用比较基因组的方法分析植物病原细菌致病性相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对已完成全基因组测序的16个植物病原细菌基因组进行序列分析,推测出基因组中的致病基因并对其进行了功能分类。通过将这些致病基因与20个细菌(包括16个已完成全基因组测序的植物病原细菌)基因组中的基因进行BlastP分析,确定了这些植物病原细菌基因组中的菌株特有基因。如:土壤根癌杆菌菌株C58特有基因有19个,欧文氏菌马铃薯黑胫亚种SCR11043特有基因有11个,拉尔氏菌属的茄科青枯雷尔氏菌GMI1000的特有基因有10个,苛养木杆菌Temeculal特有基因有3个,苛养木杆菌9a5c特有基因有1个,甘蔗宿根矮化病菌CTCB07特有基因有8个,丁香假单胞杆菌菜豆致病变种1448A特有基因有8个,丁香假单胞杆菌马铃薯致病变种DC3000特有基因有3个,丁香假单胞杆菌的丁香致病变种B728a特有基因有2个,黄单胞菌番茄致病变种85-10特有基因有4个,黄单胞菌柑橘致病变种306特有基因有2个,黄单胞菌野油菜致病变种特有基因有4个,黄单胞菌水稻致病变种特有基因有2个。
     对11个植物病原细菌基因组中编码Ⅲ型分泌系统的hrp基因簇进行比较分析,确定了不同属基因簇中的属特有基因。如:假单胞菌属特有基因有5个,欧文氏菌属有5个,拉尔氏菌属有4个,黄单胞菌属有3个。在这些属的特有基因中假单胞菌属的hrpA_1、欧文氏菌属的hrpA、拉尔氏菌属的hrpY、黄单胞菌属的hrpE均是编码Ⅲ型菌毛的基因。通过对这4个属hrp基因簇中同源的3个hrc基因构建系统进化树,发现树形相似,均是假单胞菌属和欧文氏菌属的基因在一个分支上,黄单胞菌属和拉尔氏菌属基因在另一个分支上。黄单胞菌属6个菌株的hrp基因簇在hrpE-hrcC之外的其余部分基因组成和序列比对有很大差异。丁香假单胞菌3个致病变种的hrp基因簇在hrcC-hrcU区域的组成有很大差异。
     应用基因的原核表达技术,对丁香假单胞菌番茄致病变种DC3000的菌株特有基因PSPTO_4711的功能进行了初步分析,发现PSPTO_4711表达的活性蛋白对拟南芥有很强的毒性。
In this paper, 16 sequenced phytopathogenic bacteria complete genome were analysed, As a result the pathogenic genes were speculated and classified basic on their function analyse. The strain specific genes in these phytopathogenic genomes were identified through the pathogenic genes and the genes of 20 bacterial genomes that included 16 completed genome sequence of phytopathogenic bacteria by BlastP. The results showed that ther were: 19 specific genes in Agrobacterium tumefaciens C58; 11 specific genes in Erwinia carotovora subsp, atroseptica SCRI1043; 10 specific genes in Ralstonia solanacearum GMI1000; 1 specific gene in Xylella fastidiosa 9a5c; 3 specific genes in Xylella fastidiosa Temeculal; 8 specific genes in Leifsonia xyli subsp, xyli CTCB07; 7 specific genes in Pseudomonas syringae pv. phaseolicola 1448A; 3 specific genes in Pseudomonas syringae pv. tomato DC3000; 2 specific genes in Pseudomonas syringae pv. syringae B728a; 4 specific genes in Xanthomonas campestris pv. vesicatoria 85-10; 2 specific genes in Xanthomonas axonopodis pv. citri 306, 4 specific genes in Xanthomonas campestris pv. campestris, 2 specific genes in Xanthomonas oryzae pv. oryzae.
     Hrp gene clusters encode the typeⅢsecreted system. Comparative analysis of hrp gene clusters in the 11 phytopathogenic bacterial was carried out to identify the genera specific genes in these phytopathogenic bacteria. The results that indicated: 5 specific genes in Pseudomonas, 5 specific genes in Erwinia, 5 specific genes in Ralstonia 4 genes, 5 specific genes in Xanthomonas. Among them, hrpA_1 gene in Pseudomonas, hrpA gene in Erwinia, hrpY gene in Ralstonia and hrpE gene in Xanthomonas all encode typeⅢpilus. Phylogenetic trees of 3 homologous hrc genes of Hrp gene clusters in 4. genera show that genes in Pseudomonas and Erwinia were all on one embranch; genes in Xanthomonas and Ralstonia were on other embranch. The composition and sequenced alignment out of the hrpE-hrcC area are very different in the hrp gene clusters of Xanthomonas. The compositions of hrcC-hrcU area are very different in the hrp gene clusters of the Pseudomonas syringae three pahtovarifies.
     The function of the strain specific gene PSPTO_4711 in the Pseudomonas syringae pv. tomato DC3000 genome was preliminarily analyzed by prokaryotic expression. It was found that PSPTO_471 gene encodes a protein with virulence to Arabidopsis thaliana.
引文
[1] Kjemtrup S, Nimchuk Z, Dangl J L. Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition[J]. Current Opinions in Microbiology, 2000, 3(1): 73-78.
    [2] Gregory B M, Adam J B, Guido S. Understanding the functions of plant disease resistance proteins[J]. Annual Review of Plant Biology, 1984, 54: 23-61.
    [3] Wassenaar T M, Gaastra W. Bacterial virulence: can we draw the line?[J]. FEMS Microbiol Lett, 2001, 201(1): 1-7.
    [4] Kao C C, Barlow E, Sequeira L. Extracellular polysaccharide is required for wild-type virulence of Pseudomonas solanacearum[J]. Journal of Bacteriology, 1992, 174(3): 1068-1071.
    
    [5] Federico K, Diego U F, Cristian G O, et al. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence[J]. Journal of Bacteriology, 1998, 180(7): 1607-1617.
    [6] Harding E, Cleary J M, Cabanas D K. Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris[J]. Journal of Bacteriology, 1987, 169(6): 2854-2861.
    
    [7] Julie T K, Huayu H, Caitilyn A. Ralstonia solanacearum needs motility for invasive virulence on tomato[J]. Journal of Bacteriology, 2001, 183(12): 3597-3605.
    [8] Alfano J R, Collmer A. Bacterial Pathogens in Plants: Life up against the Wall[J]. Plant Cell, 1996, 8(10): 1683-1698.
    [9] Chan J W, Goodwin P H. The molecular genetics of virulence of Xanthomonas campestris[J]. Biotechnology Advances, 1999, 17(6): 489-508.
    [10] Ian K T, Kennth S B, Maris C H. Soft rot erwiniae: from genes to genomes [J]. Molecular Plant Pathology, 2003, 4(1): 17-30.
    [11] Titarenko E, Solanilla E L, Olmedo G F. Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco[J]. Journal of Bacteriology, 179(21): 6699-6704.
    [12]Zaidi T S, Fleiszig S M, Preston M J. Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa[J]. Investigative ophthalmology, 1996, 37(6): 976-986.
    [13]Raetz C R. Biochemistry of endotoxins[J]. Annual Review of Biochemistry, 1990, 59: 129-170.
    [14] Schoonejans E, Expert D, Toussaint A. Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phi EC2-resistant mutants [J]. Journal of Bacteriology, 1987, 169(9): 4011-4017.
    [15] Volksch B, Weingart H. Toxin production by pathovars of Pseudomonas syringae and their antagonistic activities against epiphytic microorganisms[J]. Journal of Basic Microbiology, 1998, 38(2): 135-145.
    [16] Gur'nev F A, Kaulin I A, Tikhomirova A V, et al. Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes[J]. Tsitologiia, 2002, 44(3): 296-304.
    [17] Comelis G R, Van G F. Assembly and function of type III secretory systems [J]. Annual Review of Microbiology, 2000, 54: 735-774.
    [18] Staskawicz BJ, Mudgett M B, Dangl J L et al. Common and contrasting themes of plant and animal diseases[J]. Science, 2001, 292(5525): 2285-2289.
    [19] Alan C, Jorge L B, Amy O C. Pseudomonas syringae Hrp type III secretion system and effector proteins[J]. PNAS, 2000, 97(16): 8770-8777.
    [20] Vivian A, Arnold D L. Bacterial effector genes and their role in host-pathogen interactions[J]. Journal Plant Pathology, 2000, 82: 163-178.
    [21] Jeff H C, Ajay K G, Sarah R G. Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria[J]. Current Opinion in Microbiology, 2004, 7: 11-18.
    [22] Da Silva A C, Ferro J A, Reinach F C, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities[J]. Nature, 2002,417(6887): 459-463.
    [23] Dolph P J, Majerczak D R, Coplin D L. Characterization of a gene cluster for exopolysaccharide biosynthesis and virulence in Erwinia stewartii[J]. Journal of Bacteriology, 1988, 170(2): 865-871.
    [24] Vorholter F J, Niehaus K, Puhler A. Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core[J]. Molecular Genetics and Genomics, 2001, 266(1): 79-95.
    [25] Tang J L, Liu Y N, Barber C E, et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris[J]. Molecular General Genetics, 1991, 226(3): 409-417.
    [26] Crecy-Lagard V d, Glaser P, Lejeune P et al. A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity[J]. Journal of Bacteriology, 1990, 172(10): 5877-5883.
    [27] Russel M. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems[J]. Journal of Molecular Biology, 1998, 279(3): 485-499.
    [28] Carol L B, Francisco A C. Dennis C G. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation and Biosynthesis by Peptide and Polyketide Synthetases [J]. Microbiology and Molecular Biology Revirws, 2002, 30(4): 691-696.
    [29] Kinscherf T G, Willis D K. Global regulation by gidA in Pseudomonas syringae[J]. Journal of Bacteriology, 2002, 184(8): 2281-2286.
    [30] Finlay B B, Falkow S. Common themes in microbial pathogenicity revisited [J]. Microbiology and Molecular Biology Reviews, 1997, 61(2): 136-169.
    [31]Binet R, Letoffe S, Ghigo J M. Protein secretion by Gram-negative bacterial ABC exporters-a review[J]. Gene, 1997, 192(1): 7-11.
    [32] Salmond G P, Reeves PJ. Membrane traffic wardens and protein secretion in gram-negative bacteria[J]. Trends in Biochemical Sciences. 1993, 18(1): 7-12.
    [33] Pugsley A P . The complete general secretory pathway in gram-negative bacteria[J]. Microbiological reviews, 1993, 57(1): 50-108.
    [34] Jerome H. Type II secretion and pathogenesis[J]. Infection and Immunity, 2001, 69(6): 3523-3535.
    [35] Bogdanove A J, Beer S V, Bonas U, et al. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria[J]. Molecular Microbiology, 1996, 20(3): 681-683.
    [36] Alfano J R, Collmer A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins and death[J]. Journal of Bacteriology, 1997, 179(18): 5655-5662.
    [37] Lindgren P B, Peet R C, Panopoulos N J. Gene cluster of Pseudomonas syringae pv. phaseolicola control pathogenicity of bean plants and hypersensitivity on nonhost plants[J]. Journal of Bacteriology, 1986, 168(2): 512-522.
    [38] Ferguson A D, Hofmann E, Coulton J W. Type III protein secretion systems in bacterial pathogens of animals and plants[J]. Microbiology and Molecular Biology Reviews, 1998, 62(2): 379-433.
    [39] Wengelnik K, Bonas U. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. Vesicatoria [J]. Journal of Bacteriology, 1996, 178(12): 3462-3469.
    [40] Daniela B, Ulla B. Getting across-bacterial type III effector proteins on their way to the plant cell[J]. The EMBO Journal, 2002, 21(20): 5313-5322.
    [41] Cao B, Milton H S. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions[J]. Microbiology, 2001, 147(12): 3201-3214.
    [42] Zupan J, Muth T R, Draper O. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights[J]. The Plant Journal, 2000 23(1): 11-28.
    [43] Henderson I R, Navarro-Garcia F, Nataro J P. The great escape: structure and function of the autotransporter proteins[J]. Trends Microbiol, 1998, 6(9): 370-378.
    [44]Sauer F G, Barnhart M, Choudhury D, et al. Chaperone-assisted pilus assembly and bacterial attachment[J]. Current Opinion in Structural Biology,2000,10(5): 548-556.
    [45] David W Mount. Bioinformatics: sequence and genome analysis[M]. America: Cold Spring Harbor Laboratory Press, 2004.
    [46] Fleischmann R D, Adams M D, White O. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd[J]. Science, 1995, 269(5223): 496-512.
    [47] Bult C J, White O, Olsen G J, et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii[J]. Science, 1996, 273(5278): 1058-1073.
    [48]Goffeau A, Barrell B G, Bussey H, etal. Life with 6000 genes[J]. Science, 1996, 274(5287): 563-567.
    [49] Blattner F R, Plunkett G, Bloch C A, et al. The complete genome sequence of Escherichia coli K-12[J]. Science, 1997, 277(5331): 1453-1474.
    
    [50] Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis[J]. Nature, 1997, 390(6657): 249-256.
    [51] Stephen J B, Claire M F. Genomes and evolution: The power of comparative genomics[J]. Current Opinion in Genetics & Development, 2005, 15: 569-571.
    [52] Simpson A J, Reinach F C, Arruda P, et al. The genome sequence of the plant pathogen Xylella fastidiosa[J]. Nature, 406: 151-159.
    [53] Goodner B, Hinkle G, Gattung S, et al. Genome sequence of the Plant pathogen and biotechnology agent Agrobacterium tumefaciens C58[J]. Science, 2001, 294(5550): 2323-2328.
    [54] Wood D W, Setubal J C, Kaul R, et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58[J]. Science, 2001, 294(5550): 2317-2323.
    [55] Salanoubat M, Genin S, Artiguenave F, et al. Genome sequence of the plant pathogen Ralstonia solanacearum[J]. Nature, 2002, 415(6871): 497-502.
    [56] Buell C R, Joardar V, Lindeberg M, et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 [J]. PNAS, 2003, 100(18): 10181-10186.
    [57] Bell K S, Sebaihia M, Pritchard L, et al. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors[J]. PNAS, 2004, 101(30): 11105-11110.
    [58] Claudia B M, Luis E A, Camargo M A. The Genome Sequence of the Gram-Positive Sugarcane Pathogen Leifsonia xyli subsp. xyli[J] . Molecular Plant-Microbe Interactions, 2004, 7(8): 827-836.
    [59] Anamitra B, Stephanie S, Natalia I, et al. Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains[J]. PNAS, 2002, 99(19): 12403-12408.
    [60] Vinita J, Magdalen L, Robert W, et al. Whole-genome sequence analysis of pseudomonas syringae pv. phaseolicola 1448A reveals divergence among Pathovars in genes involved in virulence and transposition [J]. Journal of Bacteriology, 2005, 187(18): 6488-6498.
    [61] Perombelon M C. Potato diseases caused by soft rot Erwinia: an overview of pathogenesis[J]. Plant Pathology, 2002, 51: 1-12.
    [62] Paranchych W, Frost L S. The physiology and biochemistry of pili[J]. Advances in Microbial Physiology, 1988, 29: 53-114.
    [63] Havarstein L S, Holo H, Nes I F. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria[J]. Microbiology, 1994,140(9): 2383-2389.
    [64] Moore R A, Starratt A N, Ma S W, et al. Identification of a chromosomal region required for biosynthesis of the phytotoxin coronatine by Pseudomonas syringae pv. tomato[J]. CanJMicrobiol, 1989, 35: 910-917.
    [65] Cascales E, Christie P J. The versatile bacterial type IV secretion systems [J]. Nature Reviews Microbiology, 2003, 1: 137-149.
    [66] Elina R, Wei W S, Yuan J, et al. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000[J]. PNAS, 1997, 94: 3459-3464.
    [67] Gail P, Wen L D, Hsiou C H, et al. Negative regulation of hrp genes in Pseudomonas syringae by HrpV[J]. Journal of Bacteriology, 1998, 180(17): 4532-4537.
    [68] Jin Q, Hu W Q, Ian B. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae[J]. Journal of Biological Chemistry, 2001, 276(10): 7209-7217.
    [69] Van G F, Vasse J, Camus J C, et al. Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells[J]. Molecular Microbiology, 2000, 36: 249-260.
    
    [70] Frederique V G, Jacques V, Riet D R. Genetic dissection of the Ralstonia solanacearum hrp gene cluster reveals that the HrpV and HrpX proteins are required for Hrp pilus assembly [J]. Molecular Microbiology, 2002, 44(4.): 935-946.
    [71] Ernst W, Tuula O R, Elisabeth H, et al. The type III-dpendent hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants[J]. Journal of Bacteriology, 2005, 187(7): 2458-2468.
    [72] Aaron J W, Thomas M O, Winkelmann G. Comparative genomics as a tool for gene discovery[J]. Current Opinion in Biotechnology, 2006, 17: 161-167.
    [73] Kurtz T, Adam P, Arthur L D, et al. Versatile and open software for comparing large genomes[J]. Molecular Microbiology, 2004, 5(12): 1-9.
    [74]Peisen Z, Jinghui Z, Huitao S, et al. Gene functional similarity search tool(GFSST) [J]. Bioinformatics, 2006, 7(135): 1~9.
    [75] Kelly A, Frazer L P, Alexander P. VISTA: computational tools for comparative genomics[J]. Nucleic Acids Research, 2004, 32: 273~279.
    [76] Roy R C, Mark J P. xBASE, a collection of online databases for bacterial comparative genomics[J]. Nucleic Acids Research, 2006, 34: 335~337.
    [77] Roy R C, Arshad M K, Mark J P. ColiBASE: an online database for Escherichia coli, Shigella and Salmonella comparative genomics[J]. Nucleic Acids Research, 2004, 32: 296~299.
    [78] Guy P, Laurent D, Manolo G. HOBACGEN: Database System for Comparative Genomics in Bacteria[J]. Genome Research, 2000, 10: 379~385.
    [79] 周冬生,杨瑞馥.细菌比较基因组学和进化基因组学[J].微生物学杂志,2003,23(5):31~34.
    [80] Derrick E F, Jorge L B, Adela R, et al. Apseudomonas syringae pv. tomato DC3000 Hrp(type Ⅲ secretion) deletion mutant expressing the hrp system of bean pathogen p. syringae pv. syringae 61 retains normal host specificity for tomato[J]. Molecular Plant-Microbe Interactions, 2003, 16: 43~52.
    [81] Yap M N, Yang C H, Barak J D, et al. The Erwinia chrysanthemi type Ⅲ secretion system is required for multicellular behavior[J]. Journal of Bacteriology, 2005, 187(2): 639~648.
    [82] Romantschuk M, Roine E, Taira S. Hrp pilus-reaching through the plant cell wall[J]. European Journal of Plant Pathology, 2001, 107: 153~160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700