基于流延多层叠压技术电流型氧传感器的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体电解质氧传感器一直以来在汽车领域有着重要的应用,而片式极限电流型氧传感器以其测试精度高、响应速度快、使用寿命长以及使用过程中不需基准气体等特点受到广泛重视,可作为氧仪表的核心元件。本文在国内外研究基础上围绕小孔型极限电流氧传感器的开发和研究,根据氧传感器的相关制备工艺,对固体电解质材质、多层结构设计、多层叠成热压、烧结工艺和信号检测等方面进行了细致的研究。
     选用8mol%Y_2O_3稳定ZrO_2(YSZ)(以下简称8YSZ)流延片和5mol%Y_2O_3稳定ZrO_2(YSZ) (以下简称8YSZ)流延片进行了常规烧结;对烧结后YSZ进行了收缩率、热膨胀和交流阻抗谱测试与分析;分别计算了550℃温度以下5YSZ和8YSZ的晶粒电阻、晶粒电容、晶界电阻和晶界电容;通过Arrhenius曲线拟合得到了晶界活化能和晶粒活化能。
     采用5YSZ流延生瓷片,完成了对传感器多层结构分布的设计,经过厚膜丝网印刷、叠片热压和多层共烧制备了氧化锆极限电流型氧传感器;通过数字显微镜、扫描电子显微镜(SEM)等手段对其进行了物理性能的表征,并对该传感器在923K温度下氧浓度1100ppm~90%范围内的气敏特性、高低气压影响和响应时间等进行了输出特性的研究,并测试分析了电解质工作温度对极限电流的影响;同时结合不同实际应用设计了两套氧传感器的测试系统。实验结果表明共烧制备的传感器在上述氧浓度范围内具有较好的电流平台,且极限电流与氧浓度存在正常扩散模型具有的线性关系;工作温度在923K,氧浓度在21.24%和5.06%之间变化对应的传感器响应时间呈现出较好的重复性,且均在1秒以内,基本满足氧浓度检测的应用要求。
Solid electrolyte oxygen sensor has been popularly used in automotive industry and planar limiting-current oxygen sensor is valued for its characters of high precision, quick response, durability and no reference air, which make up the core component of oxygen device. According to the relevant research at home and abroad, the oxygen sensor was studied from the aspects of Solid electrolyte material, structural design, screen printing, stacking hot pressing and sintering process. Further more, the signals of sensor were detected in detail.
     In the experiment, 5mol% yttrium stabilized zirconia ceramics and 8mol% yttrium stabilized zirconia ceramics, which had been sintered, were investigated by shrinkage rate, thermal expansion instrument, digital microscope and AC impedance. Furtherly the resistance of Grain boundary and resistance of Grain were calculated by the AC impedance spectroscopy below 550℃. Meanwhile, activation energy of grain and Grain boundary were gained in the fitting curve of Arrhenius.
     A thin-film limiting-current type oxygen sensor using 5mol% yttrium stabilized zirconia (5YSZ) was developed successfully through the technology of tape casting. It was made from tape-casting layers by screen printing, stacking hot pressing and multilayered cofiring process. Meanwhile the physical characteristics were investigated by SEM and digital microscope. The response time and I-V curve of oxygen sensor sample were tested at 923K in a mixture of the N2-O2 with the oxygen concentration between 1100ppm and 90%. Further more, the influence of the ambient pressure and the temperature of solid electrolyte were also developed. Finally, two test systems of oxygen sensors were introduced with their different applications in detection. The result distinctly shows that stable current platforms of the sensor prepared by multilayered cofiring are formed in the scope of the oxygen concentration mentioned previously, and a good linear relationship between the limiting current and oxygen concentration is illustrated according to Normal diffusion model; Simultaneously it is indicated that the sensor has good repeatability at 923K with the oxygen concentration varying from 5.06% to 21.24% and the response time is within 1 second,which is able to meet the need of basic application in oxygen detection.
引文
[1]林祖襄,郭祝昆,孙成文等编著,快离子导体(固体电解质):上海科学技术出版社,1983.
    [2] P.哈根穆勒等(陈立泉,薛荣坚等译).固体电解质.北京:科学出版社,1984.
    [3]陶颖,王零森,陈振华.ZrO_2陶瓷的离子导电性及其应用[J].中国陶瓷.1999,5:12-15.
    [4]张仲生.氧离子固体电解质浓差电池与测氧技术[M].北京:原子能出版社.1983.
    [5] Nernst W.Electronetic conduction solid substances at high temperature[J].Z Eletrochem.1900, 6: 41.
    [6] Wagner C.Mechanism of electric conduction in Nernst glower[J]. Natur wissen shaften, 1943, 31:265-68.
    [7] Kingery W D, Pappis J J.Oxygen ion mobility in cubic Zr_(O.85)Ca_(0.15)O_(1.85)[J].J.Am.Ceram. Soc,1959,42(8):393-398.
    [8] Lee J S,Park J I. Synthesis and characterization of CaO-stabilized ZrO_2 fine powders for oxygen ionic conductors[J]. J.Mater.Sci,1996,31:2833-2838.
    [9] Tien T Y, Subbarao E C.X-ray and electrical conductivity study of the fluourite phase in the system ZrO_2-CaO[J].J.Chem.Phys.1963,39(4):1041-1047.
    [10] W. D.金格瑞等编(清华大学无机非金属材料教研组译).陶瓷导论[M].北京:中国建筑工业出版社,1983.
    [11]简家文.钇稳定ZrO_2固体电解质氧传感器的研制[D],成都:成都电子科技大学,2003.
    [12]谢贵久.致密扩散障碍极限电流氧传感器的制备及氧敏性能研究[D],天津:天津大学材料科学与工程学院,2007.
    [13]钱勇之,ZrO_2、TiO2、Nb2O5新型氧传感器的最新发展[J].稀有金属,1995(6):454-458.
    [14] HT-01G氧传感器使用说明书.康达(KangTak)电子有限公司.
    [15] Pollner R, Kornwesthrim, Friese K H, et al.Electro-chemical sensor [P]. U.S.patent: 4021326,1977.
    [16] Moos R.A Brief overview on automotive exhaust gas sensors based on electroceramics [J].Int. J. Appl. Ceram. Technol,2005,2 (5) :401-413.
    [17] Gibson R W,Kumar R V,Fray D J.Novel sensors for monitoring high oxygen concentrations[J].Solid State Ionics,1999,121:43-50.
    [18]简家文,杨邦朝,张益康.汽车用氧传感器的工作原理及其应用[J].传感器技术,2002,21(3):55-57.
    [19]杨博,张益康.新型界限电流式高温湿度传感器[J].传感器世界,1996,12:16-18.
    [20] Lee J H,Kim H,Kim B K.Oxygen sensing characteristics of limiting current-type sensors with microstructural and structural variations in diffusion barrier[J].Materials Letters,1996,26(1-2):27-33.
    [21]金篆藏,王明时.现代传感技术[M].北京:电子工业出版社,1995:41-144.
    [22]王常珍著.固体电解质和化学传感器[M].北京:冶金工业出版社,2000:33-56.
    [23]王贤仁,王德君,高强等.限流型氧传感器[J].仪表技术与传感器.1998,8:5-13.
    [24] Ishibashi K,Kashima T,Asada A.Planar type of limiting current oxygen sensors[J].Sensors and Actuators,1993,B.13-14:41-44.
    [25] Nakzawa M, Asada A.Development of limiting current-type zirconia oxygen sensor[J].Fujikura Ltd.1-5-1 Kiba Koto-ku,Tokyo 135,Japan.
    [26]简家文,杨邦朝,段建华,张益康.氧传感器的原理与进展[J].传感器世界.2002,8(01):1-5.
    [27]杨媚.致密扩散层极限电流型氧传感器的研究[D] .北京:北京科技大学,2004 .
    [28]赵艳琴.致密扩散层极限电流型汽车用氧传感器的研究[D]..河北:河北理工大学,2007 .
    [29]王建民,赵艳琴,周会珠,等.复合障碍层限流型氧传感器的研究[J].传感器世界, 2007,(4):18-20.
    [30]简家文,李晓丽;氧化锆固体电解质变频型氧传感器的研究.2008哈尔滨14届全国固态离子学会论文集.
    [31]闫绍盟.通过流延成型法制备平板式ZrO_2汽车氧传感器[D].武汉:武汉科技大学,2007.
    [32]韩敏芳,彭苏萍,杨翠柏,等.YSZ纳米粉料流延成型电解质薄膜性能研究[J].功能材料,2003,34(05):540-542.
    [33]陈铭,温廷琏,黄臻,等.YSZ陶瓷膜流延等静压复合成型新工艺研究[J].无机材料学报,1999,14(5):745-75.
    [34] Bartolomeo E D, et al. YSZ-based electrochemical sensors: From materials preparation to testing in the exhausts of an engine bench test[J]. Journal of the European Ceramic Society, 2005 (25) :2959-2964.
    [35] Riegel J, Neumann H, Wiedenmann H-M et al. Exhaust gas sensors for automotive emission control[J].Solid State Ionic,2002(152):783-800.
    [36]王仲生.智能检测与控制技术[M].西安:西北工业大学出版社,2002.
    [37]孙二敬.基于LabVIEW的多传感器信息采集平台[D].北京:北京交通大学,2005.
    [38]曹刚.基于LABVIEW的气体传感器自动测试系统的研究与设计[D] .吉林:吉林大学.
    [39]魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展[J].稀有金属,2003,2(27):287-298.
    [40] Kim J D , Kim G D, Moon J W,et al.[J].Solid State Ionics,2001,143:379-389.
    [41] Badwal S P S, Ciacchi F T, Rajendran S,et al.An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3-Y_2O_3 )-ZrO_2 (Al2O3 ) [J]. Solid State Ionics,1998,109:167-186.
    [42]简家文,杨邦朝,张益康.Pt/YSZ电极结构老化特性研究[J].无机材料学报,2004,19(1):93-100.
    [43]简家文,杨邦朝,张益康.交流阻抗谱测试技术在固体电解质氧传感器研究中的应用[J].功能材料,2004,35(4):464-466.
    [44]何志奇,孟健,凯等.电极对固体电解质交流阻抗谱的影响[J].功能材料,1999,60(5):521-522.
    [45] ZVIEW软件使用指南. Scribner Associates ,Inc ,2000.
    [46] Dell R M,Hooper A.Solid Electrolytes[M].New York;Academic Press,1987,291.
    [47] Kilner J A,Steel B C H.Nonstoichiometric Oxides[M] .New York;Academic Press,1981,233-369.
    [48] Garzon F, Raistrick I, Brosha E, et al. Dense diffusion barrier limiting current oxygen sensors[J].Sensors and Actuators B,1998,50:125-130.
    [49] Usui T,Nuri K,Nakazawa M,et al.Output Characteristics of a Gas-Polarographic Oxygen Sensor Using a Zirconia Electrolyte in the Knudsen Diffusion Region[J].Jpn. J. Appl. Phys,1987,26:L2061-L2064.
    [50]夏风,钱晓良,杨欣等.ZrO_2氧传感器多孔电极中气体扩散过程模拟[J].传感技术学报, 2001,14(2):123-128.
    [51] Lee J H, Kwon C S, Kim H, et al. Limiting current and wide range air/fuel ratio sensors using the same YSZ-Al2O3 layers as electrolyte and diffusion barrier[J].Sensors and Actuators B,1996,35-36:278-284.
    [52]夏风,肖建中,罗志安,等.ZrO_2氧传感器电极保护层的模拟[J].传感技术学报,2004,2:303-305.
    [53]夏晖,李福棠,吴卫江,等.具有LSM致密扩散障碍层的片式极限电流氧传感器[J].无机材料学报,2004.19(2):411-416.
    [54]李福,杨媚,吴卫江,等.用LSCo作扩散障碍层的极限电流型氧传感器[J].北京科技大学学报,2004 ,26 (5):495-497.
    [55]章青.用类比法导出理想气体分子平均自由程公式[J].物理与工程, 2006,16(05):61-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700