稻瘟病菌无毒基因AVR-Pii物理图谱的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由子囊菌Magnaporthe grisea引起的稻瘟病是世界性的水稻病害之一,危害严重。防治该病的有效措施是栽培抗病品种,但更重要的方面是要广泛分析我国现有水稻品种的抗瘟基因型、了解田间菌群中无毒基因的种类、数量和分布并及时监测其变化。这将有助于了解病原菌小种的变异机理;有利于建立稻瘟病菌小种快速鉴定的分子技术,在实践上用于指导抗病品种的合理布局和轮换,以更有效地控制病害的发生。
     本研究在张国珍博士获得与无毒基因AVR-Pii连锁的两个RAPD标记(并转化为SCAR标记):OPI07_(700)和OPM10_(1314)的基础上进行染色体步移,旨在克隆AVR-Pii无毒基因。首先,采用PCR的方法对两个SCAR标记进行分析发现在SCAR标记OPM10_(1314)处菌株P131与Y34存在差异;不过,在SCAR标记OPI07_(700)处菌株P131与Y34不存在差异。用标记OPM10_(1314)的SCAR引物在菌株P131与Y34中分别扩增出了1314bp与1664bp的两条不同长度的DNA片段,测序后发现后者是在1314bp中插入了一段350bp的重复序列。基因组Southern杂交及数据库BLAST表明:标记OPI07_(700)在P131与Y34基因组是单拷贝的,SCAR标记OPM10_(1314)的1314bp中有重复序列。
     对两个SCAR标记和AVR-Pii基因在染色体上的定位分析表明它们位于稻瘟病菌基因组第Ⅱ号染色体的端粒附近位置。其中无毒基因AVR-Pii较两个标记更靠近端粒,同时它们都在supercontigⅢ上(supercontigⅢ上一共有154个contigs,从Contig2.513到Contig2.360),其中Contig2.360是在端粒位置。SCAR标记OPM10_(1314)被定位在Contig2.387上,OPI07_(700)被定位在Contig2.381上。
     通过两个标记相向进行染色体步移,构建了两个SCAR标记区域的物理图谱,由3个含有最小重叠的TAC克隆覆盖了两个标记区域,分析两个标记间的物理距离大约为90Kb,根据两个标记间的遗传距离为3.16cM,可以推算出在该区域一个遗传单位相当于28Kb的物理距离。比Farman等发现的一个遗传单位相当于50Kb的物理距离要小;比Zhu等发现的一个遗传单位相当于41Kb的物理距离也小,而与AVR1-C039区域一个cM对应33.5Kb的物理距离相近。推测可能是由于该区域在染色体端粒的位置,重组事件发生的多的缘故。同时也可以知道近的SCAR标记OPI07_(700)到目的基因的距离约是186Kb。在此基础上向目的基因进行染色体步移,用4个含有最小重叠的TAC克隆向目的基因前进了约210Kb,由遗传图谱与物理图谱的对应关系知道已经覆盖了无毒基因AVR-Pii区域。这些工作为无毒基因AVR-Pii的克隆奠定了基础。
Firstly,the two SCAR markers OPI07700 and OPM101314 was analyzed,the result show that the strains of rice blast fungus P131 and Y34 have discrepancy where the place of the SCAR marker OPM10,314. The PCR amplification products are 1314 bp in P131 andl 664 bp in Y34,but nothing in 70-15 respectivly with the primer of the SCAR marker OPM101314.Then,the 1664 bp DNA band was cloned and sequenced.The result show that the sequence of 1664 is inserting a 350 bp repeated sequence into the sequence of 1314. There is no discrepancy between the strains of rice blast fungus P131,Y34 and 70-15 where the place of the SCAR marker OPI07700. Genomic Southern Blot and BLAST using the two SCAR markers OPI07700 and OPM101314.show that the marker OP107700 is a single copy in P131 and Y34 genome,and the marker PM101314 have some repeated sequence in P131 and Y34 genome.The markers and AVR-Pii were localized near the telomere on the SupercontigIII of the Chromosome II.The avirulence gene AVR-Pii is nearer the telomere than the two markers.
    Chromosome walking were initiated from the two SCAR makers.Through screening the TAC genomic library and taking advantage of the rice blast DataBase, the physical map of the region of the two markers was constructed.Based on the contig maps from the chromosome walking,a minimum TAC tile containing 3 TAC clones was created.Then the physical distance between the two markers is about 90Kb.So the ratio between the physical and genetic distance is about 28Kb/cM.At the same time the genetic distance between the nearer SCAR maker OPI07700 and the avirulence gene AVR-Pii is 6.53 cM,so the physical distance is about 186Kb.With this knowledge we carry out chromosome walking toward the avirulence gene AVR-Pii. Through a minimum TAC tile containing 4 TAC clones we walking about 210Kb toward the avirulence gene.So the physical map of the region of the avirulence gene AVR-Pii was constructed.
    At one time, according to the rice blast DataBase we choose three locations that be likely to include the avirulence gene AVR-Pii to initiate chromosome walking.then three congtig maps were constructed.the second and the third congtig map can overlap.But the relationship of the first congtig map and followed contig maps and 4 minimum TAC tile need further research.
    During the chromosome walking no further marker was found.
引文
1.刘俊峰.(2000) 博士论文:稻瘟病菌无毒基因的遗传学研究和分子标记
    2.张国珍.(2002) 博士论文:稻瘟病菌对三个水稻品种无毒性的遗传分析及分子标记
    3.魏士平.(2002) 博士论文:稻瘟病菌REMI突变体库的构建及AVR-Pia的克隆
    4.刘俊峰,董宁,侯占军,等.(2001)等.稻瘟病菌对水稻品种梅雨明的无毒性的遗传分析和分子标记.植物病理学报,31(1):10~15
    5.李成云等.(1997)稻瘟病菌三个杂交组合后代菌株的致病性分离.植物保护学报,24:293~296
    6.李成云,罗朝喜,李进斌等.(2000)稻瘟病菌无毒基因的分子标记.中国农业科学,33(3)49~53
    7.李成云,李进斌等(2004)稻瘟病菌基因组中微卫星序列的频率和分布.中国水稻科学 18(3):269-273.
    8.周益军,白娟等 (2004) 我国稻瘟病菌群体多样性研究.中国水稻科学.18(3):277-280.
    9.沈瑛,朱培良等.(1994)我国稻瘟病菌有性态的研究.中国农业科学,27(1):25~29
    10.沈瑛,朱培良等.(1995)稻瘟病菌有性态的诱导及其后代的致病性.西南农业学报,8(3):74~79
    11.董继新等.(2000)水稻抗瘟性研究进展.农业生物技术学报,8(1):99~102
    12.蔡新忠等.(2002)植物病原物无毒基因及其功能.生物工程学报,18:5~9
    13.徐云碧,朱立煌(1994)分子数量遗传学,北京中国农业出版社
    14.段民孝,(2004)基因组学研究概述
    15.杨业华主编 普通遗传学.高等教育出版社,2000年8月
    16. Barr, M. E. ( 1977) Magnaporthe, Telimenella and Hyponectria (Physosporellaceae) . Mycoiogia 69 (5): 952~966
    17. Bonas, U., Stall, R. E., et al. (1989) Genetic and structural characterization avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Molecular and General Genetics 218:127~136
    18. Bonman, J. M. and MacKill, D. J. (1988) Durable resistance to rice blast disease. Oryza 25:103~110
    19. Bryan, G. T., Wu, K. S., Farrall, L., et al. (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12: 2033~2045.
    20. Bundock,P.,Mroczek, K.,et al., T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol.Gen. Genet. 1999. 261:115-121
    21. Kaye, Joelle Milazzo et. al. (2003) The develoment of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map
    22. Daboussi, M.J. (1996) Fungal transposable elements: generators of diversity and genetic tools. Journal Genetics 75:3250
    23. De Wit, P. J. G. M. (1997) Pathogen avirulence and plant resistance: A key role for recognition. Thrends in Plant Science 2:425~458
    24. Diaz Perez, S. V., et al. (1996) Construction and characterization of a Magnaporthe grisea bacterial artificial chromosome library. Fungal Genetics and Biology 20:280~288
    25. Dioh, W., Tharreau, D. and Lebrun, M. H. (1997) RAPD-based screening of genomic libraries for positional cloning. Nucleic Acids Research 25 (24) : 5130~5131
    26. Dioh, W., Tharreau, D., Notteghem, J. L. et al. (2000) Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea,with RFLP and RAPD makers. Molecular Plant-Microbe
    
    Interactions 13 (2) :217-227
    27. Ellingboe, A. H. (1992) Segregation of avirulence/virulence on three rice cultivars in 16 crosses of Magnaporthe grisea. Phytopathology 82 (5): 596~601
    28. Eilingboe, A. H., Wu, B. C. and Robertson, W.(1990)Inheritance of avirulence/virulence in a cross of two isolates of Maganaporthe grisea pathogenic to rice. Phytopathology 80:108~111
    29. Farman, M. L. and Leong, S. A. (1995) Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea. Genetics 140:479~492
    30. Farman, M. L., and Leong, S. A. (1998) Chromosome walking to the AVR1-C039 avirulence gene of Magnaporthe grisea: Discrepancy between the physical and genetic maps. Genetics 150:1049~1058
    31. Farman, M. L., Eto, Y., Nakao, T., et al. (2002) Analysis of the structure of the AVR1-C039 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Molecular Plant-Microbe Interactions 15(1) : 6~16
    32. Flor, H. H. (1942) Inheritance of pathogenticity in Melampsora lini. Phytopathiology 32:653~669
    33. Graham, G. C. et al. (1994) A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biothchnique 16:48~50
    34. Heng Zhu,Barbara P.Blackmon, et al. (1999) Physical Map and Organization of Chromosome 7 in the Rice Blast Fungus,Magnaporthe grisea
    35. Hee-Sool.Rho,Seogchan.Kang,et.al,Agrobacterium.tumefaciens-mediated transformation.of.the.plant.pathogenic.fungus,Magnaporthe.grisea..Mol.Cells.2001.12:407-411
    36. Hooykaas PJJ, Beijersbergen A,The virulence system of Agrobacterium tumefaciens. A nnu.Rev.Phytopathol. 1994.32:157-179
    37. Jia, Y., MeAdams, S. A., Bryan, G., et al. (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO Journal, 19: 4004~4014.
    38. Joosten, M. H. A. J., Vogelsang, R., Cozijnsen, T. J., et al. (1997) The biotrophic fungus Cladosporium fulvum circumvents Cf4 mediated resistance by producing unstable AVR4 elicitors. Plant Cell 9:367~379
    39. Kamoun, S., Kluchen, K. M., Coffey, M. D., and Tyler, B. M. (1993) A gene encoding a host-specific elicitor protein of Phytophthora parasitica, Molecular Plant-Microbe Interactions 6: 573~581
    40. Kamoun, S., Van West, P., Vleeshouwers, V. G. A. A., et al. (1998) Resistance of Nicotiana beuthamiana to Phytophthora infestans is mediated by the recognition of the elicitron protein INF1. Plant Cell In press
    41. Kang, S., et al. (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions 8:939~948
    42. Kang, S., Lebrun, M. H.,Farral, L., Valent, B. (2001) Gain of virulence caused by insertion of a pot3 transposon in a Magnaporthe grisea avirulence gene, Molecular Plant-Microbe Interactions 14:671~674
    43. Kang, S. (2001) Organization and distribution pattern of MGLR-3, a novel retrotransposon in the rice blast fungus Magnaporthe grisea. Fungal Genetics and Biology, 32:11~19
    44. Kato, H., and Yamaguchi, T. (1982) The perfect stage of Pyricularia oryzae Cav. from rice plants in culture. Ann. Phytopath. Soc. Japan. 48:607~612
    45. Keen, N. T. (1990) Gene for gene complementarily in plant pathogen interaction, Ann. Rew.Genet.24:447~463
    46. Khush, G.S. (1996) Rice genetics Ⅲ. International Research Rice Institute, Manila, Philipines
    
    
    47. Knogge, W. (1996) Fungal infection of plants. Plant Cell 8:1711~1722
    48. Kiyosawa, S., Mackill, D. J., Bonman, J. M., and Tanaka, Y. (1986) An attempt of classification of world's rice varieties based on reaction pattern to blast fungus stranins. Bull. Natl. Inst. Agrobiol. Resour. 2:13~22
    49. Kolmer, J. A., and Ellingboe, A. H.(1988)Genetic relationships between fertility and pathogenicity and virulence to rice in Magnaporthe grisea. Canadian Journal of Botany 66:891~897
    50. Kooman-Gersmann, M., Vogelsang, R., Hoogendijk, E. C. M. et al. (1997) Assignment of amino acid residues of the AVR9 peptide of Cladosporium fulvum that determine elicitor activity. Molecular Plant-Microbe Interactions 10:821~829
    51. Lau, G. W., Chao, C. T., Ellingboe, A. H. (1993) Interaction of genes controlling avirulence/virulence of Magnaporthe grisea on rice cultivar Katy. Phytopathology 83(4) : 375~382
    52. Laugé, R. and de Wit, J. G. M. (1998) Fungal avirulence genes: Structure and possible functions. Fungal Genetics and Biology 24:285~297
    53. Laugé R., Joosten M. H. A. J., Haanstra J. P. W. et al. (1998) Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proceedings of Nantional Academic Science USA 95:9014~9018
    54. Leung, H., Borromeo, E. S., Bernardo, M.A. et al. (1988) Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea (Pyricularia oryzae) . Phytopathoiogy 78 (9): 1227~1233
    55. Marmeisse, R., Van den Ackerveken, G. F. J. M., et al. (1993) Disruption of the avirulence gene avr9 in Clandosporium fulvum causes virulence on tomato genetypes with the complementary resistance gene Cf9. Molecular Plant-Microbe Interactions 6:412~417
    56. Nagakubo, T., Taga, M., Tsuda, M., et al. (1983) Genetic linkage relationships in Pyrucularia oryzae. Mem. Coll. Agric. Kyoto Univ. 122:75~83
    57. Nitta, N., Farman, M. L., and Leong, S. A. (1997) Genome organisation of Magnaporthe grisea: Integration of genetic maps, clustering of transposable elements and identification of genome duplications and rearrangements. Theor. Appl. Genet. 95:20~32
    58. Nishimura, M., Naramura, S., Nayashi, N., Asakawa, S., Shimizu, N., Kaku, H., Hasebe, A., and Kawasaki, S. 1998. Construction of a BAC library of the rice blast fungus Magnaporthe grisea and finding specific genome regions in which its transposons tend to cluster. Biosci. Biotechnol. Biochem, 62:1515-1521.
    59. Orbach, M. J., Farral, L., Sweigard, J. A., et al. (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pita. Plant Cell 12:2019
    60. Ou, S. H. (1985) Rice Disease. 2nd edn. Commenwealth Mycological Institute, Kew, UK, pp1~380
    61. R.Linning,D.Lin. et al. (2004) marker-based Cloning of the region Containing the UhAurl Avirulence Gene From the Basidiomycete Barley Pathogen Ustilago hordei. Genetics 166:99-111
    62. Romao, J. and Hamer, J. E. (1992) Genetic organization of a repeated DNA sequence family in the rice blast fungus. Pro. Natl. Acad. Sci. USA, 89:5316~5320
    63. Shi, Z., Christian, D., and Leung, H. (1995) Enhanced transformation in Magnaporthe grisea by restriction enzyme mediated integration of plasmid of DNA. Phytopathology 85:329~333
    64. Silué, D., Notteghem, J. L. and Tharreau, D. (1992a) Evidence for a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology 82:577~580
    65. Silué, D., Tharreau, D., Notteghem, J. L. (1992b) Indentification of Magnaporthe grisea avirulence genes to seven rice cultivars. Phytopathoiogy 82:1462~1467
    66. Skinner, D. Z., Budde, A. D., Farman, M. L., et al. (1993) Genome organization of Magnaporthe
    
    grisea: genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. Theor. Appl. Genet. 87:545~557
    67. Smith, J. R., Leong, S. A. (1994) Mapping of a Magnaporthe grisea locus affecting rice (Oryza sativa) cultivar specificity. Theor. Appl. Genet. 88:901~908
    68. Stanton L.Martin,Barbara P.Blackmon et al (2002) MagnaporhteDB: a federated solution for integrating physical and genetic map data with BAC end derivedsequences for the rice blast fungus magnaporthe grisea Nucleic Acids Research,2002,VOL.30.no.1
    69. Sweigard, J. A., Valent, B., Walter, A. M., et al. (1993) Genetic map of the rice blast fungus Magnaporthe grisea [C]. In: O'Brien S J,( ed )Genetic maps, 6th ed. Cold Spring Harbor Laboratory, New York 3: 112~115
    70. Sweigard, J. A., Carroll, A. M., Kang, S., et al. ( 1995 ) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus, Plant Cell 7:1221~1233
    71. Valent, B., and Chumley, F. G. (1994)Avirulence gene and mechanisms of genetic instability in the rice blast fungus. Pages 111~134 in: R Rice Blast Disease. R. Zeigler, S A Leong and P S Teng. Eds. CAB Int., Wallingford UK.
    72. Valent, B., Crawford, M. S., Weaver, C. G. and Chumley, E G. (1986) Genetic studies of fertility and pathogenicity in Magnaporthe grisea. Iowa State Journal Research 60:569~594
    73. Valent, B. (1990) Rice blast as a model system for plant pathology. Phytopathology 80:33~36
    74. Valent, B., Chumley, F. G. ( 1991 )Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Ann. Rev. Phytopathol. 29:443~467
    75. Valent, B., Farrall. L., and Chumley, F. G. (1991)Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcroses. Genetics 127:87~101
    76. Van den Ackerveken, G. F. J. M., et al. ( 1993 ) The AVR9 race specific elicitor of Cladosporium fulvurn is processed by endogenous and plant proteases. Plant Physiology 103:91~96
    77. Van Kan, J. A. L., van den Ackerveken, G. E J. M. and De Wit, P.J. G. M. (1991) Cloning and characterization of cDNA of avirulence gene Avr9 of the fungal pathogen Cladosporiurn fulvum, causal agent of tomato leaf mold. Molecular Plant-Microbe Interactions 4:52~59
    78. Zhu, H., et al. (1997)A large insert( 130Kb)bacterial artificial chromosome library of the rice blast fungus Magnaporthe grisea: genome analysis, contig assembly, and gene cloning. Fungal Genetics and Biology 21:337~347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700