致密扩散层极限电流型汽车用氧传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别制备了固体电解质8mol%Y_2O_3稳定的ZrO2(YSZ)和Gd_2O_3掺杂的CeO2(CGO),及混合导体材料La0.8Sr0.2MnO3(LSM),借助于X射线衍射(XRD)、交流阻抗谱(EIS)等技术手段对其相组成、导电性能进行了测定;以Co_2O_3为烧结助剂,研究了Co_2O_3对CGO的相组成、烧结性能、导电性能、微观结构的影响。以YSZ为固体电解质,LSM和YSZ的混合物为扩散层,分别采用共压共烧法和丝网印刷法制备了体型和厚膜型氧传感器,对传感器的性能进行研究,并分析了其微观结构。研究结果表明:
     YSZ的晶粒、晶界和总电导率与温度的关系均符合Arrhenius公式,在600℃~800℃电导率的数量级为10-3;由固相反应法合成LSM,在23℃~878℃电导率的数量级为100。
     由固相反应法制备CGO;分别以Pt和Ag作电极时,晶粒、晶界和总电导率与温度的关系均符合Arrhenius公式;Pt(Ag)/CGO界面阻抗均主要来自氧原子的扩散过程,氧在Pt电极上的扩散是界面扩散过程,而Ag电极兼有体扩散和界面扩散。当CGO中添加2.5wt%Co_2O_3时,1400℃烧结的体密度与1600℃纯CGO的相当,使烧结温度降低200℃。添加0.75wt%Co_2O_3时,试样的晶粒电导率明显增大,晶界电导率下降,添加量为1wt%~2.5wt%时,晶粒电导率趋于不变,晶界电导率稍微有所增加。
     分别以LSM掺杂50wt%和60wt%YSZ作扩散层制备的体型氧传感器,在613℃~803℃,氧浓度为0ppm~5.508ppm的范围内,均得到较好的极限电流平台,极限电流与氧浓度存在很好的线性关系;以LSM掺杂20wt%YSZ作扩散层制备的厚膜型氧传感器,在613℃~725℃,氧浓度为0ppm~10ppm的范围内,也得到较好的极限电流平台,极限电流与氧浓度存在较好的线性关系。SEM和EDS结果表明,LSM层与YSZ层结合良好,LSM与YSZ发生了界面反应。
Solid electrolyte Yttria (8mol%) stabilized zirconia (YSZ), Gd_2O_3 doped CeO2, and mixed-conductor material La0.8Sr0.2MnO3(LSM) were prepared, respectively. The phase compositions and conductance performance of these materials were examined by means of XRD and EIS. The effects of Co_2O_3, as a sintering aid, on the phase compositions, sinterability, conduction properties and microstructures of CGO were investigated.
     YSZ was used as material of solid electrolyte and the mixture of LSM and YSZ as diffusion layer, bulk and thick film type oxygen sensors were fabricated by co-pressing and co-sintering and screen printing technique, respectively. The performances of sensors were investigated, and microstructures were analyzed.
     The results show that the relations of bulk conductivity, grain boundary conductivity and total conductivity of YSZ with temperature all follow Arrhenius equation. The conductivity magnitude grade of YSZ is 10-3 from 600℃to 800℃; the one of LSM prepared by solid state reaction is 100 from 23℃to 878℃.
     CGO was prepared by solid state reaction; the relations of bulk conductivity, grain boundary conductivity and total conductivity with temperature all follow Arrhenius equation when electrode was Pt or Ag; the interface impedance of Pt (Ag)/CGO mainly comes from diffusion impedance of oxygen, the diffusion of oxygen in Pt electrode is a process of interface diffusion, while the one in Ag electrode is both interface and body diffusion. When doped with 2.5wt% Co_2O_3, the bulk density of CGO sintered at 1400℃can reach that of pure CGO sintered at 1600℃, the sintering temperature can be reduced by 200℃from 1600℃without aids. Addition of 0.75wt% Co_2O_3 can increase bulk conductivity of CGO, while grain boundary conductivity reduces. When doping contents of Co_2O_3 is from 1wt% to 2.5wt%, bulk conductivity goes to invariability, but grain boundary conductivity has a little enhance.
     The bulk type oxygen sensors, with LSM doped with 50wt% and 60wt%YSZ as diffusion layers, respectively, can both get stable current plateaus in oxygen concentration from 0ppm to 5.508ppm when temperature is from 613℃to 803℃. There is a excellent linear relationship between limiting current and oxygen concentration; the thick film type oxygen sensor, with LSM doped with 20wt% YSZ as diffusion layer, also can get stable current plateaus in oxygen concentration from 0ppm to 10ppm when temperature is from 613℃to 725℃. There is a good linear relationship between limiting current and oxygen concentration. SEM and EDS show that there is a good bonding between LSM layers and YSZ, but there is reaction between LSM and YSZ.
引文
[1] 秦文新. 汽车排气净化[M]. 北京:机械工业出版社,1988.
    [2] 钱耀义. 汽车发动机排气污染与控制[M]. 北京:人民交通出版社,1987.
    [3] 李红卫,言卫平,李旭东. 氧化锆氧传感器在汽车电喷系统中的应用[J]. 陶瓷工程,2000,34 (2):16~20.
    [4] Heinrich Ducker. Bosch 汽车的氧传感器[M]. 湖南:湖南科技技术出版社,1982.
    [5] G T Engh. Development of the Volvo lambda-sond system. U S A, Int Automotive Eng Congress. SAE paper 770295, 1977.
    [6] 王连红. ZrO2 氧传感器的发展与应用[J]. 山东陶瓷,2004,27(2):15~18.
    [7] 马玉芳,卢世魁. 汽车发动机用氧传感器的研究[J]. 工矿自动化,2003,5: 19~20.
    [8] 曾昭茂,罗练谋. 氧传感器在汽车排气净化中的作用[J]. 中南汽车运输,1999,1:15~18.
    [9] 郑彦升,武国胜,方湘怡等. 汽车空燃比控制用氧传感器的研究[J]. 世界产品与技术,2000:46~49.
    [10] 何锐,刘光葵,孙尧卿. 氧传感器及其在汽车中的应用[J]. 传感器技术,1999,18(3):1~4.
    [11] 方国家. 氧传感器的研究与进展[J]. 无机材料学报,1998,13(6):769~775.
    [12] Xu Jiaqiang. Preparation and gas sensitivity of ZnS. Proc, 2nd EACCS[C]. Xi’an: International Academic Publishers, 1995.
    [13] 徐甲强,潘庆谊. 汽车用氧传感器[J]. 无机化学学报,1998,14(3):355~359.
    [14] 李福燊,夏晖,杨媚等. 具有 LSM 致密扩散障碍层的片式极限电流型氧传感器[J]. 无机材料学报,2004,19(2):411~416.
    [15] 夏风. ZrO2 氧传感器多孔电极中气体扩散过程模拟[J]. 传感技术学报,2001,6(2):123~128.
    [16] Kohsei Ishibashi. Planar type of limiting current oxygen sensor[J]. Sensors and Actuators B, 1993, 13: 41~44.
    [17] W.Weppner. Tetragonal Zirconia polycystals-A high performance solid oxygen ion conductor[J]. Solid State Ionics, 1992, 52: 15~21.
    [18] 杨媚,李福燊,吴卫江等. 用 LSCo 作扩散障碍层的极限电流型氧传感器[J]. 第十二次全国电化学学术会议论文集. 上海,2003.
    [19] Fernando Garzon. Dense diffusion barrier limiting current oxygen sensors[J]. Sensors andActuators B, 1998, 50: 125~130.
    [20] 夏晖. 薄膜式极限电流型汽车尾气氧传感器的研究[D]. 北京:北京科技大学,2003.
    [21] 杨媚. 致密扩散层极限电流型氧传感器的研究[D]. 北京:北京科技大学,2004.
    [22] 陶颖,王零森,陈振华等. ZrO2 陶瓷的离子导电性及其应用[J]. 中国陶瓷,1999,35(5):12~15.
    [23] Liu Xiaoguang. Influence of solid loadings on properties of Yttria stabilized Zirconia[J]. Functional Materials, 2005, 5(36): 767~774.
    [24] DOSHI R, ROUTHBORT J, KRUMPEL T M. Fuel Cell[A]. 1996 Fuel cell Seminar, Program and Abstracts[C]. Washington, DC, USA : Courtesy Associates, 1996, 794: 151~154.
    [25] 刘旭俐,马峻峰,刘文化等. 固体氧化物燃料电池材料的研究进展[J]. 硅酸盐通报,2001,1:24~30.
    [26] Miura N., Murae H., Kusaba H., et al. Oxygen permeability and phase transformation of Sr0.9Ca0.1CoO3-δ[J]. Electrochem. Soc., 1999, 146: 2581~2586.
    [27] Kruidhof H., Boumeester H. J., Doorn R. H. E. v., et al. Influence of order- disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides[J]. Solid State Ionics, 1993, 63~65: 816~822.
    [28] Shao Z. P., Yang W. S., Cong Y., et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane[J]. Membr. Sci., 2000, 172: 177~188.
    [29] Teraoka Y., Zhang H. M., Furukawa S., et al. Oxygen permeation through perovskite-type oxides[J]. Chem. Lett., 1985, 1743~1746.
    [30] Liu L. M., Lee T. H., Qiu L., et al. A thermo gravimetric study of phase diagram of strontium cobalt iron oxide SrCo0.8Fe0.2O3-δ[J]. Mate. Res. Bull., 1996, 31: 29~35.
    [31] Balachandran U., Dusek J. T., Sweeney S. M. Methaneto synthesis gas via ceramic membranes[J]. Am. Ceram. Soc. Bull., 1995, 74: 71~75.
    [32] Pei S. , Kleefisch M. S., Kobylinski T. P. Failure mechanisms of ceramic membrane reactors in partial oxidation of membrane to synthesis Gas[J].Catal.Lett., 1995,30: 201~212.
    [33] Kim S., Yang Y. L., Christ offersen R., et al. Oxygen permeation, electrical conductivity and stability of the perovskite oxide La0.2Sr0.8Cu0.4Co0.6O3-x[J]. Solid State Ionics, 1997, 104: 57~65.
    [34] Zhang K., Yang Y. L., Ponnusamy D., et al. Effect of microstructure on oxygen permeation in SrCo0.8Fe0.2O3-δ[J]. Mater. Sci., 1999, 34: 1367~1372.
    [35] 工藤澈一编;董冶长译. 固态离子学[M]. 北京:北京工业大学出版社,1992.
    [36] LIP, CHEN I W, JAMES E P H. Effect of Y2O3 dopant on ZrO2 structures[J]. PhysRevB, 1993, 48: 10063~10081.
    [37] 魏丽,陈诵英,王琴. 中温固体氧化物燃料电池电解质材料的研究进展[J]. 稀 有 金 属,2003,2(27):287~298.
    [38] 李英,龚江宏,谢裕生等. Y2O3 稳定 ZrO2 材料的电导活化能[J]. 无机材料学报,2002,4(17):812~816.
    [39] 魏楸桐. SOFC 阴极材料的制备和性能研究[D]. 天津:天津大学,2003.
    [40] 符晓铭,唐春,唐亚平等. 固体氧化物燃料电池阴极材料 La1-xSrxMnO3 研究[J]. 清华大学学报(自然科学版),1998,38(5):80~83.
    [41] 刘莉,唐超群. CeO2基中低温固体电解质材料研究进展[J]. 电源技术,2001,25(6):428~431.
    [42] 马志芳. 氧化铈基固体电解质材料性能的研究[D]. 天津:河北工业大学,2005.
    [43] 梁广川,陈玉如,吴厚政等. 燃料电池固体氧化物电解质研究进展[J]. 硅酸盐通报,1999,5:39~43.
    [44] Xinge Zhang. A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte[J]. Journal of Power Sources, 2006, 162: 480~485.
    [45] 刘志辉,周和平. GDC 电解质粉体合成及其性能[J]. 稀有金属材料与工程,2005,34(6):135~138.
    [46] 雷复兴. ZrO2·Y2O3 固体电解质和测氧探头的研究[J]. 耐火材料,1996,30(5):248~251.
    [47] L. R. Velho, R. W. Bartlett, Met. Trans., 1972, (3): 3239.
    [48] 黄晓巍. 液相烧结 3Y-TZP/Al2O3 陶瓷的制备与性能研究[D]. 上海:中国科学院上海硅酸盐研究所,2003.
    [49] G.S.Lewis, A.Atkinson, B.C.H.Steel, et al. Effect of Co addition on the lattice parameter, electrical conductivity and sintering of gadolinia-doped ceria[J]. Solid State Ionics, 2002, 152~153: 567~573.
    [50] J.D. Sirman, D. Waller, J.A. Kilner, et al. Electrochem. Soc. Proc. 1997, 97~18: 1159.
    [51] D.Pérez-Coll, P.Núň ez, J.C.C.Abrantes, et al. Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO[J]. Solid State Ionics, 2005, 176: 2799~2804.
    [52] 肖嘉. 电流式片状二氧化锆氧敏传感器的研究[D]. 北京:北京航空航天大学,2003.
    [53] Xing Shi, Yue Zhang. Study of YSZ amperometric oxygen sensor with a dense barrier layer. Key Engineering Materials[J]. 2005, 280~283: 431~434.
    [54] Wang Ling, R. V. Kumar. Thick film miniaturized HCl gas sensor[J]. Sensors and Actuators, 2004:196~203.
    [55] 李兴虎,张博彦,韩爱民等. 加热式氧传感器在点燃式发动机空燃比测量中的应用研究[J]. 内燃机学报,2002,2(3):217~220.
    [56] 牛雅芳. 二氧化锆基极限电流型宽范围空燃比氧传感器的研究[D]. 北京:北京科技大学,2002.
    [57] 杨丽. 新型锆基钙钛矿型致密透氧膜的研究[D]. 南京:南京工业大学,2003.
    [58] Poulsen F. W., van der Puil N. Phase relations and conductivity of Sr-Zirconates and La-Zirconates[J]. Solid State Ionics, 1992, 53: 777~783.
    [59] Arnaud Grosjean, Olivier Sanseau, Velimir Radmilovic, et al. Reactivity and diffusion between La0.8Sr0.2MnO3 and ZrO2 at interfaces in SOFC cores by TEM analyses on FIB samples[J]. Solid State Ionics, 2006, 177: 1977~1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700