鸡肾发生的组织学观察及相关活性物质的表达与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过观察9个不同发育时期鸡(Gallus domestiaus)胚胎肾组织的发生过程和5只红腹锦鸡的肾组织,检测表皮生长因子受体(EGFR)、转化生长因子β(TGF-β)、水通道蛋白2(AQP-2)和Bax蛋白在鸡胚肾(小管)发生过程和红腹锦鸡肾组织中的表达,探讨鸟类中肾的发生与退化,后肾发生及分化的规律和特点,同时了解红腹锦鸡肾的结构特征,并研究各种蛋白的生物活性作用及相互之间的调控意义。
     方法采用组织学方法和电镜技术观察不同发育时期鸡胚胎肾组织的发生过程及红腹锦鸡(Chrysolophus pictus)肾的结构,应用免疫组织化学和体视学半定量检测EGFR、TGF-β(β1、β2、β3)、AQP-2及Bax蛋白在鸡胚肾(小管)发生过程和红腹锦鸡肾中的表达,用IPP专业图像分析软件,对其表达强度进行定量分析。
     结果(1)鸡胚孵育到第16期在中肾前端附近出现一些中肾小泡。孵育到第18期形成中肾小管。孵育到第26期,中肾小管的盲端内陷,原始的肾小囊和肾血管球形成,中肾小管显著伸长并迂回曲折。孵育到第33~37期体前后部中肾组织均已形成完整的肾单位。第37~46期体前部至后部的中肾组织依次退化。孵育到第26期从泄殖腔附近发出的输尿管芽向生后肾组织侵入生长,生后肾组织产生许多生后肾小泡。第33期出现肾小囊和肾小管,肾小管伸长并发生折叠,出现集合小管、近端小管和远端小管的形态分化。第37~46期肾小体逐渐发育成熟,肾小管继续分化出现细段。(2)第26~46期鸡胚肾的近端小管上皮细胞呈EGFR免疫反应阳性;第26~37期中肾的近端小管上皮细胞和远端小管上皮细胞呈TGF-β免疫反应阳性,第33~40期后肾的近端小管上皮细胞和远端小管上皮细胞呈TGF-β免疫反应阳性,第44~46期近端小管上皮细胞呈TGF-β免疫反应阳性,远端小管上皮细胞呈TGF-β免疫反应阴性;第26~46期鸡胚肾的集合小管上皮细胞呈AQP-2免疫反应阳性;第26~37期中肾近端小管和远端小管上皮细胞呈Bax反应阳性,第33~46期后肾近端小管上皮细胞呈Bax免疫反应阳性。图像分析显示,在鸡胚肾发生过程中EGFR,TGF-β(β1,β2,β3)和Bax蛋白的阳性反应呈现先增强后减弱的变化,AQP-2阳性反应呈持续增强的趋势。(3)红腹锦鸡肾主要由许多肾单位、集合管和少量结缔组织组成。肾单位是肾功能结构的基本单位,它由一个肾小体和一个与其连接的上皮性肾小管构成。血管球由一团迂回盘曲的毛细血管丛构成,结构简单;肾小囊足细胞的突起与毛细血管内皮细胞及基膜紧密相贴,三者构成肾小体的滤过屏障;近端小管由单层立方上皮组成,上皮细胞游离面有许多微绒毛,细胞界限不明显,侧面有许多指状突起彼此交错,质膜内褶较少;远端小管上皮细胞基底面有丰富的质膜内褶;集合管上皮细胞有明细胞和暗细胞两种类型;近端小管上皮细胞呈EGFR、TGF-β免疫反应阳性,集合管上皮细胞呈AQP-2免疫反应阳性。
     结论(1)鸡的中肾具有排泄功能。鸡后肾的发生与分化存在明显的时间差异。肾单位的分化中,同一胚龄肾组织内可存在不同发育阶段的肾小体,集合小管分化较早,诱导近端小管和远端小管分化,细段分化较迟。(2)中肾肾小管的退化可能与TGF-β和Bax蛋白的大量表达有关。EGFR、TGF-β、AQP-2和Bax蛋白的协同表达调控着后肾肾小管和集合小管的发生及分化成熟。在肾发育过程中集合小管上皮细胞AQP-2表达丰富,AQP-2可能介导胚胎发育过程中水平衡的稳定。EGFR、TGF-β和AQP-2、Bax蛋白在胚胎肾不同发育阶段具有不同的表达规律和特征,发挥着不同的功能,它们对肾单位的构筑、肾小管和集合小管上皮的成熟分化都有重要的调节作用。(3)EGFR、TGF-β、AQP-2可能发挥着不同的功能,对红腹锦鸡肾的肾单位、肾小管和集合管结构的稳定以及肾水的平衡等可能有重要的调节作用。(4)鸡和红腹锦鸡肾结构和功能基本相似。红腹锦鸡肾的近端小管细胞顶部有许多电子密度高的短棒状致密颗粒,底部细胞质被深染,集合管细胞顶部胞质中亦有较多具有分泌功能的囊泡。在鸡肾发育过程中各种蛋白的表达呈现规律性变化,而在红腹锦鸡肾中各种蛋白的表达相对稳定。
Objective To explore the development and degeneration of mesonephros,the patternsand characteristics about metanephric development and differentiation of chicks andstructural characteristics in Chrysolophus pictus kidney,mesonephros and metanephrosin chicks at 9 different incubation stages and 5 Chrysolophus pictus kidney wereobserved. Through measuring the expression of EGFR, TGF-β, AQP-2, Bax duringdevelopment of renal tubules in chick embryo and in Chrysolophus pictus kidneyexplore the role and regulating significance of them.
     Methods Electromicroscopic and histological methods were applied.The expressionof EGFR,TGF-β,AQP-2,Bax were measured by immunohistochemistry combined withstereological methods in chicks kidney at different incubation stages and inChrysolophus pictus kidney.The expression intensity of them was analyzed by IPP.
     Results (1)Some mesonephric vesicles appeared in the vicinity of the anterior of themesonephric ducts at the 16th stage.At the 18th stage mesonephric tubules tookshape.At the 26th stage mesonephric tubules’blind ends invaginated,resulting inprimitive renal sacs and glomerulus,mesonephric tubules elongated distinctly andcurved back and forth.All mesonephric tissue had produced integrated nephric unitsduring the 33rd-37th stages.During the 37th-46th stages mesonephric tissue fromanterior to posterior of the embryos degenerated in turn.At the 26th stage ofincubation,ureteric bud from cloaca grew into metanephogenic tissue which producedmany metanephrogenic vesicles. At the 33rd stage renal tubules and renal sacsappeared,next renal tubules lengthened apparently and folded regularly,which presentedmorpholotical differentiation of collecting convoluted tubules,proximal convolutedtubules and distal convoluted tubules.During the 37th-46th stages renal corpuscledeveloped and matured,renal tubules produced functional differentiationgradually,presented morpholotical differentiation the neck part of tubules. (2)Theepithelial cells of proximal tubules in chick embryo appeared EGFR immunoreaction atthe 26th-46th stages.At the 26th-37th stages the epithelial cells of proximal tubules and distal tubules of mesonephros appeared TGF-βimmunoreaction,the epithelial cells ofproximal tubules and distal tubules of metanephros appeared TGF-βimmunoreaction atthe 33rd-40th stages,at the 40th-46th stages the epithelial cells of proximal tubules ofmetanephros appeared TGF-βimmunoreaction but the epithelial cells of distal tubulesdid not appeare TGF-βimmunoreaction.The epithelial cells of collecting tubules inchick embryo appeared AQP-2 immunoreaction at the 26th-46th stages.The epithelialcells of proximal tubules and distal tubules of mesonephros appeared Baximmunoreaction at the 26th-37th stages,the epithelial cells of proximal tubules ofmetanephros appeared Bax immunoreaction at the 33rd-46th stages.Images showed theexpression of EGFR, TGF-β(β1,β2,β3) and Bax first displayed up then down,butexpression of AQP-2 always displayed up during development of chick embryo.(3)The kidney of Chrysolophus pictus was made from many nephrons,collecting ductsand a little connective tissue.The nephron was the structural and functional unit ofkidney,made from a renal corpuscle and a epithelial renal tubule.The renal glomeruluswas made from the convoluted capillary and its structure was simple.The podocytes ofthe renal capsule combined with the endothelium cell and basal membrance,whichtogether formed the filtration barrier of the glomerulus.The proximal tubule was linedby a simple cuboidal epithelium with a well-developed brush border (microvilli).Thelateral borders of these cells had many lateral extensions. The complex interdigitationsof the lateral extensions of neighbouring cells interlocked them with one another.Theplasma membrane infoldings were not abundant in the epithelial cells of proximaltubule,but the plasma membrane infoldings were abundant in the epithelial cells ofdistal tubule.The epithelial cells of collecting duct had light cells and dark cells.EGFRand TGF-βappeared to be expressed in the epithelial cells of proximal tubules. AQP-2was present in the collecting ducts.
     Conculsion (1)Mesonephros of chick embryo has excretory function. Developmentand differentiation evidently vary in time at different sections of mesonephros.Duringdevelopment and differentiation of nephric units renal corpuscles of differentdeveloping sections appeare at the same stage.The differentiation of collectingconvoluted tubules is earlier,which induces the differentiation of proximal and distal convoluted tubules.The differentiation of neck part of tubules is later.(2)Degeneration of renal tubules of mesonephros might be related with the excessiveexpression of TGF-βand Bax. Development,differentiation and maturation of renaltubules and collecting tubules of metanephros might be due to the corporate expressionof EGFR, TGF-β, AQP-2 and Bax.Expression of AQP-2 is abundant in the epithelialcells of collecting tubules,which related with the balance of water during developmentand maturation of renal tubules in chick embryo.In different stages the expression ofEGFR,TGF-β,AQP-2,Bax are different,which hints they have different function.Theyare very important for forming nephron,maturation and differentiation of renal tubulesand collecting tubules. (3)EGFR,TGF-β,AQP-2 have different function.They are veryimportant for structural stable of nephron,renal tubules and collecting ducts and waterbalance in Chrysolophus pictus kidney. (4)The structure and function of chick andChrysolophus pictus’s kidney are similar.There is dense electron cosh shape grains atthe top cells of proximal tubules,but cytoplasm is deeply stained at the bottom ofproximal tubules in Chrysolophus pictus kidney,there is vesicles with excreting at thetop cells of collecting ducts.During development of chick kidney interrelatedpolypeptides expression present rule changes,but interrelated polypeptides expressionpresent comparatively stabilization in Chrysolophus pictus kidney.
引文
Agre P,Preston GM,Smmith BI. Aqnaporins CHIP:the archetypal molecular water channel. AmJ Physiol,1993,34:463.
    Birgit Stierstorfer,Herbert Kaltner,Christine Neumüller et al. Temporal and spatial regulation ofexpression of two galectins during kidney development of the chicken. The HistochemicalJournal,2000,32(6):325-336.
    Camp V,Martin P. The role of macrophages in clearing programmed cell death in the developingkidney. Anat Embryo,1996,194(4):341-348.
    Clark DA,Cokcr R. Transforming growth factor-beta ( TGF- beta). Int J Bioc:Hcan Cell Biol,1998,30(3):293.
    Comijn J,Berx G. The two-handed E box binding zinc finger protein SIPI downregulatesE-cadherin and induces invasion. Mol Cell,2001,7:1 267–1 278.
    Daopin S,Piez K,Ogawa Y et al. Crystal structure of transforming growth facaor-beta 2:an unusualfold for the superfamily. Science,1992,257(5 068):369.
    Diaz-Ruiz C,Perez-Tomas R,Cullere X et al. Immunohistochemical localization of transforminggrowth factor-alpha and epidermal growyh factor-receptor in the mesonephros andmetanephros of the chicken. Cell and Tissue Research,1993,271(1):3-8.
    D.L. Goldstein,E.J. Braun.Structure and concentrating ability in the avian kidney,Am J PhysiolRegul Integr Comp Physiol,1989,256:505-509.
    FA Al-Abdaly,HL henry. Homonal regulation of chick kidney inhibitor of adenosine3,5'-monophosphate-dependent protein kiase,Endocrinology,1989,124:2 901-2 906.
    Gambaryam S.P..Development of the metanephros in the chick:maturation of glomerular size andnephron length,Anatomy and Embryology,1992,185(3):291-297.
    Gesualdo L,Paolo SD,Calabro A. Expression of epidermal growth factor and its receptor in normaland disease human kidney. Kidney Int.,1996,49(2):656–665.
    
    Gumbiner BM. Cell adhesion:the molecular basis of tissue architecture and morphogenesis. Cell,1996,84(3):345-357.
    Hamburger V,Hamilto HL. A series normal stages in the development of chick embryo. Journal ofMorphology,1951,88:49.
    Hatakeyama S,Yoshida Y,Tani T et al. Cloning of a new aquaporins ( AQP-10 ) abundantlyexpressed in duodenum and jejunum. Biochen Bioplys Res Commun,2002,287 (4):814.
    Ishebashi K,Kuwahara Y,Kageyama A. Cloning and functional expression of a new water channelabundantly expressed in the testis permeable to water,glycerol and urea. J Biol Chem,1997,272(33):20 782–20 786.
    Kamsteeg EJ,Bichet DG,Konings IB. Reversed polarized delivery of an aquaporin-2 mutant causesdominant nephrogenic diabetes insipidus. J Cell Biol,2003,163(5):1 099–1 109.
    Kuwahara M,Fushimi K,Terada Y et al. Aquaporin-collecting duct water channel protein expressedin Xenopus oocytes. Biol Chem,1995,270(18):10 384-10 387.
    Lonigtro R,De Fellce M,Biffali E,et al. Expression of thyroid transcription factor-1 gene can beregulated at the transcriptional and posttranscriptional Levels. Cell Growth Differ,1996,7(2):251-261.
    Ma T,Song Y,Gilles ie A,et al. Depectine secretion of saliva in transgonic knockout mice lackingaquaporin-5 water channels. Biol Chem,1999,274(10):20 071-20 074.
    Matthay MA,Folkesson H,Verkman AS. Salt and water transport across alveolar and distal air wayepithelia in the adult lung. Am J Physiol,1996,270(4):487-503.
    Moorthy B,Mandel ML,Ghazarian JG. Reciprocal post-translational regulation of renal 1 alpha and24-hydroxylases of 25-hydroxyvitamin D3 by phosphorylation of ferredoxin.mRNA-directedcell-free synthesis and immunoisolation of ferredoxin,Biochem J,1990,266(2):385-392.
    Morild,Bohle A,Christensen JA. General histology structure of the avain kidney. The AnatomicalRecord,1985,212(1):33-40.
    Nicholson JK,Kendall MD.The fine structure of dark or intercalated cells from the distal andcollecting tubules of avian kidneys,J Anat,1983,136(1):145-156.
    Nielsen S,Frokiaer J,Marples D,et al. Aquaporins in the kidney:from molecules to medicine.Physiol Rev,2002,82(1):205.
    Nielsen S,Kwon TH. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol,1999,10:647.
    Oldficld MD,Baeh LA. Advancd glycation end products cause epithelial-myofibroblasttransdifferentiation via the receptor for advanced glycation end products. J Clin Invest,2001,108:1 853–1 863.
    Park IS,Kiyomoto H,Abboud SL,et al. Expression of transforming growth factor-βand type IVcollagen in early streptozotocin-induced diabetes. Diabetes,1997,46(5):473-480.
    Patrizia Tarugi,Giorgia Ballarini,Barbara Pinotti,et al. Secrection of apoB-and apoA-I-containingliporoteins by chick kidney. The Journal of Lipid Research,1998,39:731-743.
    Rawat S,Gray C,Johnson TS,et al. Apoptosis and expression of BCL-2 and Bax incyclosporine-induced experimental renal fibrosis. Transplant Proc,2003,35(1):187-188.
    Roberts JS,Schmidt-Nielsen B. Renal ultrastructure and excretion of salt and water by threeterrestrial lizards. Journal Physiology,1996,211(2):476.
    Ruocco S,Lallemand A,Tournier JM,et al. Expression and localization of epidermal growth factor,transforming growth factor-alpha, and localization of their common receptor in fetal humanlung development. Pediatric Research,1996,39(3):448–455.
    Scott F. Gilbert. Developmental biology. Sixth edition. Sinauer Associates,2005,377-383.
    Su SB,Yoshiharu M,Xie MJ et al. Expression of transforming growth factor-beta in spontaneouschronic pancreatitis in the wbn/kob rat. Digestive Diseases and Sciences,2000,45(1):151-159.
    Wada T,Pippin JW,Marshall CB,et al. Dexamethasone prevents podocyte apoptosis induced bypuromycin Aminonucleoside:role of p53 and Bcl-2-related family proteins. J Am SocNephrol,2005,16(9):2 615-2 625.
    Yang B,Ma T,Verkman AS. Erythocyte water permeability and renal function in double knockoutmice lacking aquaporin - 1 and aquaporin-3. J Biol Chem,2001,276 (1):624.
    Zemanova Z,Ujec E,Jirsova Z et al. Indicators of functional differentiation of the chick embryonickidney. Comparative Biochemistry Physiology Part A Molecular&Integrative Physiology,2002,131(4):847-860.
    陈玲.表皮生长因子及其生物学效应.国外医学儿科学分册,1997,24(5):240-243.
    陈玉琴,俞诗源.红腹锦鸡、石鸡和雉鸡的部分血液生理生化指标.动物学报,2007,53(4):674-681.
    陈玉琴,俞诗源,马正学等.红腹锦鸡血细胞的光镜和扫描电镜观察.动物学杂志,2007,42(2):107-110.
    陈玉琴,俞诗源,张虎林等.家鸡肾的研究进展.生物学通报,2007,42(4):3-5.
    成令忠.组织学.北京:人民卫生出版社,1994,1 281.
    付丽杰,李平,徐世文等.亚慢性镉中毒鸡肾的超微结构观察.畜牧兽医科技信息,2005,4:40-41.
    郭敏,杜靖,穆长征等.小鼠肾发育中的细胞凋亡.解剖学报,2001,32(3):268-272.
    韩雪梅,张作干.小白鼠后肾和生后肾发育的组织学和组织化学观察.解剖学报,1983,14(3):113.
    胡庆柳,朴英杰.转化生长因子-β及其生物学效应.生物学通报,2000,35(9):18-20.
    华田苗,蔡亚非,鲁亚平等.扬子鳄胚胎后肾发生的组织学及细胞化学观察.解剖学杂志,2000,23(6):506-509.
    蒋唏东,薛社普.鸡胚发育图谱.北京:科学出版社,1983,124-128.
    梁伟,郑光美,张正旺等.利用无线电遥测位点分析红腹锦鸡的生境利用.动物学报,2003,49(2):179-184.
    刘纯杰,张兆山.转化生长因子β的生物学特性、功能及其临床应用前景.生物技术通讯,2001,12(4):297-299.
    刘美菊,郭敏.水通道蛋白-2、4在小鼠肾发育过程中的表达.解剖学报,2006,37(5):588-591.
    罗克.家禽解剖学与组织学.福建科学技术出版社,1983,99-109.
    马建岗,邱怀.家鸡LDH同工酶的发生遗传学分析,畜牧兽医学报,1994,6:513-518.
    潘鸿春,唐剑云,陈壁辉.扬子鳄肾的超微结构.解剖学报,1995,26(4):436–438.
    孙涛,马超龙.表皮生长因子与肾功能关系的研究.国际移植与血液净化杂志,2006,4(1):41-44.
    谭景和.脊椎动物比较胚胎学.哈尔滨:黑龙江教育出版社,1995,256.
    王楚,卢健.转化生长因子-β细胞周期抑制机制.生命的化学,2002,22(5):439-442.
    王贵宪,文建国.双侧输尿管梗阻后大白鼠肾水通道蛋白2的变化.中华小儿外科杂志,2004,25(5):452-454.
    王海涛,华田苗,李坤等.扬子鳄胚胎中肾发生及退化.解剖学杂志,2003,26(2):109-112.
    王仲涛,曹玉纯,吴淑兰等.对胎儿肾研究Ⅱ冷冻复型电镜观察.解剖学报,1981,12(3):322.
    向余劲攻,杨岚,张亚平.白腹锦鸡和红腹锦鸡的遗传分化.遗传,2000,22(4):225-228.
    肖传斌,梁宏德,李奎等.鹅肾超微结构的研究.河南农业大学学报,1997,31(1):78-81.
    俞诗源,司克媛,王子仁等.红腹锦鸡和小白鼠肾小球微血管铸型的扫描电镜观察.动物学杂志,2002,37(6):17-20.
    俞诗源,夏冰芝,陈玉琴等.红腹锦鸡肺的组织结构与微血管构筑.动物学杂志,2006,41(5):98-102.
    余志刚,蒋鸿,梁伟.红腹锦鸡繁殖生态研究.动物学杂志,1997,32(1): 41-44.
    战景明,刘占旗,高芬芳.Bcl-2、Bax与镉性肾细胞凋亡.国外医学卫生学分册,2005,32(4):201-205.
    张德禄,俞诗源,刘世倩.红腹锦鸡肝脏的显微结构观察.西北师范大学学报,2002,38(2):61-63.
    张红卫,王子仁,张士璀等.发育生物学.高等教育出版社,2001,201-202.
    张录强.红腹锦鸡人工繁育与营养生态学研究.北京师范大学,博士学位论文,2000,1-98.
    张录强,杨振才.红腹锦鸡秋季繁殖期能量收支及采食量研究.四川动物,2005, 24(4):463-465.
    张录强,杨振才,孙儒泳.长光照诱导红腹锦鸡当年雌鸡冬季繁殖效果的实验研究.动物学研究,2000,21(3): 245-247.
    张平.转化生长因子-β族信号转导与肿瘤.中国病理生理杂志,2001,17(4):377-380.
    周孜,王锋,胁田正彰.鸡肾胰岛素样生长因子-I分解酶特性研究,南京农业大学学报,2002,25(4):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700