微振平台中激振器的设计建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新型功能材料的飞速发展,超磁致伸缩材料以其伸缩应变大、能量密度高、频带宽、智能响应等独特优势在磁—机转换产品领域显示出了巨大的市场前景。本文所设计的激振器是一种基于超磁致伸缩材料的伸缩效应来完成电能到机械能转换的新型激振器。研究激振器不仅有利用拓展超磁致伸缩材料的应用,而且有助于更好地完成发泡水泥板生产新工艺。
     本文以发泡水泥板生产工艺对微振平台提出的功能要求为依据,确立微振平台应该达到的性能指标,为实现这些性能指标,从激振器类型的选择、激振方式的确立等诸多方面制定了微振平台的整体方案;同时深入研究了超磁致伸缩材料的仲缩现象、产生机理和工作特性等,为激振器的设计提供重要的初始设计数据和坚实的理论基础。
     在现有电动式激振器的基本结构的基础上,对激振器的整体结构方案进行了分析和设计。提出了超磁致伸缩棒的几何参数、线圈的几何参数设计与优化、磁回路设计以及预压机构等关键部件的设计方法和理论;对激振器的温升进行了分析,对比了几种常用热变形的补偿方法,并完成了温控系统的设计。
     简述了有限元分析方法和ANSYS软件,以及与本论文相关的电磁场有限元分析理论。利用ANSYS 10.0对所设计的激振器的磁场分布进行了仿真分析,得到了激振器驱动磁场、偏置磁场的分布情况,这对于激振器的性能研究具有十分重要的指导意义;同时分析还表明:激振器中部磁场分布比较均匀,且磁场强度要小于两端磁场强度,这与超磁致伸缩棒的低导磁率有关。为了定量研究激振器的响应特性,采用集总参建模方法建立了激振器的动静态数学模型,得到了相应的传递函数关系式;并利用MATLAB中的Simulink功能模块进行了动态性能仿真分析,通过分析初步确定了系统的动态响应性能,提出了有效改善动态响应时间和系统稳定性的方法,为进一步研究激振器的智能控制系统提供了理论依据。
With the development of the new function materials, ginat mangnetosrictive material have brought out the large maket prospect in the magnetism-machine transition area because of the large flexible strain, high energy density wide frequency band intelligent response and some other special preponderance. Vibration exciter designed is a kind of new exciters, which can change the electric energy into mechanical energy based on flexible effect of ginat mangnetosrictive material. The study of the vibration can not only be good for expanding the use of ginat mangnetosrictive material, but also help complete the new technology of the production of foamed concrete slab.
     Based on the functional requirement of the micro damping platform raised by the productive technology of foamed concrete slab, this paper confirmed the performance indexes which the micro damping platform should reach. Also it draw up the whole plane from the choice of vibrator types, the establishment of vibration mode and some others aspects. It studied the flexible phenomenon, generating mechanism and performance characteristic of ginat mangnetosrictive material and provided the important design date and theoretical basis for the design of exciter.
     Based on the existing basic structure of the electrodynamic type exciter, It did the analysis and design of the exciter's integral structure scheme, raised the design and optimization of the geometric parameters of ginat mangnetosrictive material sticks and coils, magnetic circuit design and the desigen method and theory of the critical components such as preloading institution; It analized the temperature rise of the exciter and finished the temperature control device design based on some usual compensation methods of the thermal deformation.
     This paper briefly described the finite element analysis, ANSYS software and the related electromagnetic field finite element analysis theory. It did the simulation analysis of the exciter's magnetic field distribution, and got its distribution of the driven and bias magnetic fields which was so important for the performance study of the exciter. Meanwhile, the analysis showed that, at the middle of the exciter, the magnetic field distributed evenly and is less than the magnetic field intensity each end which is related to the low magnetic permeability. For studying the response characteristic of the exciter quantify cationally, this paper used analsis modeling method to suild the exciter's static mathematic model and got the corresponding transfer function equation. Also, it used simulink functional module of MATLAB to do dynamic performance simulation analysis, through the analysis. This paper comfirmed prelimirary the system dynamic response performance, and raised the effective method to improve the dynamic response time and system stability, Also it provide the theoretical basis for the farther study of the inlligent control system of the exciter.
引文
[1]张磊,杨鼎宜.轻质泡沫混凝土的研究及应用现状[J].混凝土.2005(8):44-48
    [2]李峰,胡琳娜.发泡水泥材料的研究进展[J].混凝土.2008,233(5):80-82
    [3]张艳锋.聚丙烯纤维增强粉煤灰泡沫混凝土的工艺研究[D].西安:长安大学硕士论文,2007:1-2
    [4]吴学松.建筑砌块成型机械发展及砌块生产线建设[J].建筑机械化,2001(1):12-13
    [5]杨鼎宜.应用振动挤压成型工艺生产混凝土空心砌块[J].混凝土与水泥制品,(5):52-54
    [6]金建交,杨世春,何根旺.砌块成型机的振动对砌块密实度的影响[J].机械工程与自动化,2006(1):49-52
    [7]胡正.应用于振动焊接的微振动平台的研制[D].浙江:浙江大学硕士论文,2006
    [8]于宝成,许步勤,寇子明.液压激振器振动参数的设计[J].煤矿机械,2001(1):7-9
    [9]王燕华,程文瀼,陆飞.地震模拟振动台的发展[J].工程抗震与加固改造,2007,29(5):56-59
    [10]张军.基于双向挤压砌块成型新工艺研究[D].山西:太原理工大学硕士论文,2006
    [11]齐忠昱.惯性式振动成型机的成型原理及力学参数选择[J].轻金属2001,(7):35
    [12]Jaffe George, Beck Alexander. Precise moves depend on ball-screw threads[J]. Machine Design,2005,77(9):106-108
    [13]于宝成,许步勤,冯海星.激波式液压激振器的设计与应用[J].液压与气动,2001(6):10-11
    [14]贾振元,王福吉,郭东明.功能材料驱动的微执行器及其关键技术[J].机械工程学报.2003,39(11):61-67
    [15]T.C.H.Nguyen, W.C.Tang, R.T.Howe. Laterlly driven poysilicon resonant microstructure [J].Sensors and Actuators,1998,20:25-32
    [16]韩波,王庆丰,路永祥.基于LQC理论的液压主动悬架仿真研究[J].机械工程学报,1998,34(6):59-65
    [17]Xu Y L,Yang Z C,Chen J.Microvibration controlplatform for high Technology facilities subject to traffic-induced ground motion[J].Enginneering Structures,2003(25):1069-1082
    [18]F.Claeyssen,N.Lhermet.Actutor[J].International Conference on New Actuators,2002:1-12
    [19]赵伦,任冲.稀土超磁致伸缩材料的应用研究现状[J].湛江海洋大学学报,2003,23(7):77-80
    [20]孙宝元.现代执行器技术[M].长春:吉林大学出版社.2003
    [21]李应雄.超磁致伸缩爬行电机的设计与仿真[D].天津,河北工业大学,2004
    [22]M.Pasquale.Mechanical sensor and actuators[J].Sensors and Actuators,2003,106:142-148.
    [23]杜挺,张洪平,祁马华.稀土-铁系超磁致伸缩材料的应用研究[J].金属功能材料,1997:173-176
    [24]邬义杰,项占琴.新型功能材料在活塞异型销孔制造中的应用[J].制造技术与机 床,1997,(8):36-38
    [25]冀守勋,万里,张俊德.实型铸造用振实台的研制[J].铸造.1996,10:25-27
    [26]Goran Engdahl.Handbook Magnetostrictive Materials.Sa Diego:Academic Press,2000
    [27]徐杰.超磁致伸缩执行器的设计方法研究及其测控系统的建立[D].浙江:浙江大学硕士论文,2006:5-7
    [28]贾振元,杨兴,武丹等.超磁致伸缩执行器及其在流体控制元件中的应用[J].机床与液压,2000(2):3-4
    [29]郭东明,杨兴,贾振元等.超磁致伸缩执行器在机电工程中的应用现状[J].中国机械工程,2001,12(6):724-727.
    [30]Lacy S L, Bernstein D S. Identification of an electromagnetic actuator. Decision and Control, Proceedings of the 41st IEEE Conference on, Dec.2002, Vol.4:4521-4526
    [31]Besbes M,Ren Z,Razek A.Finite Element Analysis of Magneto-Mechanical Coupled Phenomena in Magnetostrictive Materials[J].IEEE Transactions on Magnetics.1996,32(3): 1058-1061
    [32]Gros L,Reyne G,Strong Coupling Magneto Mechanical Applied to Model Heavy Magnettostrictive Actuators[J].IEEE Transactions on magnetics.1998,345(5):3150-3153
    [33]夏春林,丁凡,路永祥.超磁致伸缩材料驱动器实验研究[J].电工技术学报,1999,14(4):14-16
    [34]Ikeda M, Uemura K,Sasaki I,etal.Factors Affecting the Output Voltage of a Magnetostrict-ictive Torque Sensor Constructed from Ni-Fe Sputtered Films and a Ti-Alloy Shaft[J].日本应用磁学会志,1998,22(6):1074-1079
    [35]吴国安.零磁致仲缩非晶体磁性传感器:磁性传感器的现状与未来(一)[J].磁性材料与器件,1994,25(1):42-47
    [36]Clark A.E.Ferromagnetic material[M].E.P.Wohlfarth:North-Holland Publishing company, 1980
    [37]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究[D].大连:大连理工大学硕士论文,2001
    [38]徐杰,陈张健,邬义杰.超磁致伸缩驱动器热变形补偿及温控方法研究[J].设计与研究,2005,6:8-11
    [39]余佩琼,刚宪约.稀土超磁致伸缩微致动器设计与实验[J].浙江工业大学学报,2005,33(4):407-410
    [40]夏春林,丁凡,路永祥.超磁致伸缩电—机械转换器模型分析[J].中国机械工程,2000,11(11):1288-1292
    [41]张磊,束立红,何琳,刘永光等.磁致伸缩作动器的设计与性能分析[J].海军工程大学学报,2006,18(4):75-79
    [42]李恒菊.磁致伸缩材料在微动工作台中的应用[D].武汉:武汉理工大学硕士论文,2005
    [43]Clark A.E.High Power Rare Earth Magnetostrictive Materials[J].Journal of Alloys and Compounds.1993,4(1):70-75
    [44]Yoshioka H, Takahashi Y, Katayama K,etal. An active Microvibration isolation system for hi-tech manufacturing facilities. Journal of Vibration and Acoustics.2001,123(2):269-275
    [45]Clark A.Magnettostrictive Rare Earth-Fe2 Compounds,Ferromagnetics[M].North-Holland Pub,Amsterdam,1980.
    [46]Carmody T.NOMOGRAPH-max Operating Current[M].PRD Electronics,Inc,Syosset NY.
    [47]尹子栋.超磁致伸缩式微小型高速开关阀驱动部件关键技术研究[D].西安:西北工业大学硕士论文,2006.
    [48]Venkataraman R,Rameau J,Krishnaprasad P S.Characterization of an EFREMAMP magnetostrictive actuator.CDCSST.R.98-1.
    [49]徐杰,陈张健等.超磁致伸缩驱动器热变形补偿及温控方法研究[J],设计与研究,2005,6:8-10
    [50]谭建国.使用ANSYS6.0进行有限元分析[M].北京:中国水利水电出版社,2006.
    [51]Lu.L.H, Liang.Y.C, Tachikawa.H,etal.Nanometer positioning system based on ball screw. Key Engineering Materials,2006,315:710-714
    [52]Besbes M,Ren Z,Razek A.Finite element anaslysis of magneto-mechniacal coupled phenomena in magnetostrictive materials[J].IEEE Trans Magn,1996,32(3):1058-1061
    [53]M.ANjanappa,G.Engdahl,etal.Nonlinear 2-D transient modeling of Terfenol-D rods[J].IEEE Trans Magn,1991,27(6):5349-5351
    [54]Claeyssen F,Bossut R,Boucher D.Modeling and Characterzation of the Magnetostrictive Coupling[A].In:Hamonic B F,Wilson O B, Decarpigny J N.Power Transducer for Sonics and Ultrasonics[C].Toulon,1990,132-151
    [55]周志平.基于Terfenol材料的大位移微驱动器的研究与开发[D].江苏:扬州大学硕士论文,2007
    [56]周贤文.基于DSP控制的超磁致伸缩式高速开关阀的研究[D].上海:上海海事大学,2005.
    [57]夏春林,丁凡,路永祥.超磁致伸缩电—机转换器模型分析[J].中国机械工程,2000,11(11):1288-1291
    [58]Bryant M.D.Ning Wang. Audio Range Dynamic Models and Controllability of Li-near Motion Terfennol-D Actuators, Journal of Intelligent Material Systems and Struct-ures;May 1994.
    [59]林青,张国贤,何菁玮,虞兰.超磁致伸缩材料驱动器的数学模型[J].机电一体化,2001(6):26-29.
    [60]THOMPSON J.M.T,STEWART H.B.Nonlinnear Dynamics and Chaos.Chichester:John Wiley&Sons,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700