭(?)等,微细电火花加工关键技术研究,清华大学学报,1999,39(8):45-48.
    [12]Yu Z Y, Zhang Y, Li J, et al. High Aspect Ratio Micro-Hole Drilling Aided with Ultrasonic Vibration and Planetary Movement of Electrode by Micro-Edm. CIRP Annals-Manufacturing Technology,2009,58(1):213-216.
    [13]Sundaram M M, Billa S, Rajurkar K P. Generation of High Aspect Ratio Micro Holes by a Hybrid Micromachining Process.2007 ASME International Conference on Manufacturing Science and Engineering, January 15,2007-October 18,2007[C].
    [14]Hung J, Lin J, Yan B, et al. Using a Helical Micro-Tool in Micro-Edm Combined with Ultrasonic Vibration for Micro-Hole Machining. Journal of Micromechanics and Micro engineering,2006,16(12):2705-2713.
    [15]Tong H, Li Y, Wang Y. Experimental Research On Vibration Assisted Edm of Micro-Structures with Non-Circular Cross-Section. Journal of Materials Processing Technology,2008,208(1-3):289-298.
    [16]Mohan B, Rajadurai A, Satyanarayana K G. Electric Discharge Machining of Al-Sic Metal Matrix Composites Using Rotary Tube Electrode. Journal of Materials Processing Technology,2004,153-154:978-985.
    [17]贾振元,任小涛,刘巍,等.大深径比微小孔快速电火花加工系统[J].光学精密工程,2009,17(12):3055-3061.
    [18]吴品.旋转电极的电火花孔加工实验研究[D].上海:上海交通大学,2007
    [19]李建功.基于流场分析的微细电火花深小孔加工的研究[D].上海:上海交通大学,2008.
    [20]李明辉.电火花加工理论基础[M].北京:国防出版社,1989.
    [21]郭烈锦.两相流与多相流动力学[M].西安:西安交通大学出版社,2002.
    [22]于勇FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008.
    [23]韩占忠FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [24]王晓煜.超磁致伸缩微位移执行器的系统建模与控制方法研究[D].大连:大连理工大学,2008
    [25]卢全国.基于GMM的微致动研究及应用[D].武汉理工大学,2007
    [26]傅龙珠.稀土超磁致伸缩制动器的设计及实验研究[D].杭州:浙江大学,2003
    [27]徐杰.超磁致伸缩执行器的设计方法研究及其测控系统的建立[D].杭州:浙江大学,2006
    [28]武丹.超磁致伸缩执行器及其控制技术研究[D].大连:大连理工大学,2000
    [29]谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社,2002
    [30]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].陕西:西北工业大学出版社,2000
    [31]黄国权.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2004
    [32]高升辉.微细及小孔电火花加工的关键技术研究[D].大连:大连理工大学,2008
    [33]井水淼.电火花微小孔加工控制方法及参数优化的研究[D].大连:大连理工大学,2008
    [34]郑新毅.深微孔电火花加工关键技术研究[D].大连:大连理工大学,2010
    [35]田亮泽.压电陶瓷振动器在电火花机床上的应用[J].电加工与模具.1990,(02)
    [36]孙明礼,胡仁喜,崔海蓉等ANSYS 10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007.4
    [37]贾振元,杨兴,郭东明,侯璐景.超磁致伸缩材料微位移执行器的设计理论及方法[J].机械工程学报.2001,11:46-49.
    [38]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及相关技术研究[D].大连:大连理工大学,2000
    [39]贾宇辉.超磁致伸缩制动器及有限元分析方法的研究[J].光学精密工程.2000,2
    [40]李秀.超磁致伸缩薄膜的力学特性及实验研究[D].大连:大连理工大学,2009
    [41]黎文献,余琨,谭敦强,等.稀土超磁致伸缩材料的研究[J].矿冶工程.2000,20(3):64-66
    [42]朱金才.磁致伸缩作动器的设计及其动态特性研究[J].南京航空航天大学学报.1998(8)
    [43]欧阳光耀.磁致伸缩材料及其作动器设计[J].海军工程学院学报.1998(1):44-47
    [44]唐照民.机械设计手册[M].北京:高等教育出版社,1995
    [45]苏启太,邱树业.磁性材料TERFENOL-DA在大型力矩激励器中的应用[J].1996,27(4):2-5
    [46]贾起民.电磁学[M].上海:复旦大学出版社,1987
    [47]赵忧民.磁路设计原理[M].北京:机械工业出版社,1987
    [48]邵红艳.超磁致伸缩驱动器磁场输出位移的有限元分析[J].机床与液压.2005,(04)
    [49]薛淼.超磁致伸缩材料在换能器中的应用研究[D].呼和浩特:内蒙古科技大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700